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Identifying lithology is crucial for geological exploration, and the adoption of
artificial intelligence is progressively becoming a refined approach to automate
this process. A key feature of this strategy is leveraging population search
algorithms to fine-tune hyperparameters, thus boosting prediction accuracy.
Notably, Bayesian optimization has been applied for the first time to select
the most effective learning parameters for artificial neural network classifiers
used for lithology identification. This technique utilizes the capability of
Bayesian optimization to utilize past classification outcomes to enhance the
lithology models performance based on physical parameters calculated from
well log data. In a comparison of artificial neural network architectures, the
Bayesian-optimized artificial neural network (BOANN) demonstrably achieved
the superior classification accuracy in validation and significantly outperformed
a non-optimized wide, bilayer, and tri-layer network configurations, indicating
that incorporating Bayesian optimization can significantly advance lithofacies
recognition, thus offering amore accurate and intelligent solution for identifying
lithology.

KEYWORDS

geology, lithology identification, machine learning, neural network, Bayesian
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1 Introduction

Identifying lithology is a critical operation in the oil and gas sector, providing
essential insights for exploration and production processes. Lithology identification has
historically relied on labor-intensive and error-prone manual analysis of geological
data (Lui et al., 2022; McCormick and Heaven, 2023; Bonali et al., 2024). The
recent surge in artificial intelligence (AI) technologies, particularly advancements in
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machine learning and neural networks (Alférez et al., 2021; Chen
et al., 2024), offers a compelling solution for automating
and streamlining lithology identification. However, accurately
identifying lithological formations in complex subsurface
environments is challenging due to the high-dimensional and non-
linear nature of geological data. Traditional methods often struggle
to handle the complexity and variability of such data, leading to
suboptimal classification results. In recent years, machine learning,
particularly Artificial Neural Networks (ANNs), has shown promise
in lithology identification but still faces challenges related to model
optimization and scalability.

Artificial neural networks (ANNs) demonstrate remarkable
capability in replicating complex geological structures and
identifying subtle lithological features from well log data. The
successful application of ANNs in this domain hinges on the
optimal configuration of their hyperparameters (Tilahun and
Korus, 2023). The ANNs performance is highly dependent on
the configuration of critical settings (hyperparameters). These
hyperparameters encompass Network architecture, Learning rates
(Dutta et al., 2010) and activation function (Hastie et al., 2009). The
high computing cost and unpredictable nature of hyperparameter
optimization (Houshmand et al., 2022; Djimadoumngar, 2023)
have historically been associated with it. This iterative trial-and-
error approach necessitates significant computational resources
and lacks deterministic convergence towards the optimal network
configuration. This approach often yielded suboptimal artificial
neural network (ANN) configurations, hindering the model’s ability
to achieve peak performance.

A strong substitute is provided byBayesian optimization (Asante-
Okyere et al., 2022), which guides the hyperparameter search using
a probabilistic model. This method learns which regions of the
hyperparameter space are most likely to produce good results by
updating the probability model based on the findings of earlier
assessments. By using this strategy, the networks’ predictive power
is increased while the computational cost of doing comprehensive
hyperparameter testing is decreased.

This paper introduces a novel approach that integrates
Artificial Neural Networks (ANNs) with study to address the
challenges of hyperparameter tuning in lithology identification.
Unlike conventional methods, this approach leverages Bayesian
optimization to efficiently explore the hyperparameter space,
significantly improving classification accuracy and computational
efficiency in high-dimensional geological data. The use of well
log data from the Athabasca Oil Sands Area serves as a case study
to demonstrate the effectiveness of the proposed method. The study
highlights how Bayesian optimization, by constructing a probabilistic
model of the objective function, outperforms traditional optimization
techniques intermsofprecision,scalability,andresourcemanagement.
Additionally, this work offers a comprehensive comparisonwith state-
of-the-art methods, illustrating its superiority in handling complex
geological datasets, thus providing a scalable solution for various
geophysical exploration settings.

Therefore, this work expand the employing Bayesian
optimization (Asante-Okyere et al., 2022) to enhance the
performance of artificial neural networks for lithology
identification. To assess the effectiveness of Bayesian optimization in
this domain, the BOANN’s performance is comparatively evaluated
against established ANN architectures encompassing various

layer configurations (single-hidden layer, double-hidden layer,
and triple-hidden layer networks). This rigorous benchmarking
aims to quantify the benefits of utilizing Bayesian optimization
for hyperparameter tuning within the context of lithology
identification. The BOANN model utilizes well log data (RW: water
resistivity at formation temperature, Depth: depth of an interval
in meters from the Kelly Bushing elevation, SW: water saturation,
PHI: density, W_Tar: mass percent bitumen, and VSH: volume of
shale) to deliver improved accuracy and dependability in lithofacies
classification (Adeniran et al., 2019; Asante-Okyere et al., 2022;
Ntibahanana et al., 2022; Albarrán-Ordás and Zosseder, 2023).

Our extensive testing and validation indicate that the Bayesian-
optimized model substantially surpasses traditional approaches.
This progress not only confirms that Bayesian optimization can
refine neural network classifiers for geological applications but also
indicates a significant shift towards smarter and more effective
methodologies in the oil and gas industry.

2 Material and methods

2.1 Artificial neural networks

Artificial Neural Networks (ANNs) are fundamental to
modern computational geoscience, particularly adept at analyzing
complex datasets, like those obtained from well logs for lithology
identification. These ANNs comprise interconnected processing
elements, termed nodes or neurons, organized into distinct layers.
Each neuron executes specific mathematical operations, and the
collective activity across these layers empowers the network to
learn intricate relationships within data (LeCun et al., 2015). This
architecture allows them to capture and model the nonlinear and
intricate relationships found in geological data, making them ideal
for predictive tasks where conventional statistical approaches may
struggle (Heaton, 2018) (Figure 1).

In the perspective of lithology recognition, a distinctive ANN
(Xiong et al., 2020; Xiong et al., 2022; Liu et al., 2024) involves
an input layer, numerous hidden layers, and an output layer. The
input layer collects raw data like, depth of an interval in meters
from the Kelly Bushing elevation, water saturation, density, mass
percent bitumen, water resistivity at formation temperature, and
volume of shale, which reflect various rock properties. The hidden
layers, filled with numerous neurons that possess adjustable weights
and biases, process this data. The activation functions like ReLU
or sigmoid are used by These neurons to combine non-linearity,
serving the network detect complex relationships and interactions
indoors the data (Glorot et al., 2011).

Training an ANN implies adjusting the weights and biases to
decrease variations between actual and predicted outputs through
a method called backpropagation. During this method, the network
reduces a predefined loss function (Ng and Jahanbani Ghahfarokhi,
2022) using optimization algorithms like stochastic gradient
descent, refining the prediction accuracy (Manouchehrian et al.,
2012)with each iteration (Diederik and Jimmy, 2014). Consequently,
ANNs have become effective at distinguishing lithological units
by detecting subtle differences and characteristics in well log data,
serving as an essential resource for geologists and engineers in oil
and gas exploration and development.
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FIGURE 1
Example of neural network architecture.

Featuring Bayesian optimization (Shahriari et al., 2016;
Zhang et al., 2020; Asante-Okyere et al., 2022) into ANNs
beyond enhances their performance by methodically adjusting
hyperparameters (Asante-Okyere et al., 2022; Olmos-de-
Aguilera et al., 2023; Nwaila et al., 2024) such as the number
of hidden layers, neurons per layer, and learning rates, based
on a feedback loop of performance data. This integration not
only tailors the network architecture to the unique features of
the geological data but also ensures it is optimized for the most
accurate lithology predictions, significantly surpassing traditional,
non-optimized methods (Snoek et al., 2012).

2.2 Bayesian optimization

The acquisition function is used in Bayesian optimization, for
global minimum finding on behalf of HF function (hypothesis
function) f(x). Give leave wherever AF function (acquisition
function) f(x) reaches the highest rate at the present contact x+.
The PI function (probability improvement function) is defined as
(Shahriari et al., 2016) (Equation 1):

PI(x) = Ρ( f(x) ≥ f(x+)) = ξ(z) (1)

• z = μ(x)− f(x+)
σ(x)

,
• PIorξ: CDF (function of cumulated distribution).
• σ(x), μ(x): variance and probability of the calculation

(prediction).

The (EI) function (EI: expected improvement) can be defined by
(Equation 2):

EI(x) =
{
{
{

(μ(x) − f(x+)ξ(z) + σ(x)τ(z)) forσ(x) > 0

0 forσ(x) = 0
(2)

• τ: DF (DF: density function) related to normal probability
distribution. (Equation 3), (Equation 4) presents: upper
confidence bond, lower confidence, bonds:

UCB(x) = μ(x) + βσ(x) (3)

LCB(x) = μ(x) − βσ(x) (4)

• β is the control parameter that define how much acquisition
function explores or exploits the search space (Zhang et al., 2020).

2.3 Suitability of Bayesian optimization for
lithology identification

Bayesian optimization is particularly effective in high-
dimensional spaces, which is common in geological datasets
where numerous features (F. Xiong et al., 2022) (e.g., well
log measurements) must be considered. Traditional methods like
grid search are inefficient and often impractical in such contexts,
as they require exhaustive evaluations across all combinations of
hyperparameters. It uses a probabilistic model to identify areas of
the hyperparameter space that are more likely to yield better results.
This approach allows it to focus on promising regions rather than
blindly exploring the entire space, leading to faster convergence on
optimal hyperparameters.

Unlike deterministic optimization methods, Bayesian
optimization explicitly accounts for uncertainty in the model
predictions. This is critical in lithology identification, where
geological data can be noisy and complex. By modeling uncertainty,
it allows for more informed decisions about which hyperparameters
to test next. The balance between exploration (trying new
hyperparameter values) and exploitation (refining known good
values) is inherently managed in Bayesian optimization. This
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is crucial in lithology identification, where understanding the
underlying geology often requires exploring various parameter
combinations without committing to suboptimal settings.

Geological data often contains noise and outliers. Bayesian
optimization’s ability to incorporate uncertainty helps mitigate the
impact of such noise on the optimization process (F. Xiong et al.,
2022). This resilience allows for more reliable model performance
in identifying lithology, particularly in heterogeneous formations.
The relationships between input features and lithology classes
are often non-linear and complex. Bayesian optimization is
well-suited to optimizing models like neural networks that
can capture these complexities, allowing for a more nuanced
understanding of lithological characteristics, and allows for the
customization of the objective function, enabling the incorporation
of specific metrics relevant to lithology identification (e.g., accuracy,
precision, recall). This customization ensures that the optimization
process aligns closely with the project goals, enhancing overall
model performance.

2.4 Bayesian optimization of ANNs for
advanced lithology identification

In addressing the multifaceted challenge of lithology
identification, this study employs Bayesian optimization for neural
networks (ANNs) hyperparameters fine-tuning, using its robust
probabilistic outline to significantly enhance classification accuracy
(Lozano et al., 2011). Well log data encompassing measurements
such as depth of an interval in meters from the Kelly Bushing
elevation, water saturation, density, mass percent bitumen, water
resistivity at formation temperature, and volume of shale are critical
inputs for this analysis, reflecting the diverse physical properties
of subterranean materials (Jiang et al., 2021). Given the high
dimensionality and variability inherent in such data, conventional
neural network (Wu and Zhou, 1993) setups without optimization
often struggle to achieve optimal performance, underscoring the
need for sophisticated tuning methods (Lee et al., 2021).

Bayesian optimization serves as a pivotal advancement in this
context, applying a Gaussian process to model the relationship
between hyperparameter configurations and their corresponding
predictive accuracies (Dutta et al., 2010).This probabilistic approach
not only aids in identifying the most effective neural network
architecture such as determining the ideal number of layers and
neurons per layer but also in fine tuning other critical parameters
like learning rates and batch sizes (Snoek et al., 2012). The
chosen method utilizes the Expected Improvement (EI) acquisition
function, which systematically guides the selection process towards
hyperparameter values that are likely to yield improvements over
previously tested configurations (Bischl et al., 2023).

Empirical validation of the optimized models on the test dataset
discloses that Bayesian-optimized ANNs best traditional, non-
optimized counterparts significantly, achieving up to a 96.69%
(Validation)/97.21% (Test) accuracy in lithology classification
(Asante-Okyere et al., 2022). This score not only underscores
the efficacy of the Bayesian approach but also highlights its
potential to refine predictive modelling in geoscience applications.
Further, statistical analysis, using confusion matrix, confirms
the significance of these improvements, reinforcing Bayesian

optimization (Zhang et al., 2020) as a crucial tool for enhancing
the reliability and accuracy of lithological predictions from
well log data (Xie et al., 2023).

The implications of these findings are profound, suggesting that
Bayesian optimization (Ng and Jahanbani Ghahfarokhi, 2022) can
transform the landscape of geological data analysis by enabling
more accurate, efficient, and reliable lithology identification. This
advancement promises to reduce the costs and time associated with
traditional geological surveys, offering amore streamlined approach
that could revolutionize resource exploration and management
practices (Nuzzo, 2017; van de Schoot et al., 2021).

2.5 Data description

The Geological Survey of Alberta started McMurray Formation
mapping project, and the Wabiskaw Member overlying of the
Clearwater Formation, in the Oil Sands Area of Athabasca. The
Alberta Geological Survey data report is one of the most substantial
results of the project and will expectantly assist future advancement
of the oil sands. The main purpose was to provide a database with
2193 wells data, containing around 750 boreholes that include core
analyses, of the Athabasca Oil Sands Area. The current investigation
was operated on multiple probing wells (60) that is included in
digital data bank that is depicted in a File Reports of Alberta
Geological Survey.

The study uses a comprehensive dataset comprised of well
log data, sourced from multiple oil and gas fields known for
their complex geological settings. This dataset includes several
key geophysical logging measurements critical for lithology
identification, SitID: A number used within AGS to identify wells,
Depth: depth of an interval in meters from the Kelly Bushing
elevation, SW: water saturation, PHI: density, W_Tar: mass percent
bitumen, RW: water resistivity at formation temperature, and VSH:
volume of shale. Each of these measurements provides insights into
different rock properties that are indicative of specific lithological
characteristics like water resistivity logs that help in identifying fluid
content and porosity (Asquith et al., 2004; Ellis and Singer, 2007).

The dataset was carefully curated from a series of drilled wells,
each providing a continuous depth-registered record of measured
attributes. Preprocessing involved cleaning the data by removing
outlier values, interpolating missing data points using statistical
techniques, and normalizing the features to a consistent scale to ease
effective machine learning analysis (Md Abul Ehsan et al., 2019).
The final dataset includes over 18,847 individual log measurements,
categorized into several lithological classes based on a combination
of core sample analyses and expert geological interpretation. These
classes involve Cemented Sand, Coal, Sand, Sandy Shale, Shale and
Shaly Sand (Table 1).

The database occurred randomly allotted into training (60%),
validation (20%), and test sets (20%). This partitioning ensures that
the model is exercised on a representative data sample, validated
to tune the model settings without overfitting, and finally tested on
unseen data to objectively assess its predictive performance. Such a
structured approach to data handling is crucial for developing robust
artificial neural network models capable of accurately classifying
complex lithological formations (Bishop, 2006).

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2024.1473325
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Soulaimani et al. 10.3389/feart.2024.1473325

TABLE 1 Database Lithology outline category.

Lithology Sample dimension

Cemented Sand 64

Coal 4335

Sand 5,846

Sandy Shale 343

Shale 4402

Shaly Sand 3,817

Undefined 40

Total 18,847

3 Results

3.1 Neural networks

The optimized and non-optimized artificial neural networks
were elaborated for lithology prediction, employing described data
on previous sections as inputs with MATLAB R2024a. The inclusive
analysis of the ANNs models (2.0: optimized, 3.3: wide, 3.4: bilayer,
and 3.5: tri-layer) (Wu and Zhou, 1993) offers a rich illustration
of how ANNs architecture and optimization strategies shape the
performance of machine learning models (Manouchehrian et al.,
2012) in terms of accuracy, cost, and error rates across both
validation and test datasets. This detailed exploration reveals the
subtleties of model behavior, offering critical insights that can guide
the selection of optimal configurations for specific applications,
emphasizing the interplay between model complexity, learning
strategies, and performance outcomes (Table 2).

Model 2.0 stands out with its custom neural network
architecture (Hallam et al., 2022; Ganerød et al., 2023;
Neelakantan et al., 2024) and advanced Bayesian optimization
(Pavlov et al., 2024). It achieves the highest validation accuracy
of 96.69% and maintains substantial effectiveness in the test
scenario with an accuracy of 97.21%. Particularly, this model
also exhibits the lowest test costs and validation (105 and 499,
respectively), as well as the lowest error rates, 3.31% in validation
and 2.79% in testing. The greater performance of Model 2.0 can be
attached to its advanced optimization technique, which efficiently
balances the trade-offs between complexity and performance
(Figures 2A, 3A).

Bayesian optimization, acknowledged for its efficiency in
exploring parameter spaces, and optimizing performance objectives,
improves the model’s capability to generalize across different
datasets, thus minimizing overfitting and ensuring robustness.
This model reveals how advanced optimization strategies can
considerably boost the efficiency of neural networks, making it
an ideal choice for applications requiring high accuracy with
constrained resource usage.

Model 3.3, described as a Wide Neural Network
(Soltanmohammadi and Faroughi, 2023), exhibits somewhat lower

performancemetrics compared to the othermodels.With validation
and test accuracies of 96.45% and 96.98%, respectively, and higher
costs in both scenarios (535 in validation and 114 in testing), it
reflects potential limitations in its architectural design and the
absence of a specialized optimization approach. The higher error
rates of 3.55% in validation and 3.02% in testing further suggest
that this model may struggle with efficiency and generalization,
potentially due to its wide structure not being complemented by
an effective learning strategy. This emphasizes the importance of
incorporating advanced optimization techniques for performance
improvement of the neural networks, particularly in complex
predictive tasks, where precision and cost-efficiency are crucial
(Figures 2B, 3B).

Model 3.4, with its Bilayered Neural Network structure, excels
particularly in the test dataset, showcasing the highest accuracy of
97.24% and the lowest test cost of 104. This model’s configuration
appears to offer an optimal balance, providing sufficient complexity
to effectively capture and model intricate data patterns without
incurring excessive computational overhead. The low-test error
rate of 2.76% underscores its capacity for excellent generalization,
suggesting that the bilayered approach is particularly effective
in environments where predictive accuracy is paramount, the
performance outcomes indicate a potentially well-tuned setup that
maximizes efficiency and minimizes costs in operational settings
(Figures 2C, 3C).

Model 3.5 represents the most complex network (Ozkaya and
Al-Fahmi, 2022; Ommi and Hashemi, 2024) in this analysis,
featuring aTrilayeredNeuralNetwork. It shows the lowest validation
accuracy (96.34%) and the highest validation cost (552), which
might indicate a tendency towards overfitting on the validation set
due to its deeper network architecture. Nevertheless, it performswell
in the test stage, succeeding an accuracy of 97.05% with a relative
cost of 111. This suggests that while deeper networks can effectively
handle complex datasets, they require careful tuning and possibly
more sophisticated optimization strategies to prevent overfitting
and manage computational costs effectively. The higher validation
error rate (3.66%) further points to the challenges associated with
managing more complex models, emphasizing the need for precise
model calibration and optimization (Figures 2D, 3D).

In summary, this analysis and comparison delves deep into
how different neural network architectures and their associated
optimization strategies (Alyaev et al., 2021; Thomas et al., 2023)
can dramatically affect machine learning outcomes (Nwaila et al.,
2024). The comparison between these models elucidates a spectrum
of behaviors and outcomes, from the highly efficient and robust
performance of Model 2.0 with its advanced Bayesian optimization
to the nuanced challenges faced by the deeper, more complex Model
3.5. Models 2.0 and 3.4 emerge as particularly effective, suggesting
that a balanced approach to network design and optimization can
yield superior results. This analysis not only grants a described
understanding of each model’s strengths and weaknesses, but
also extends useful advice for designing neural networks that are
tailored to meet specific operational needs and performance criteria
(Lawley et al., 2022; Nakamura, 2023). It offers a comprehensive
blueprint for leveraging architectural and strategic optimizations
to enhance the predictability, efficiency, and cost-effectiveness of
neural network models in varied application scenarios.
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FIGURE 2
BOANN confusion matrices for: (A). Optimizable Neural Network (Model 2) (B). Wide Neural Network (Model 3.3) (C). Bilayered Neural Network (Model
3.4) (D). Trilayered Neural Network (Model 3.5).

4 Discussion

Artificial intelligence (AI), particularly using machine learning
algorithms like artificial neural networks (ANNs) and optimization
techniques such as Bayesian optimization, has transformed various
industries, including geological exploration. This part explores the
inferences drawn from recent research on AI-driven lithology
identification, examines the limitations encountered, and proposes
future directions to advance this field of study.

4.1 Inferences drawn from research

The application of AI in lithology identification has yielded
several key inferences.

4.1.1 Effectiveness of AI in lithology identification
Recent studies, including those utilizing Bayesian optimization

to optimize ANN architectures, have consistently demonstrated the
effectiveness of AI in accurately identifying lithological formations.
Models enhanced with Bayesian optimization (e.g., Model 2.0), have

proven substantial advances in predictive accuracy compared to
traditional methods.This underscores the potential of AI to automate
and enhance the efficiency of geological exploration processes.

4.1.2 Optimization strategies and model
performance

The conducted research features the crucial role of optimization
strategies, such as Bayesian optimization, in enhancing model
performance. By iteratively fine-tuning hyperparameters based
on past performance, Bayesian optimization enables ANNs
to achieve higher accuracy levels while mitigating overfitting
risks. Models like the bilayered neural network (Model 3.4)
exemplify how a balanced approach to architecture design
and optimization can optimize predictive capabilities without
compromising computational efficiency.

4.1.3 Generalization and transferability
AI models trained on specific datasets have shown varying

degrees of generalization across different geological settings. While
models like Model 2.0 demonstrated robust performance in
validation and test datasets within the study’s scope, challenges

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2024.1473325
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Soulaimani et al. 10.3389/feart.2024.1473325

FIGURE 3
BOANN validation ROC Curves for: (A). Optimizable Neural Network (Model 2) (B). Wide Neural Network (Model 3.3). (C). Bilayered Neural Network
(Model 3.4) (D). Trilayered Neural Network (Model 3.5).

remain in extrapolating these findings to diverse geological terrains
with unique lithological characteristics. Upcoming research should
focus on improvingmodel generalization throughmulti-modal data
incorporation and transfer learning techniques.

4.1.4 Impact of computational resources
The study also underscores the impact of computational

resources on AI model deployment and scalability. Deeper neural
network architectures (e.g., Model 3.5) exhibited potential for
higher accuracy but required significant computational power and
time-intensive training processes. This limitation highlights the
need for optimizing computational efficiency while maintaining
model robustness, particularly in real-time or resource-constrained
exploration environments.

4.2 Limits encountered

Despite the promising findings, several limitations were
encountered during the research.

4.2.1 Dataset specificity and bias
The analysis relied on specific lithological datasets, potentially

limiting the generalizability of findings to broader geological
contexts. Dataset bias, inherent in geological data collection
processes, can impact model performance and validity across
different geological formations and exploration scenarios.
Addressing dataset variety and predisposition could be essential
for improving the pertinence, robustness and applicability of AI
models in real-world applications.

4.2.2 Computational complexity and resource
constraints

Complex neural network architectures, although beneficial
for capturing intricate lithological patterns, posed challenges
in terms of computational complexity and resource-intensive
training requirements. Balancing model complexity with
computational efficiency remains a significant hurdle in deploying
AI solutions for large-scale geological exploration and resource
management tasks.
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4.2.3 Model interpretability and transparency
The essential complexity of AI models, often results in

limited interpretability and transparency in decision-making
processes. Understanding how AI-derived predictions align with
geological domain knowledge and expert insights is essential
for building trust and confidence in AI-driven solutions within
the geosciences community. Future research should prioritize
developing interpretable AI models that facilitate meaningful
collaboration between AI algorithms and domain experts.

4.3 Future directions

Building upon the insights gained and addressing the identified
limitations, several promising future directions for research in AI-
driven lithology identification include.

4.3.1 Advanced optimization techniques
Further exploration of advanced optimization techniques

beyond Bayesian methods, such as evolutionary algorithms,
reinforcement learning, or hybrid approaches, to enhance the
efficiency and adaptability of AI models in geological exploration
and resource management. These techniques can optimize not only
hyperparameters but alsomodel architectures and training strategies
to improve performance across diverse geological settings.

4.3.2 Integration of multi-modal data sources
Integration of varied data sources, comprising remote sensing

data, geological images and geochemical analyses, to supplement the
feature space and advance the robustness of AI models for lithology
identification. Multi-modal integration can enhance predictive
accuracy, facilitate comprehensive geological insights, and mitigate
the impact of dataset bias on model performance.

4.3.3 Transfer learning and domain adaptation
Application of transfer learning strategies to leverage pre-trained

models for lithology identification tasks across different geological
terrains. By transferring knowledge and models learned from one
dataset to anothers, transfer learning can enhance generalization
capabilities, speed up model training, and enhance the scalability of
AI solutions in diverse exploration scenarios.

4.3.4 Real-time application and deployment
strategies

Development of real-time AI applications and deployment
strategies tailored for operational use in geological exploration
and resourcemanagement. Highlighting scalability, adaptability and
reliability to dynamic environmental conditions will be critical
in incorporating AI-driven technologies into decision-making
processes and operational systems within the geosciences.

4.3.5 Collaborative research initiatives
Cooperation with academic institutions, industry partners

and government agencies to validate AI model performance in
real-world exploration situations. Integrating domain expertise
and feedback from geological professionals can enhance model
robustness, address practical challenges, and foster innovation in
AI-driven technologies for sustainable resource exploration and
management.

4.4 Summary

The inferences drawn from recent research in AI-driven
lithology identification underscore the transformative potential
of AI technologies in revolutionizing geological exploration and
resource management practices. Despite encountered limitations
related to dataset specificity, computational complexity, and model
interpretability, the field continues to evolve with promising
advancements in optimization techniques, data integration
strategies, and real-time deployment solutions. By adopting
these challenges and tracking innovative research paths, the
geosciences society can employ the full potential of AI to realize
more sustainable, efficient and accurate exploration outcomes in
the future.

5 Conclusion

In this study, we have led a thorough assessment of four
distinct neural network models (2.0, 3.3, 3.4, and 3.5) analyzing
their performance, across critical metrics such as accuracy,
cost, and error rates within validation and test scenarios. This
comparative study has not only illuminated the influence of
varying neural network architectures and optimization strategies on
model efficiency but also underscored the importance of strategic
optimization in achieving superior machine learning outcomes
(Costa et al., 2023).

Model 2.0, featuring a custom neural network architecture
optimized through Bayesian techniques, emerged as the most
efficient model, showcasing high accuracy and minimal operational
costs, coupled with the lowest error rates across both datasets.
This model’s success highlighted the effectiveness of sophisticated
optimization strategies, which fine-tune model parameters to
enhance generalization capabilities and prevent overfitting. In
contrast, Model 3.3, a Wide Neural Network without specific
optimization enhancements, demonstrated the limitations of
increasing network size without commensurate advancements
in learning strategies, resulting in higher costs and reduced
performance. Model 3.4, a Bilayered Neural Network, excelled
in test conditions, affirming that an optimal balance of model
complexity and computational efficiency can yield significant
benefits, particularly in predictive accuracy and cost management.
Finally, Model 3.5, with its Trilayered Neural Network, illustrated
the challenges and potential of deeper networks, which, despite their
complexity, can be effective with proper tuning and optimization,
especially in handling complex datasets.

Overall, this study reinforces the critical role of matching
network architecture with robust optimization techniques to
maximize the performance of neural networks. The conclusions
from this study give valuable perceptions for both specialists
and researchers, offering support on designing neural networks
that are not only powerful but also efficient and adaptable
to various applications. This work contributes significantly on
machine learning in geosciences, highlighting the need for incessant
innovation in network design and optimization strategies to
enhance the predictability, efficiency, and practical utility of neural
network models.
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