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Full waveform inversion based
on deep learning and the
phase-preserving symplectic
partitioned Runge-Kutta method

Yanjie Zhou1*, Xianxiang Leng1, Xueyuan Huang1, Xijun He1 and
Tianming Cao2

1School of Mathematics and Statistics, Beijing Technology and Business University (BTBU), Beijing,
China, 2Research Insitute of Statistical Sciences National Bureau of Statistics, Beijing, China

To obtain more accurate full waveform inversion results, we present a forward
modeling method with minimal phase error, low numerical dispersion, and
high computational efficiency. To solve the 2D acoustic wave equation, we
utilize a finite-difference (FD) scheme with optimized coefficients for spatial
discretization, combinedwith a phase-preserving symplectic partitioned Runge-
Kutta method for temporal discretization. This results in the development of
the optimized symplectic partitioned Runge-Kutta (OSPRK) forward modeling
method. We further apply the OSPRK method in conjunction with a recurrent
neural network (RNN) for full waveform inversion (FWI). Our study explores
the impact of various loss functions, Nadam optimizer parameters, and the
incorporation of physical information operators on inversion performance.
Numerical experiments demonstrate that the OSPRK method significantly
reduces numerical dispersion compared to traditional FD methods. The Log-
Cosh loss function offers superior stability across different learning rates,
while the Nesterov-accelerated AdaptiveMoment Estimation (Nadam) optimizer
with optimized parameters greatly enhances convergence speed and inversion
accuracy. Furthermore, the inclusion of physical information operatorsmarkedly
improves inversion outcomes.

KEYWORDS

OSPRK method, FWI, RNN, nadam optimizer, Log_Cosh loss, the physical information
operator

1 Introduction

Full waveform inversion (FWI) is widely used in oil and gas exploration, geotectonic
research, and infrastructure development. This technique relies on the analysis of seismic
waveforms, which propagate through subsurface media and are recorded by receivers,
to infer the material properties of the Earth’s interior (Tarantola, 1984; Virieux and
Operto, 2009; Tong et al., 2014). In this process, the wave equation is typically employed
to simulate the propagation of seismic waves through the medium, producing synthetic
waveformdata. An optimization algorithm is then applied to iteratively refine the subsurface
parameters, improving the accuracy of the inversion with each iteration.

In FWI, solving the wave equation represents the primary computational burden.
As a result, the development of numerical methods that can solve wave equations
with both high accuracy and efficiency has been a key area of research. Numerical
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FIGURE 1
Full waveform forward and inverse for OSPRK-RNN method.

methods for wave equation solutions involve spatial discretization,
time discretization, and boundary condition handling. Spatial
discretization methods include the traditional finite difference (FD)
method (Virieux, 1986; Moczo et al., 2002; Saenger et al., 2004),
the finite element method (Eriksson and Johnson, 1991; Yang et al.,
2008), the nearly analytic discrete (NAD)method (Yang et al., 2003),
the optimized finite difference format (Zhang and Yao, 2013), the
optimized expansion method (Wu and Alkhalifah, 2014), among
others.TheFDmethod tends to performwell whenusing a finemesh
but suffers from significant numerical dispersion when applied with
a coarse mesh (Yang et al., 2006; Ma et al., 2020; Wu and Alkhalifah,
2018). The NAD method improves on this by utilizing both
displacement and gradient information from grid points and their
neighbors to approximate higher-order spatial derivatives, thereby
reducing numerical dispersion. However, this method requires
substantial computational resources, which limits its efficiency.
Zhang and Yao (2013) introduced an optimized FD method that
minimizes wave number errors using the maximum norm. The
optimized coefficients for thismethod are obtained via the simulated
annealing technique (Kirkpatrick et al., 1983), resulting in lower
numerical dispersion and greater computational efficiency. For
temporal discretization, methods include the symplectic partitioned
Runge-Kutta (SPRK) method (Qin and Zhang, 1990), the phase-
preserving SPRK (Ma and Yang, 2017), and the modified SPRK
format (Liu et al., 2017). Each method has distinct advantages
depending on the application. For instance, Liu et al. (2017)
introduced a modified SPRK method that achieves higher-order
accuracy with reduced computational cost. Ma and Yang, (2017)
developed optimized coefficients for the phase-preserving SPRK
format, which significantly reduces phase errors and improves
overall accuracy.

In recent years, with the rapid advancement of deep learning
technologies, researchers have begun integrating deep learning
with forward modeling and inversion techniques in geophysics.

FIGURE 2
Schematic of the homogeneous velocity model.

Richardson (2018) was the first to combine forward modeling with
the recurrent neural network (RNN) framework in deep learning.
His numerical experiments showed that the Adam optimizer in
deep learning outperformed the traditional L-BFGS-B optimizer for
inversion tasks. Wu and McMechan (2019) applied convolutional
neural networks (CNNs) to generate initial velocity models by
utilizing aweighting parameter, resulting in inverted velocitymodels
that were more accurate than those produced by conventional FWI
methods. Raissi et al. (2019) introduced Physics-Informed Neural
Networks (PINN) to tackle both forward and inverse problems
involving nonlinear partial differential equations, a method later
extended by Song and Alkhalifah (Song and Alkhalifah, 2021).
Lu et al. (2021) further refined this approach by integrating high-
precision operators into the RNN framework and enhancing the loss
function of FWI through the incorporation of physical information
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FIGURE 3
(A, C) and (B, D) Snapshots of the wavefields at t = 0.319 s and t = 0.469 s by OSPRK and FD, respectively.

FIGURE 4
Layered velocity model with [0 km, 0.125 km] × [0 km, 0.25 km] for
region I and [0.125 km, 0.25 km] × [0 km, 0.25 km] for region II.

operators, leading to improved inversion accuracy. Li et al. (2021)
improved the resolution of the elastic full waveform inversion
(EFWI) by using a deep neural network to learn the statistical
relationship between selected features in the inversionmodel and the
lithology interpreted from downhole logs. Li et al. (2023) designed
a deep learning (DL) framework that combines full waveform
inversion (FWI) on seismic data and downhole logging information
to construct a subsurface model, which ultimately improves the
resolution and accuracy of the velocity model.

The innovation of this study lies in the use of the OSPRK
method as the forward modeling approach for FWI, along with
the Log_Cosh function enhanced by physically informed operators
as the loss function. In cases involving coarse grids, traditional
FD methods tend to introduce significant numerical dispersion,
resulting in greater numerical errors with each iteration of the
inversion process. In contrast, the OSPRK method is characterized
by its low numerical dispersion and minimal phase error, making it
superior to the FD method. The Log_Cosh loss function combines
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FIGURE 5
Left: real model; right: initial model.

FIGURE 6
Inversion results obtained by Log_Cosh, MAE, and MSE loss functions at different learning rates.
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TABLE 1 Relative error of the three loss functions at five
learning rates (%).

Learning rates 10 20 30 50 70

Log_Cosh 0.757 0.710 0.934 1.157 1.501

MAE 0.864 0.717 0.903 1.721 2.322

MSE 0.835 0.763 1.046 1.531 2.025

the advantages of both the Mean Squared Error (MSE) and Mean
Absolute Error (MAE) loss functions. By incorporating a physical
information operator that adheres to the wave equation into this
loss function, we impose a constraint based on physical principles,
thereby improving the accuracy of the inversion results.

2 OSPRK method

2.1 OSPRK for solving the two-dimensional
acoustic equation

A 2n-dimensional linear separable Hamiltonian system can be
written in the following form (Feng and Qin, 2010):

{{
{{
{

∂u
∂t
= f(v)

∂v
∂t
= g(u)
, (1)

where u and v are the generalized coordinate and momentum,
respectively, and f and g are linear functions of v and u, respectively.

Solving Equation 1 in kth order SPRK format (Ma and Yang,
2017) can be expressed as:

{{{{{{{
{{{{{{{
{

u0 = un,v0 = vn

ui = ui−1 + ciΔt f(vi−1)

vi = vi−1 + diΔtg(ui), i = 1,2,⋯,k

un+1 = uk,vn+1 = vk

,

where Δt is the time increment, and ci(i = 1,2,⋯,k) and
di(j = 1,2,⋯,k) are the system coefficients of the SPRK. vn and
un are numerical solutions for the nth time step of the system, and
vi and ui are intermediate variables of the format.

In a two-dimensional isotropic medium with constant density,
the acoustic wave equation can be expressed as:

∂2u
∂t2
= s2(x,z)(∂

2u
∂x2
+ ∂

2u
∂z2
), (2)

where s, u and t denotes the velocity of the acoustic wave propagating
in themedium, displacement, and time, respectively. By introducing
the variable v = ∂u

∂t
, we can transform Equation 2 into a linearly

differentiable Hamiltonian system (Qin and Zhang, 1990). The
transformed equation is written as:

{{
{{
{

du
dt
= v

dv
dt
= Lu
, (3)

where v is the velocity, and L = s2( ∂
2

∂x2
+ ∂2

∂z2
) is the

spatial operator of the wave equation. Then Equation 3
conforms to the form of Equation 1. The linear separable
Hamiltonian system of wave equation can be written in the
following form:

{{{{{{{
{{{{{{{
{

u0 = u
n,v0 = v

n

ui = ui−1 + ciΔtvi−1
vi = vi−1 + diΔtLui, i = 1,2⋯k

un+1 = uk,vn+1 = vk

, (4)

We employ the fourth-order SPRK format for temporal
discretization. Equation 4 is then expressed as:

{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{
{

u1 = un + c1Δtvn

v1 = vn + d1ΔtLu1
u2 = u1 + c2Δtv1
v2 = v1 + d2ΔtLu2
u3 = u2 + c3Δtv2
v3 = v2 + d3ΔtLu3
un+1 = u3 + c4Δtv3
vn+1 = v3 + d4ΔtLun+1

, (5)

For the temporal discretization, Ma and Yang, (2017) derived
a vector of coefficients corresponding to the fourth-order phase-
preserving SPRK for the individual coefficients of ci(i = 1,2,3,4) and
di(i = 1,2,3,4):

{{{{{{{
{{{{{{{
{

c1 = 0.263343

c2 = −0.048643

c3 = 0.412664

c4 = 0.372618

,

{{{{{{{
{{{{{{{
{

d1 = −0.359822

d2 = 0.751499

d3 = 0.469686

d4 = 0.138837

.

For second-order derivatives in L, the optimized finite difference
format for its sixth-order can be written as follows:

∂2u
∂x2
|
x=x0
=

3

∑
j=−3

bju(x0 + jΔx),

where the coefficients of the sixth-order optimized finite difference
operator (Zhang and Yao, 2013) are as follows:

{{{{{{{{{{
{{{{{{{{{{
{

b0 = −2.821545

b1 = 1.576632

b2 = −0.183472

b3 = 0.017613

bj = b−j(j = 1,2,3)

,

To prevent unwanted reflections at the edges of the simulation
domain, we incorporate the perfectly matched layer (PML) (Wang,
2003) into Equation 5. Consequently, the complete process for
solving the wave equation involves temporal discretization, spatial
discretization, and the implementation of the PML to absorb
outgoing waves effectively.
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FIGURE 7
The relative error of the Log_Cosh, MAE, and MSE loss functions at different learning rates in the coordinate system.

FIGURE 8
Schematic diagram of the source and receiver.

2.2 OSPRK-RNN method for seismic
inversion

FWI is essentially an optimization problem that aims to
minimize the discrepancy between the seismic waveform data
recorded by the receiver and the synthetic waveform data generated
by forward modeling. Typically, FWI consists of three key
components: the forward modeling method, the choice of the loss
function, and the selection of the optimizer. In this study, we
combine the OSPRK method with an RNN for forward modeling,

creating theOSPRK-RNNmethod for FWI.This approach leverages
the similarity between traditional forward modeling algorithms and
the computational process of RNNs (Richardson, 2018). Figure 1
illustrates the flowchart for the OSPRK-RNN method for full
waveform forward and inverse modeling, where xi(i = 1,2,⋯,n)
represents the source data at the moment Ti, ϕix(i = 0,1,⋯,n)
and ϕiz(i = 0,1,⋯,n) are the auxiliary wavefield information, and
ui(i = 1,2⋯n) is the output wavefield information. For the forward
process in Figure 1, we take the nth moment as an example. By
adding the iterative equations of the OSPRK method of PML,
un at the current moment is determined by the xn and the
(un−1,ϕn−1x ,ϕ

n−1
z ). At the same time, the (un,ϕnx ,ϕ

n
z ) can be obtained

and used for the next iteration. In this way, un (the observed
data) can be obtained for each discrete position at each discrete
moment. For the inversion process in Figure 1. When the initial
velocity model is determined, the computation of the forward
method is able to obtain the waveform information at the nth
moment. The error between the synthesized waveform information
and the real waveform information is calculated by the loss function,
and then the initial velocity model is updated using the optimizer
in deep learning. When the change in the value of the loss
function is smooth, the velocity model at this point is used as the
output model.

2.3 Log_Cosh loss function and nadam
optimizer

In this paper, we introduce the Log_Cosh loss function and
compare its performance in inversion results with that of the
MAE and MSE loss functions through numerical experiments
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FIGURE 9
Schematic representation of the inversion results.

FIGURE 10
Schematic diagram of the true and initial velocity models.

(Peng et al., 2022). The Log_Cosh loss function is defined
as follows:

L(y,yp) =
n

∑
i=1

ln(cosh(yi − y
p
i )),

where cosh (x) = ex+e−x

2
, yi is the true value and ypi is the predicted

value. For smaller x, log (cosh (x)) is approximately equal to x2/2,
and for larger x, ln (cosh (x)) is approximately equal to |x| −

log (2). This means that the Log_Cosh loss function offers the
smoothness of MSE for small prediction errors and the robustness
of MAE for larger errors. This adaptive behavior allows the Log_
Cosh loss function to better accommodate the data distribution,
thereby improving both the accuracy and robustness of the model
(Peng et al., 2022; Saleh and Saleh, 2022). In this study, we employ
the Nadam optimizer to update the velocity model. The Nadam
optimizer is an adaptive learning rate optimization algorithmwidely
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TABLE 2 Different values of β1 and β2.

β1 0.9 0.7 0.5 0.3 0.1

β2 0.999 0.7 0.4 0.1

used in deep learning and machine learning tasks. It combines
the benefits of the Adaptive Moment Estimation (Adam) optimizer
with those of Nesterov Accelerated Gradient (NAG) descent (Dozat,
2016). The Adam optimizer adjusts the learning rate adaptively
(Kingma and Ba, 2014), while the NAGmethod reduces oscillations
through predictive updating (Bubeck et al., 2015).This combination
allows the Nadam optimizer to effectively address a wide range of
complex optimization problems. The update rules for the Nadam
optimizer are as follows:

{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{

mk = β1mk−1 + (1− β1)gk
vk = β2vk−1 + (1− β2)gk

2

m̂k =
mk

1− β1
k

̂vk =
mk

1− β1
k

mk = β1m̂k +
(1− β1)gk
1− β1

k

θk+1 = θk −
α
√ ̂vk + ε

mk

m0 = 0,v0 = 0

,

where β1 and β2 are the decay coefficients of the two exponentially
weighted averages, m̂k and ̂vk are the bias-correctedmoving averages
of the gradient terms, θk+1 is the updated model parameter, α is
the learning rate, gk is the gradient of the loss function at step k,
and ε is a very small constant used to avoid division by zero. In
Tensorflow, the default parameters for β1 and β2 are 0.9 and 0.999,
respectively.

By identifying these three components, we establish a
foundational framework for FWI based on deep learning. To further
enhance experimental results, we also incorporate additional deep
learning techniques, including the use of a small batch strategy,
regularization, and grid search for hyperparameter optimization.
These techniques help to improve model performance, reduce
overfitting, and fine-tune parameters, ultimately leading to more
accurate and reliable numerical outcomes.

2.4 Loss function with physical information

In a previous study, Rassi et al. (2019) introduced physical
information operators into the loss function to guide the training
process, yielding promising results. In this study, we also incorporate
physical differential operators into the loss function. Specifically,
we define the physical differential operator for the two-dimensional
acoustic equation as:N = ∂tt/s2 −∇2 (∇2 = (

∂2

∂x2
+ ∂2

∂z2
).This operator

reflects the difference between the predicted and true velocity
models. As the velocity model approaches the true model, the value
of the differential operator N approaches 0. Based on this, we define
the loss function incorporating physical information as follows:

Loss(s) =
n

∑
t=1
(loss(ut,dt) +N(dt))

where s denotes the speed parameter to be optimized by the model,
dt denotes the real waveform data, and ut denotes the synthetic
waveform data. This loss function will be used to evaluate its
effectiveness in the inversion process.

3 Numerical simulation

In this section, we present five numerical experiments to
evaluate the effectiveness of combining the OSPRK method with
RNN for full waveform forward and inverse modeling. The first
experiment demonstrates the accuracy and efficiency of the OSPRK
method in forward modeling. The second and third experiments
investigate the impact of different loss functions and various
Nadam optimizer parameters on FWI performance. In the fourth
experiment, we compare the inversion results obtained using the
traditional FDmethod with those from the OSPRKmethod. Finally,
in the fifth experiment, we illustrate the capability of the OSPRK-
RNN method in inverting complex velocity models, and we show
how the inclusion of physically informed operators significantly
improves inversion accuracy.

3.1 Forward modeling of the
homogeneous model

In this numerical experiment, we evaluate the effectiveness
of combining the OSPRK method with RNN and compare it to
the conventional sixth-order FD method combined with RNN for
forwardmodeling.The computational domain for the homogeneous
velocitymodel is set to 4.8 km×4.8 km,with a spatial step ofΔx=Δz
= 24 m, a time step of Δt = 0.001 s, and a velocity of 4,000 m/s. The
source is a Ricker wavelet with a peak frequency of 10 Hz, located at
the center of the model. Figure 2 shows the model, where a PML is
applied as the absorbing boundary condition.

We then compare the forward simulation results of the OSPRK
method with those of the traditional FD method combined
with RNN. As shown in Figure 3, the wavefield snapshot in
Figure 3B, obtained using the FD method, displays significant
numerical dispersion, whereas the snapshot in Figure 3A, produced
by the OSPRK method, exhibits minimal numerical dispersion.
Furthermore, the wavefield snapshots in Figures 3C, D confirm that
the added PML effectively absorbs boundary-reflected waves as
the wave propagates out of the region. In terms of computational
efficiency, the time required to compute the entire wavefield is 2.57 s
for the OSPRK method and 2.61 s for the conventional FD method.
These results demonstrate that the OSPRK method significantly
reduces numerical dispersion, while the PML effectively mitigates
boundary reflections.

3.2 Inverse simulation based on a
two-layer velocity model

In this experiment, we apply FWI using the OSPRK method
combined with RNN, focusing on the effects of three different loss
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FIGURE 11
The relative errors obtained for different values of β1 and β2.

FIGURE 12
Loss function comparison between optimized and default parameters.

functions and varying learning rates on the inversion results. The
two-layer velocity model has a computational domain of 0.25 km ×
0.25 km, with a spatial step of Δx = Δz = 5 m and a time step of Δt =
0.001 s.Thevelocities inRegion I andRegion II are set to 1800 m/s and
2,400 m/s, respectively. In Figure 4, the black triangle represents the
receiver location, and the black pentagrammarks the source position.
Ricker wavelet sources with a frequency of 10 Hz are located at the
bottom of the model and are distributed horizontally across 51 grid
points. Receivers are positioned on the surface of themodel at 5-meter

intervals. In total, there are 51 sources, of which 40 are selected for
training, while the remaining 11 are reserved for testing. The mini-
batch size is set to 5, and each epoch (defined as a complete pass
through the entire training data) consists of 6 iterations.This results in
48 batch iteration steps (one batch iteration step represents one pass
through a mini-batch of the training data) for the inversion process.

For the initial velocity model used in the inversion, we reduce
the velocity by a factor of 0.9. The real velocity model and the
initial velocity model are shown in Figure 5. We then perform
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FIGURE 13
The location of region I is [0 km, 0.075 km] × [0 km, 0.25 km] and the
location of region II is [0.14 km, 0.19 km] × [0.1 km, 0.15 km].

FWI using three commonly used loss functions—MAE, MSE, and
Log_Cosh—across different learning rates. Figure 6 presents the
inversion results obtained using these loss functions at learning
rates of 10, 20, 30, 50, and 70. Since the magnitudes of the three
loss functions differ, we define the relative error E as the L1-
norm between the inverted velocity values and the real velocity
values at each grid point. Smaller E values indicate a closer match
between the inversion results and the true velocity model. The
expression for the relative error is given as:

E =

N

∑
i=0

M

∑
j=0
|ci,j − c

p
i,j|

N

∑
i=0

M

∑
j=0

ci,j

× 100%,

where N and M are the numbers of rows and columns of the mesh,
respectively. ci,j and c

p
i,j are the velocities at the ith row and jth column

of the mesh point in the inverse velocity model and real velocity
model, respectively.

Table 1 presents the relative errors for the three loss functions at
the specified learning rates of 10, 20, 30, 50, and 70. Figure 7 illustrates
the line graphs of the relative errors for each loss function across the
different learning rates, highlighting the characteristics of each loss
function and the influence of learning rates on the inversion results.
When lr ≤ 30, the relative errors of the three loss functions show
minimal differences, and all yield satisfactory inversion outcomes.
However, when lr ≥ 30, the relative errors for the MAE and MSE
loss functions increase significantly, while the relative error for the
Log_Cosh loss function rises more gradually. This suggests that the
Log_Cosh loss function provides better stability at higher learning
rates. Moreover, for all three loss functions, the relative error initially
decreases as the learning rate increases, but then begins to rise after
surpassing a certain threshold. Based on these observations, it can
be concluded that the optimal learning rate for inversion using the
OSPRKmethod falls between 10 and 30.

In the following, we will consider the placement of receivers and
seismic sources under real full-waveform inversion conditions. We

place the receivers vertically every 5 m on the leftmost side of the
model area and the sources horizontally every 5 m on the surface,
for a total of 51 receivers and 51 sources. Figure 8 shows a schematic
diagram of the placement of the seismic sources and receivers.

In the training process, we choose 40 sources as the training set
and the remaining 11 sources are used as the test set.We set the batch
size to 3, the learning rate to 20, and the number of traversals to 5,
for a total of 65 iterations. As can be seen in Figure 9, the OSPRK
method also gives good inversion results in real receiver and seismic
source placement scenarios.

3.3 Inverse simulation based on the central
velocity model

In this experiment, we conduct FWI using the OSPRK method
combined with RNN, focusing on the effects of the parameters β1
and β2 in the Nadam optimizer on the inversion results. For the
central velocity model, the computational domain is set to 0.3 km
× 0.3 km, with a spatial step of Δx = Δz = 6 m and a time step of
Δt = 0.001 s. The region centered at coordinates [0.09 km, 0.21 km]
× [0.09 km, 0.21 km] has a velocity of 2,400 m/s, while the velocity
in the surrounding region is 2000 m/s. For the initial velocity model
used in the inversion process, we select 0.9 times the real velocity
values to generate the starting model. Figure 10 shows a schematic
of the initial velocity model versus the actual velocity model.

First, the values of the parameters are detailed in Table 2, with β1
ranging from 0.9 to 0.1 in steps of 0.2, and β2 ranging from 0.999 to
0.1 in steps of 0.3.This results in a total of 20 sets of inverse numerical
simulations.

The Ricker wavelet sources, with a frequency of 10 Hz, are
positioned at the bottom of the model and distributed horizontally
across 51 grid points. Receivers are placed on the surface of the
model at 6-meter intervals. Out of the 51 sources, 39 are selected for
training, while the remaining 12 are used for testing.Themini-batch
size is set to 3, with an epoch count of 4.This configuration results in
a total of 52 batch iteration steps to complete the inversion process.
The relative errors for these 20 sets of inverse numerical simulations
are displayed in Figure 9.

From Figure 11, it is clear that the default Nadam parameters are
not optimal. Among the various parameter configurations, the lowest
relative error is achieved with β1 = 0.7,β2 > = 0.4. In the following
section, we will compare the performance of the loss functions using
this optimized parameter configuration (β1 = 0.7,β2 = 0.999) against
the default configuration (β1 = 0.9,β2 = 0.999).

As shown in Figure 12, the loss function curves with the
optimized parameters are relatively smooth throughout the descent
process and converge after 20 iterations. In contrast, the loss function
curves with the default parameters exhibit significant oscillations
during the descent process and only converge after 30 iterations.

3.4 Inverse simulation based on a
three-layer velocity model

In this experiment, we will use OSPRK-RNN and FD-RNN for
full waveform inversion and then compare the inversion results
of the two methods. For the three-layer velocity model, the
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FIGURE 14
Real velocity model and initial velocity model for three-layer media.

FIGURE 15
Comparison of the inversion results of the FD method with the OSPRK method.
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FIGURE 16
Loss function decline curves with and without physical information added.

FIGURE 17
Inversion results of the OSPRK method with added physical information.

computational domain is 0.25 km × 0.25 km, the spatial step is
Δx = Δz = 5 m, and the time step is Δt = 0.001 s. The black
triangle in Figure 13 represents the receiver and the black pentagram
represents the source. For the locations of receivers and sources,
we place receivers horizontally at intervals of 5 m on the ground
surface, and we place sources horizontally at intervals of 5 m in a
0.25 km subsurface, with a total of 51 receivers and 51 sources. In
the training process, we select 39 sources as the training set and the
remaining 12 sources as the test set. For the inversion strategy, we
use the Nadam optimizer with optimized parameters and the Log_
Cosh loss function with a mini-batch size of 3, an epoch of 5, and a
learning rate of 20.

For the initial velocity model of the inversion, we choose a
Gaussian perturbation of 10% of the true velocity model to generate
the initial velocity model. In Figure 14, we give the true velocity
model and the initial velocitymodel. Figure 15 gives a comparison of
the inversion between the OSPRKmethod and the FDmethod after
65 iterations. From the inversion results in Figure 15, both methods
are able to roughly invert the basic shape of the real velocity model.
However, the inversion result of the OSPRK method is closer to the
real velocity model in terms of the dividing line between regions
I and III and the shape of region II. For the relative errors of the
velocity model after inversion, the relative errors of the OSPRK
method and the FD method are 1.275% and 2.137%, respectively.
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As a result, our proposed OSPRK will be more accurate than the FD
method in the inversion results.

3.5 Inverse simulation based on complex
sigsbee model

In the final numerical experiment, we perform an inversion
on a complex Sigsbee velocity model. The computational domain
is 0.488 km × 0.808 km, with velocities ranging from 1,400 m/s to
4,500 m/s. The model features a high-velocity anomaly of 4,500 m/s
in the central region. The spatial step is Δx = Δz = 8 m, and the
time step is Δt = 0.001 s. Ricker wavelet sources with a frequency
of 10 Hz are placed at the bottom of the model and distributed
horizontally across 101 grid points. Receivers are located on the
surface of the model at 8-meter intervals. Of the 101 sources, 80 are
used for training, while the remaining 21 are reserved for testing.The
learning rate is set to 30, the mini-batch size is 5, and each epoch
consists of 10 iterations, resulting in a total of 160 batch iteration
steps for the inversion process.

For the first 80 iterations, we use only the data information
in the loss function. In the last 80 iterations, we incorporate
physical information into the loss function. As shown in Figure 16,
the value of the loss function with physical information added
during the final 80 iterations is significantly lower than that of the
loss function without physical information. This demonstrates that
incorporating physical information into the loss function enhances
the inversion accuracy. Figure 17 shows that the OSPRK method,
when augmented with physical information, successfully inverts
the high-velocity anomalies, indicating that this approach is highly
effective for inverting complex velocity models.

4 Conclusion

In this study, we combined the OSPRK forward modeling
method with an RNN for full waveform forward and inverse
modeling. Additionally, we introduced the Log_Cosh loss function
and the Nadam optimizer from deep learning, conducting one
forward modeling and four inverse numerical simulations to
demonstrate the effectiveness of our approach.The first experiment,
which involved uniform medium forward modeling, showed that
the OSPRK method effectively suppresses numerical dispersion
compared to the conventional FD method. In the second
experiment, using a two-layer velocity model for inversion, we
confirmed that the Log_Cosh loss function offers greater stability
across various learning rates compared to MSE and MAE. The
third experiment, which focused on a central velocity model,
demonstrated that optimized Nadam parameters result in faster
convergence and higher inversion accuracy compared to default
settings. The fourth experiment revealed that the OSPRK method
yields more accurate inversion results than the FD method. Finally,
in the inversion of a complex Sigsbee velocity model, we utilized
an optimized Nadam optimizer and a loss function incorporating
physical operators, highlighting the high efficacy of combining deep

learning techniques with the OSPRK method. All these numerical
simulations are based on the acoustic wave equation, a simplified
mathematical-physical model of seismic wave propagation. In
future research, we plan to integrate deep learning techniques with
more complex elastic wave equations. Additionally, since the RNN
framework may face challenges such as gradient vanishing and
explosion, another key focus of our future work will be exploring
neural network frameworks with improved performance.
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