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Few-shot SAR target
classification via meta-learning
with hybrid models

Qingtian Geng, Yaning Wang and Qingliang Li*

Changchun Normal University, Changchun, Jilin, China

Currently, in Synthetic Aperture Radar Automatic Target Recognition (SAR
ATR), few-shot methods can save cost and resources while enhancing
adaptability. However, due to the limitations of SAR imaging environments and
observation conditions, obtaining a large amount of high-value target data is
challenging, leading to a severe shortage of datasets. This paper proposes the
use of an Adaptive Dynamic Weight Hybrid Model (ADW-HM) meta-learning
framework to address the problem of poor recognition accuracy for unknown
classes caused by sample constraints. By dynamically weighting and learning
model parameters independently, the framework dynamically integrates model
results to improve recognition accuracy for unknown classes. Experiments
conducted on the TASK-MSTAR and OpenSARShip datasets demonstrate that
the ADW-HM framework can obtainmore comprehensive and integrated feature
representations, reduce overfitting, and enhance generalization capability for
unknown classes. The accuracy is improved in both 1-shot and 5-shot scenarios,
indicating that ADW-HM is feasible for addressing few-shot problems.
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few-shot learning (FSL), adaptive dynamic weight hybrid model, synthetic aperture
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1 Introduction

Synthetic Aperture Radar (SAR) is an active radar system designed to produce high-
resolution images of ground targets. It operates by emitting microwave pulses toward the
ground and capturing the signals reflected by these targets. SAR’s ability to create detailed
imagery, even in adverse weather conditions or low visibility, makes it highly effective
for applications such as remote sensing and target classification. SAR systems achieve
high-resolution imaging capabilities by accumulating radar signals during movement,
simulating an antenna aperture much larger than its actual physical size (Moreira et al.,
2013; Ma et al., 2020). Unlike traditional optical cameras, SAR can operate under all
weather conditions and at all times of day, making it invaluable for applications in geological
observation (Huang et al., 2020), port management (Zou et al., 2021), and various industrial
applications (Dumitru et al., 2014). Influenced by the imaging mechanism, the occurrence
of interference clutter in synthetic aperture radar (SAR) renders the identification of
false alarms using detectors challenging. Polarimetric SAR has the potential to improve
ship detection performance owing to its distinctive polarization characteristics. Gui Gao
et al.proposes a dualistic cascade convolutional neural network (DCCNN) algorithm driven
by polarization characteristics for ship detection with fully PolSAR data (Gao et al.,
2023a). Xi Zhang et al. proposed an innovative approach in synthetic aperture radar (SAR)
polarimetric measurements, introducing a new descriptor—polarization autocorrelation
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FIGURE 1
The difference between traditional supervised learning and few-shot learning: Left:Supervised learning; Right:Few-Shot learning.

FIGURE 2
Meta-learning framework.

matrix. Different from polarimetric covariance and coherency
matrices,the polarimetric autocorrelationmatrix can capture hidden
Doppler information in the frequency domain and encode it in the
phase using higher order statistical methods. This matrix facilitates
the joint extraction and analysis of polarization and Doppler
information from fully polarimetric SAR (PolSAR) data through a
matrix analysis (Zhang et al., 2024).

Automatic Target Recognition (ATR) refers to the process of
automatically identifying and classifying targets in SAR images
using computer algorithms and technologies. In SAR applications,
ATR systems can automatically detect and recognize targets,
facilitating effective surveillance and intelligence gathering over
large areas. The advancement of ATR technology has expanded
the application prospects of SAR systems in military intelligence,
border security, disaster monitoring, and more. However, due to
its complex characteristics, human recognition of SAR targets is
challenging and inefficient. For example, speckle noise in SAR
images increases the difficulty of feature extraction (Gao et al., 2017;
Yue et al., 2020). In the field of automatic ship target recognition,
synthetic aperture radar (SAR) technology has been widely used
for ship detection and classification due to its all-weather, all-
time imaging capabilities. In recent years, cross-modality domain
adaptation methods have gained increasing attention. G. Gao
et al. proposed the ADCG (Automatic Domain Cross-Modality

Learning for Ships) approach, which enhances the accuracy of ship
recognition in SAR images through cross-modality transfer learning
(Gao et al., 2023b). Moreover, earlier research on SAR images
presented a ship detection and classification method that simplifies
the process while improving classification accuracy. The integration
of these methods has significantly improved overall performance
in ship target recognition, especially in complex environments. The
application of cross-modality domain adaptation and lightweight
adaptivemodels has further advanced technology in target detection
and classification tasks (Gao et al., 2024).

With the progress of machine learning, algorithms capable of
generating large-margin classifiers, such as SVM and AdaBoost,
have been applied to SAR ATR (Zhao et al., 2001; Sun et al.,
2007). Srinivas et al. (2014) proposed a two-stage ATR framework
that combines SAR image features with learned graphical models.
Traditional machine learning-based ATRmethods (O'Sullivan et al.,
2001) often rely on manually designed features, which limit
recognition performance. However, Wagner (2014) combined
convolutional features with SVM for SAR ATR, achieving better
performance. Additionally, Morgan (2015) and Chen et al. (2016)
applied convolutional neural networks (CNNs) to Synthetic
Aperture Radar (SAR) automatic target recognition (ATR). Their
work achieved state-of-the-art performance, attributed to the strong
representational capacity of deep learning models, which excel in
extracting and learning complex patterns from SAR data.

In the task of target classification, target detection is a
crucial preliminary step, as its effectiveness directly impacts the
accuracy and efficiency of subsequent classification. In recent years,
significant progress has been made in addressing target detection
challenges, particularly in ship detection using polarimetric
synthetic aperture radar (PolSAR) imagery. The technique of
simultaneous diagonalization of Hermitian matrices involves
representing PolSAR data as Hermitian matrices and applying
simultaneous diagonalization to effectively extract features from
target regions. This method not only preserves the structural
characteristics of polarimetric information but also reduces noise
interference, thereby enhancing detection accuracy (Liu et al.,
2023). The binary cascade convolutional neural network (CNN)
approach introduces two cascaded CNN modules. The first module
performs an initial screening of potential target regions, while the
second module refines the detection in these regions. This cascaded
structure effectively reduces false detection rates and improves
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FIGURE 3
Task allocation diagram for the SAR meta-dataset in a 3-way, 1-shot setting.

FIGURE 4
Hybrid model meta-learning architecture.
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FIGURE 5
Model structure.

target recognition accuracy. Compared to traditional methods, this
deep learning approach leverages the multidimensional features
of PolSAR data, demonstrating superior detection performance.
The combination of these research methods not only improves
target detection but also provides more precise input data for target
classification. Therefore, incorporating relevant studies on target
detection highlights its crucial role in enhancing the overall target
classification process (Gao et al., 2023a).

Despite the notable success of current SAR target classification
models, they rely heavily on extensive training with large-scale
datasets. However, obtaining such datasets with fine annotations
presents significant challenges. First, SAR data is more difficult
to acquire than natural scene images. Second, the manual
interpretation and labeling of SAR images require considerable
time and effort, further complicating the process of building large,
annotated datasets for SAR classification. Insufficient training
samples limit the performance and development of SAR target
classification. Expanding the training sample set (Balz et al., 2009;
Hammer and Schulz, 2009; Auer, 2011; Ratner et al., 2017; Liu et al.,
2018; Wang et al., 2018; Cao et al., 2019; Cubuk et al., 2019;

Cui et al., 2019; Cao et al., 2023) is a direct method to address
sample constraints from a data perspective, including traditional
data augmentation, automatic data augmentation, and generating
new samples through simulators or generative models. Transfer
learning (Huang et al., 2017b; Malmgren-Hansen et al., 2017;
Zhong et al., 2018; Huang et al., 2019; Rostami et al., 2019a;
Rostami et al., 2019b; Wang et al., 2019) is another viable approach,
leveraging prior knowledge learned in the source domain to address
sample limitations in the target domain. Unsupervised learning
effectively discovers information without supervision, primarily
dealing with unlabeled data.

To reduce dependency on large training samples, few-shot
learning has been proposed and is gaining attention in image
classification, regression, and reinforcement learning. Meta-
learning, a classic few-shot learning method, has driven the
development of related research by learning update functions
or learning rules from previous work (Schmidhuber, 1987;
Bengio et al., 2013). Ameta-learningmodel is designed to transition
from learning with few examples to generalizing across many
tasks, effectively addressing the few-shot learning problem (Wang
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FIGURE 6
SAR partial images and their corresponding optical images on the MSTAR dataset.

and Hebert, 2016). Current meta-learning methods can be
categorized into three types based on different learningmechanisms:
optimization-based, model-based, and metric-based.

The semi-automatic image intelligent processing system
developed by Lincoln Laboratory is a classic application of template
matching technology. This system maintains a large template
storage and uses template matching techniques to find the best
match between potential targets and templates (Novak et al., 1997a;
Novak et al., 1997b; Novak et al., 2000). However, extracting distinct
features from SAR targets under varying imaging parameters, poses,
and pitch angles poses significant challenges, which can negatively
impact classification performance across different operational
conditions. To overcome this challenge, model-based methods
have been developed (Diemunsch and Wissinger, 1998; Hummel,
2000). Recent meta-learning models aim to achieve few-shot
recognition and rapid adaptation to new targets, for instance, by
using a few examples and iteratively updating the network. Model-
Agnostic Meta-Learning (MAML) (Finn et al., 2017) learns a good

initialization from which models can quickly converge on new few-
shot tasks. Additionally, Meta-SGD (Li et al., 2017) not only learns
a good initialization but also learns the appropriate learning rates
for each parameter in the base learner. The Reptile algorithm is
used to learn parameter initialization, allowing quick fine-tuning on
new tasks with first-order gradient updates (Nichol, 2018). Fu et al.
proposed a meta-learning framework MSAR, consisting of meta-
learners and base learners, to address sample constraints by learning
a good initialization and appropriate update strategies. Zeng et al.
proposed a meta-adaptive stochastic gradient descent (Mada-SGD)
method for inner-loop parameter updates. This approach employs
meta-adaptive hyperparameter learning, which captures the weight
distribution between previous and current update steps. Acting like
a memory mechanism, it enhances the initialization of parameters,
improving model adaptability across updates (Zeng et al., 2023).
Zhou et al. designed a lightweight meta-feature extractor, DarknetS,
enhancing SAR image features and improving detection efficiency
(Zhou et al., 2022). Fan et al. proposed a meta-learning framework
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TABLE 1 Configuration information of the TASK-MSTAR dataset.

Set Class Serial No. Depression Num

Meta_Train

BMP2 9,566 17° 232

BTR60 k10yt7532 17° 256

T62 a51 17° 299

ZIL131 e12 17° 299

BTR70 c71 17° 233

D7 92v13015 17° 299

T72 132 17° 232

Meta_Test

2S1 b01 15°,17°,30° 274,299,288

BRDM2 e71 15°,17°,30° 274,298,287

ZSU234 d08 15°,17°,30° 274,299,288

based on Sample and Embedding Adaptive Network (Sea-Net) for
few-frame SAR image target classification (Fan et al., 2023). Wang
et al. integrated a local feature classification module into meta-
learning and proposed a multi-scale local classification network
(MLC-Net) to enhance critical local detail features of targets
(Wang et al., 2023). Yu et al. proposed a novel method called the
Enhanced Prototype Network with Customized Region-Aware
Convolution (CRCEPN). This network can adaptively adjust the
convolutional kernels and their receptive fields based on the features
of SAR images and the semantic similarities between spatial regions.
As a result, it enhances the ability to extract more information
and discriminative features (Yu et al., 2024). Qin et al. proposed a
Scattering Attribute Embedded Network (SANet) for few-shot SAR
Automatic Target Recognition (ATR). SANet embeds the inherent
physical properties provided by the scattering centers of SAR
targets, enabling effective generalization to new target categories
that are unseen in training sets with very limited samples (Qin et al.,
2024). The low resolution and high sample similarity of SAR images
hinder instance recognition in contrastive learning. To address this,
Liao et al. proposed Low Confidence Discriminative Contrastive
Learning (LDCL), which combines group instance comparison with
batchmix training (Liao et al., 2024). To enable SAR-ATRmodels to
recognize subsequent target aspect domain SAR images onlinewhile
minimizing forgetting, a Target-Aspect Hard Attention Continual
Learning (THAT-CL) method is proposed. This approach applies a
hard attentionmechanism to retain information from different tasks
by embedding the index of each target aspect recognition task as a
vector in each network layer (Zhu et al., 2024).

In remote sensing image analysis, the use of meta-learning for
Automatic Target Recognition (ATR) remains limited, especially
in the context of SAR ATR. Relying on a single model with
updated parameters typically fails to deliver strong recognition
performance for unseen target classes. Hence, an Adaptive Dynamic
Weight Hybrid Model (ADW-HM) meta-learning structure is
introduced, capable of dynamically learning model parameters and

integrating model predictions to achieve good recognition results
for unknown classes. Experiments demonstrate that ADW-HM
improves recognition accuracy compared to existing benchmark
models. The contributions can be summarized as follows:

(1) By combining meta-learning and ensemble learning, a hybrid
model can be constructed to enhance performance in
SAR-ATR tasks. The meta-learning framework enables the
model to learn optimal initial parameters, allowing it to
quickly adapt and update when recognizing new classes. This
rapid adaptability is crucial for addressing the challenges
of few-shot classification. Additionally, the integration of
ensemble learning improves recognition accuracy and stability,
particularly for unknown classes. Unlike traditional fixed-
weight or simple linear combination models, the ADW-
HM framework incorporates a task-specific dynamic weight
adjustment mechanism. This mechanism adaptively adjusts
the weights of different model components in real-time,
responding to the data distribution and feature complexity
of each task. As a result, the framework ensures optimal
performance across awide range of tasks.This hybrid approach
effectively mitigates the issues of limited sample size and
inadequate feature representation, which are common in SAR-
ATR tasks.

(2) The proposed ADW-HM framework introduces a dynamic
weighting mechanism that adjusts the contributions of
individual models based on task-specific requirements.
By dynamically updating both the model parameters and
the prediction results, the framework effectively improves
recognition accuracy for unseen target classes. This adaptive
mechanism enables the model to capture the varying
importance of different models across tasks, leading to better
generalization and performance.

(3) We partitioned the MSTAR dataset to facilitate effective
training and evaluation of our meta-learning approach. The
ADW-HM framework demonstrated strong performance on
the TASK-MSTAR and OpenSARShip datasets, validating its
potential in real-world SAR-ATR scenarios. Through task-
specific partitioning, the model can better generalize across
different target categories, further supporting the robustness
of the proposed method in practical applications.

2 Related works

In SAR target classification, the lack of target sample data
is a common phenomenon, making it imperative to improve
SAR target recognition methods with limited samples. Traditional
supervised learning methods require a large number of target
training samples to acquire the learned knowledge for recognition
on validation and test set targets. SAR few-shot learning methods
address recognition tasks with a limited number of samples. Given
the scarcity of SAR images, directly training networks to extract
sufficient discriminative features for accurate target recognition is
often unfeasible. Hence, few-shot learning is proposed to address
this issue. Few-shot learning (FSL) initially trains on a large
set of category targets to extract discriminative features. It then
uses a small number of target samples—typically one or five
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FIGURE 7
SAR partial images and their corresponding optical images on the OpenSARShip dataset.

TABLE 2 Configuration information of the OpenSARShip dataset.

Set Class Num Set Class Num

Meta_Train

Dredger 300

Meta_Test

Cargo 100

Fishing 300 Passenger 100

Tug 300 Tanker 100

shots—to extend the model’s discriminative ability to novel targets
in the test set. Figure 1 illustrates the difference between traditional
supervised learning and FSL. As shown in the figure, in supervised
learning, the training set and the test set belong to the same category
but different individuals. However, in FSL, the training set and

the test set belong to independent entities of different categories.
Additionally, it should be noted that the FSL training set includes
support set and query set components, which help facilitate learning
about the training targets.

Meta-learning in the context of few-shot learning is a machine
learning paradigm designed to equip models with the ability to
quickly adapt to new tasks or domains. This enables them to
learn efficiently from only a few samples when presented with
novel tasks. The core principle of meta-learning is that, during the
meta-training phase, the model acquires generalizable knowledge
or strategies from a limited set of training tasks. This equips the
model to generalize more effectively when faced with new, unseen
tasks. Meta-learning has wide-ranging applications, including few-
shot learning, transfer learning, and fast adaptation to novel tasks.
By leveraging these capabilities, meta-learning offers a powerful
solution for overcoming sample constraints in various learning
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TABLE 3 3-Way, K-shot task Configuration information.

Task setting Meta-training Meta-testing

Support set Query set Support set Query set

3-way 1-shot 3 × 1 = 3 3 × 15 = 45 3 × 1 = 3 3 × 15 = 45

3-way 5-shot 3 × 5 = 15 3 × 15 = 45 3 × 5 = 15 3 × 15 = 45

TABLE 4 Experimental setup for the TASK-MSTAR dataset.

Experiment types Meta-training task Meta-testing task

Task number Depression Task number Depression

17°D/15°D

4,000

17°

200

15°

17°D/17°D 17° 17°

17°D/30°D 17° 30°

TABLE 5 Quantitative testing results of ADW-HM target recognition.

Experiment type Accuracy (%) Std

Dataset Task Min Max Mean

17°D/15°D
1-shot 42.22 100 89.24 0.0769

5-shot 84.44 100 96.70 0.0281

17°D/17°D
1-shot 73.33 100 94.14 0.0521

5-shot 84.44 100 96.78 0.0278

17°D/30°D
1-shot 37.78 100 89.00 0.1001

5-shot 84.44 100 95.04 0.0333

scenarios. Meta-learning generally comprises two stages: outer
learning and inner learning. In outer learning, the model acquires
general knowledge from various tasks, which it applies to new
task categories during inner learning. Inner learning, in turn,
manages the process and outcomes of outer learning, enhancing its
effectiveness for quick adaptation to novel tasks or environments.
As illustrated in Figure 2, meta-learning typically includes two key
components: the meta-learner and the base learner. The meta-
learner extracts broad knowledge or learning strategies from meta-
training tasks, enabling the base learner to adapt swiftly to new tasks,
achieving strong performancewithminimal sample fine-tuning.The
base learner, often a deep learning model such as a convolutional
neural network, focuses on learning task-specific patterns.

Unlike traditional supervised learning methods, meta-learning
is a few-shot learning approach that takes learning tasks as basic
units of input. Generally, a meta-learning dataset comprises a meta-
training set and a meta-testing set. Tasks in the meta-training set
are used to train the model and extract useful prior knowledge.

Meanwhile, tasks in the meta-testing set, which are drawn from
categories different from those in the meta-training set, are used
to validate and assess the performance of the meta-learning model.
Tasks extracted from the meta-training set are called meta-training
tasks, while new tasks from new categories form the meta-testing
set. Each task consists of a support set and a query set, analogous to
the training set and test set in supervised learning. Tasks in meta-
learning can be described as an N-way, K-shot problem, where N
represents the number of target categories, and K represents the
number of target samples per category. Figure 3 shows an example
of a meta-dataset consisting of three tasks from the MSTAR dataset.
Each task in the support set comprises three target categories,
each with only one target sample, and the query set’s targets are
derived from these target categories, containing a total of two targets.
In SAR-FSL, N and K are usually determined based on specific
situations and task requirements. In this paper, for training and
testing purposes, we adopt combinations of N = 3 and K = 1 or 5,
which further enables the model to learn more thoroughly during
meta-training.

3 Methods

3.1 Hybrid model meta-learning framework

Few-shot learning, a specialized form of meta-learning within
supervised learning, focuses on extracting relevant information
from various tasks to inform and accelerate the learning process
for new tasks. This achieves strong generalization across tasks and
rapid adaptation to new tasks. Additionally, “episode” training is
used to learn and update meta-parameters. In the hybrid model,
multiple models’ performances on tasks are considered. The hybrid
model meta-learning architecture, as shown in Figure 4, illustrates
its execution process in the meta-training and meta-testing phases.

In the meta-training phase, two models with identical structures
but different general parameters are initialized, along with learnable
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TABLE 6 Average confusion matrix for ADW-HM.

Experiment type Predict/True 3-way,1-shot 3-way,5-shot

2S1 BRDM2 ZSU234 Recell (%) 2S1 BRDM2 ZSU234 Recell (%)

17°D/15°D

2S1 13.2 0.74 1.06 88.00 14.43 0.25 0.33 96.20

BRDM2 0.50 13.64 0.97 90.93 0.28 14.42 0.31 96.10

ZSU234 0.69 1.00 13.32 88.80 0.16 0.17 14.67 97.80

Precision 91.79 88.72 87.37 89.24 97.07 97.20 95.85 96.70

17°D/17°D

2S1 13.95 0.55 0.51 93.00 14.48 0.24 0.28 96.53

BRDM2 0.29 14.25 0.47 94.97 0.28 14.48 0.24 96.53

ZSU234 0.46 0.37 14.17 94.47 0.19 0.23 14.59 97.27

Precision 94.90 93.96 93.59 94.14 96.89 96.89 96.56 96.78

17°D/30°D

2S1 12.95 0.97 1.09 86.30 14.25 0.34 0.42 94.97

BRDM2 0.80 13.56 0.65 90.40 0.38 14.25 0.38 94.97

ZSU234 0.93 0.53 13.55 90.30 0.42 0.3 14.28 95.20

Precision 88.27 90.04 88.67 89.00 94.71 95.73 94.69 95.04

TABLE 7 Comparative results of testing accuracy between ADW-HM and other SAR-FSL methods on the TASK-MSTAR dataset.

Task type Models Accuracy (%)

17°D/15°D 17°D/17°D 17°D/30°D

3-way 1-shot

MAML 82.78% 88.80% 85.21%

MSGD 84.71% 92.21% 88.29%

Reptile 84.51% 92.62% 87.74%

ADW-HM(Ours) 89.24% 94.14% 89.00%

3-way 5-shot

MAML 88.93% 94.74% 90.03%

MSGD 91.00% 91.46% 90.07%

Reptile 93.36% 95.13% 92.13%

ADW-HM(Ours) 96.70% 96.78% 95.04%

learning rates and weight proportions allocated to each model.
This paper introduces the ADW-HM (Adaptive Dynamic Weighting
Hybrid Model) framework, which integrates multiple sub-models
within a meta-learning structure and employs an adaptive dynamic
weightingmechanism to enhance predictive performance in few-shot
learning tasks. During the meta-training phase, the hybrid model
first performs forward propagation on the support set, where the
combined predictions from the sub-models are aggregated using
adaptive dynamic weights. Each sub-model generates independent
parameter gradients based on specific task characteristics, allowing

their parameters to be updated in parallel. Unlike previous models,
ADW-HM introduces a novel adaptive weight update mechanism
for each sub-model. This feature enables dynamic adjustments of
the model’s parameters during training, increasing its adaptability to
diverse tasks. Specifically, ADW-HM calculates the adaptive dynamic
weight predictions on the query set duringmeta-training to generate a
meta-loss, which informs a parameter update strategy applicable to all
meta-tasks. This strategy not only updates the initial parameters and
learning rates but also optimizes them using the adaptive weight W,
allowing thehybridmodel to swiftlyandaccurately adapt tonewtasks.
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FIGURE 8
1-Shot testing accuracy and loss curve (17°D/17°D).

FIGURE 9
5-Shot testing accuracy and loss curve (17°D/17°D).
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TABLE 8 Comparative results of testing accuracy between ADW-HM and
other SAR-FSL methods on the OpenSARShip dataset.

Task type Models Accuracy (%)

3-way 1-shot

MAML 40.94%

MSGD 41.83%

Reptile 42.69%

ADW-HM(Ours) 43.20%

3-way 5-shot

MAML 48.40%

MSGD 48.18%

Reptile 47.71%

ADW-HM(Ours) 50.88%

In the meta-testing phase, the initialized parameters, learning
rates, and adaptive weight W are fixed, allowing the meta-learner
to adapt swiftly to new tasks without further updates, ensuring
rapid adaptation to novel categories within the meta-testing set.The
key innovation of ADW-HM lies in its dynamic weight allocation
strategy, which combines predictions from multiple sub-models,
applying a weighted integration approach. This ensemble learning
method mitigates potential performance fluctuations that can occur
in single-model frameworks. If one sub-model underperforms,
the others can compensate through weighted adjustments, thereby
enhancing the overall stability and robustness of the hybrid
model. The ADW-HM framework introduces a novel hybrid model
structure that goes beyond merely adjusting and combining model
weights. It leverages advanced strategies like dynamic weighting and
ensemble learning to tackle the challenges of few-shot learning. Key
innovations in this framework include:

Enhancing Model Stability: In few-shot learning, individual
models are susceptible to data noise, leading to unstable
performance. The ADW-HM framework addresses this by
integrating multiple models, each capturing different features or
patterns. Unlike existing methods, it utilizes a dynamic weighting
mechanism, allowing models to compensate for one another when
some underperform, thus ensuring stable overall performance.
This approach is particularly effective for handling complex and
noisy data.

Improving Adaptability with Dynamic Weighting: Traditional
few-shot learning models often lack flexibility. The ADW-HM
framework introduces a task- or data-feature-based dynamic
weighting system, adjusting model weights based on the specific
needs of the task or characteristics of the data. This adaptive
mechanism enables the framework to quickly respond to diverse
scenarios, enhancing its ability to generalize, particularlywhen faced
with new or unseen data.

Reducing Reliance on a Single Model Through Hybrid Models
Fusion: The ADW-HM framework maximizes the strengths of
multiple models while minimizing their individual weaknesses.
Unlike single-model or static-weight approaches, this dynamic
fusion of model predictions prevents over-reliance on any single

model. By balancing performance across models, the framework
significantly improves overall performance in few-shot learning
situations, capitalizing on the complementary strengths of
each model.

3.2 Meta-learning pipeline

In the hybrid model meta-learning framework, the parameter
updating process depicted in Figure 4 involves computing the loss on
the support set during meta-training, as shown in Equation 1. Here,
x and y represent the input image and the category label, respectively.
|Ttr| denotes the number of training examples in task T. θ represents
the model’s generalized parameters and f represents the model.

LTtr (θ) = 1
|Ttr|
∑
(x,y)∈Ttrl( fθ(x),y) (1)

The loss function in the hybrid model architecture is
calculated by combining the loss functions of multiple models.
As shown in Equation 2, it represents the overall loss on the support
set, whereW denotes the adaptive dynamic weights that are adjusted
to suit the specific requirements of each task. LTtr (θ)1 represents the
loss function from the first model, while LTtr (θ)2 corresponds to
the loss function of the second model. The dynamic weighting
mechanism ensures that the hybrid model optimally balances the
contributions of both models for different tasks.

LTtr (θ) =WLTtr (θ)1 + (1−W)LTtr (θ)2 (2)

The loss on the support set,LTtr (θ), is guided by themeta-learner,
updating θ to θ′.This update involves very few steps, resulting in a
temporary base learner tailored to the current task. The update of
θ is represented by Equation 3, where each parameter within θi is
multiplied by its respective learned learning rate α after computing
the gradient θi. Here,i denotes the task iteration, θ′ represents the
generalized parameters updated through gradient descent and α
signifies the learned learning rates for the generalized parameters.

θ′i = θi − αi∇LTtr(θi) (3)

Subsequently, based on the meta-training query set, the query
set loss LTte (θ) is computed and updated according to Equation 4,
where x and y denote the input images and their corresponding
labels in the query set.

LTte (θ) = 1
|Tte|
∑
(x,y)∈Ttel( fθ′(x),y) (4)

As shown in Equation 5, the loss function for the query set is
also dynamically calculated, depending on the loss functions of the
two models.

LTte (θ) =WLTte (θ)1 + (1−W)LTte (θ)2 (5)

The parameters θ and α are updated based on the LTte (θ) in the
meta-learner, as depicted in Equations 6, 7. Since each parameter
within the generalized set θ requires a distinct learning rate, the
shape of the learnable learning rates α must correspond to that of
θ. Furthermore, each α is treated as a trainable parameter, updated
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FIGURE 10
Adaptive dynamic weight variation curve.

FIGURE 11
Influence of different weights on testing accuracy.
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TABLE 9 Ablation experiment of hybrid model and adaptive dynamic weight parameters.

Experiment type Hybrid model Adaptive dynamic weight Acc(%)

17°D/17°D
3-way 1-shot

× × 90.67

√ × 94.08

√ √ 94.14

TABLE 10 Testing results with different kernel sizes in the base learner.

Experiment type Kernel size Parameters(K) Accuracy (%)

Dataset Task

17°D/17°D 3-way 1-shot

3 × 3 116.739 94.14

5 × 5 314.371 90.63

7 × 7 610.819 92.81

9 × 9 1,006.083 92.63

FIGURE 12
Visualization of the Targets 2S1, BRDM2, and ZSU234 Using t-SNE Dimensionality Reduction Method with Different Kernel Sizes. (A) Kernel size = 3. (B)
Kernel size = 5. (C) Kernel size = 7. (D) Kernel size = 9.
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using gradient descent like any other parameter. Here, β represents
a fixed learning rate for updates.

αi+1 = αi − β∇LTte(θ′i ) (6)

θi+1 = θi − β∇LTte(θ′i ) (7)

In the model, the values of the generalized parameters and
adaptive dynamic weights are updated using the standard gradient
descent method as described in Equation 8, W represents the
adaptive weight values of the Hybrid model. During the meta-
testing phase, for each task, the meta-learning model initially fine-
tunes the well-learned generalized parameters on the support set to
adapt them to the current task. Subsequently, the model evaluates
accuracy on the query set under meta-testing. To ensure more
effective evaluation, the query set in the meta-testing phase should
contain more test examples compared to the meta-training phase.

Wi+1 =Wi − β∇LTte(θ′i ) (8)

3.3 Meta-learning architecture

The base learner framework is constructed using a 4-layer
convolutional structure based on CNN to extract features. Each
convolutional module contains a 3 × 3 convolution with 64 filters,
batch normalization (BN), and the ReLU non-linear activation
function. As shown in Figure 5, the model structure includes a
2 × 2 max-pooling operation after each convolutional layer to
extract features containing more target information. Before training
the dataset images, all images in the dataset are preprocessed
to a uniform format. The original image pixel dimensions are
transformed to a uniform size of 84 × 84 pixels, resulting in the input
image size for the base meta-learning framework being 84 × 84 pixel
grayscale images.

In the hybrid model, various forms of loss functions can be
selected for differentiated learning based on task requirements. In
this paper, cross-entropy loss (CEL) is primarily used to quantify
the differences between different tasks. The formula for the cross-
entropy loss function is shown in Equation 9:

L(y, f) = −
n

∑
i=1

yi. log( fi), i = 1,2, ...,n (9)

Here, f and y represent the predicted labels and the true labels,
respectively. n denotes the number of SAR targets in the meta-task.

4 Dataset and experiments

4.1 Dataset and experimental setup

MSTAR Dataset: Unlike the rapid development in natural
image recognition research, obtaining a sufficient number of
publicly available datasets in the field of remote sensing SAR
image recognition is challenging due to the difficulty of target
detection methods. Among the few available datasets, the publicly
accessible MSTAR dataset from the United States is notable for

vehicle target recognition. MSTAR images were provided in the
mid-1990s by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory. The dataset
utilizes HH polarization, X-band frequency, with a resolution of
0.3 m × 0.3 m, capturing images at 1° intervals over a 360° range.
The dataset includes ten categories of targets, primarily consisting
of SAR slice images of stationary vehicles, capturing various vehicle
targets at different azimuth angles. As illustrated in Figure 6, it
contains some SAR images and their corresponding optical images
from the dataset. Specifically, the MSTAR dataset includes slice
images of ten different types of military targets, namely, 2S1 (self-
propelled howitzer), BRDM2 (armored reconnaissance vehicle),
BTR60 (armored personnel carrier), BTR70 (armored personnel
carrier), D7 (bulldozer), T62 (tank), ZIL131 (cargo truck), ZSU234
(self-propelled anti-aircraft gun), T72 (tank), and BMP2 (infantry
fighting vehicle).

TASK-MSTAR Dataset:To facilitate experimental testing and
analysis based on specific models and requirements, this section
introduces a specialized MSTAR few-shot target recognition task
dataset, referred to as the TASK-MSTARdataset.TheTASK-MSTAR
dataset is composed of individual tasks, defined as N-way K-shot
tasks. An N-way K-shot task consists of N categories and K samples.
First, N categories are selected, and then K samples are randomly
chosen from each of these categories to form the support set,
resulting in a total of N×K samples. Additionally, some random
samples from the same N categories are used to create the query
set. Detailed information on the SAR images of each category is
presented in Table 1. The MSTAR dataset is divided into a meta-
training set with 7 categories and ameta-testing set with 3 categories.
The categories BMP2, BTR60, T62, ZIL131, BTR70, D7, and T72
are used as the meta-training set, while the categories 2S1, BRDM2,
and ZSU234 are used as the meta-testing set to construct the TASK-
MSTAR dataset, ensuring that the target categories in the meta-
training and meta-testing sets are non-overlapping.

OpenSARShipDataset:TheOpenSARShip dataset (Huang et al.,
2017a), released by Shanghai Jiao Tong University, is widely used as
a benchmark for evaluating SAR target detection and recognition
algorithms. It is publicly available on the OpenSAR platform. The
dataset contains 11,346 SAR images of 17 types of ship targets, all
derived from 41 Sentinel-1 images and featuring four polarization
modes. Each SAR image has an original size of 128 × 128 pixels,
with a resolution of 10 m × 10 m. In this paper, we conduct
experiments using SAR images with vertical polarization (VV) and
vertical-horizontal polarization (VH). To mitigate the impact of
class imbalance, we follow the method outlined in the literature
(Wang et al., 2020), ensuring an equal number of meta-training and
meta-testing samples for each class. Figure 7 shows several optical
images and corresponding SAR images of six ship targets from the
OpenSARShip dataset. Based onprevious studies (Zhang et al., 2021;
Wang et al., 2022), we use SAR images of dredgers, fishing boats,
and tugboats as meta-training data, while bulk carriers, container
ships, and oil tankers serve as meta-testing data. Table 2 lists the
number of targets in both the meta-training and meta-testing sets
for each category.

This paper primarily utilizes 3-way, K-shot tasks for training
and testing. In this setup, the meta-training set consists of samples
from seven target classes, while the meta-test set includes samples
from three different target classes (2S1, BRDM2, and ZSU234).
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This division offers advantages because theMSTAR dataset contains
only ten target classes. By maximizing the size of the meta-training
task space, overfitting can be prevented, and the meta-test model’s
adaptability across different tasks is enhanced. Using 3-way K-shot
tasks expands the meta-training task space to C3

7 = 35, surpassing
other partitioning strategies and thus promoting the learning of
general prior knowledge related to SAR targets. As shown in Table 3,
3-way, K-shot task allocation of image information is described. In
the 3-way, 1-shot task, the support set under meta-training consists
of one randomly selected image from each of the three classes, while
the query set includes 15 remaining images from each of these three
classes. In themeta-test set, the support set consists of one randomly
selected image from each of the three other classes, with the query
set including 15 remaining images from each of these three classes.
In the 3-way, 5-shot task, five samples are selected from each class
in the support set for meta-training, and 15 images are randomly
selected from each class in the query set. Similarly, in the meta-test
set, the support set includes five randomly selected images from each
of the three classes, and the query set includes 15 randomly selected
images from each of these three classes.

4.2 Experimental results and analysis

The performance evaluation of the experiments primarily uses
two metrics: Accuracy and Standard Deviation (Std). The definition
of the accuracy metric is given by Equation 10:

Accuracy =
Numbero f correct targets
Numbero f total targets

(10)

The standard deviation metric is defined by Equation 11, where
Ti represents the i-thmeta-test task,AccTi

represents the recognition
accuracy of that task, and μ represents the mean recognition
accuracy of n recognition tasks.

Std = √
∑Tn

Ti
(AccTi−μ)

2

n
(11)

The loss is computed using the cross-entropy loss function, as
described in Equation 9. For the meta-training set, 4,000 meta-
tasks are randomly selected for training. For the meta-test set,
SAR few-shot experiments are conducted under different depression
angle conditions. As shown in Table 4, 200 meta-tasks are randomly
selected for testing to evaluate the target performance of the few-shot
samples in new categories, ensuring an equal probability of selecting
each target. The notation 17°D/15°D indicates that the depression
angle of the target samples selected for meta-training is 17°, while
for the meta-test, it is 15°.The experimental setup for both the
OpenSARShip dataset and the TASK-MSTAR dataset is the same,
with 4, 000 tasks for meta-training and 200 tasks for meta-testing.

4.2.1 Analysis of model recognition results
This section evaluates the recognition performance of ADW-

HM on unknown new classes and the impact of different elevation
angle image experimental settings on SAR-FSL recognition.
The testing is conducted using 200 new meta-testing tasks for
quantitative analysis. The detailed results are shown in Table 5.

Based on the results shown in Table 5, it can be observed
that ADW-HM achieves outstanding SAR-FSL recognition results
across three different depression angle test groups. Specifically,
in the 1-shot tests at 15°, 17°, and 30°, the average target
recognition accuracies are 89.24%, 94.14%, and 89.00%, respectively.
Additionally, in the 5-shot tests, as the number of target images
in the training tasks increases, the model learns better knowledge,
resulting in improved accuracy, with average target recognition
accuracies of 96.70%, 96.78%, and 95.04%, respectively. When
using images trained at a 17 depression angle, the testing
accuracy is slightly higher when the test images are also at 17°
compared to 15° and 30°, due to the higher similarity of image
features at the same depression angle. Moreover, Table 6 shows
the average confusion matrix for 200 tasks tested under different
experimental configurations using ADW-HM. It can be observed
that ADW-HM demonstrates satisfactory recognition performance
across three different SAR test unknown classes (2S1, BRDM2,
and ZSU234), rather than just high performance on a single
class. The recall and precision rates of the average confusion
matrix for different unknown classes in Table 6 indicate that our
proposed model maintains both high recall and high precision,
achieving more stable and comprehensive target recognition
performance.

4.2.2 Comparative analysis of results
Most current SAR few-shot learning methods rely on metric-

basedmeta-learning algorithms,while optimization-based SAR-FSL
methods have been less explored, and model-based approaches are
even rarer. The proposed method is compared with the most stable
optimization-based SAR-FSL target recognition models: MAML,
MSGD, and Reptile. A series of comparative experiments and
discussions were conducted. Table 7 presents the test results of
ADW-HM compared with other SAR-FSL methods on the TASK-
MSTAR dataset. The results indicate that all models achieve the
highest recognition accuracy at 17° depression angle, with decreased
accuracy at 15° and 30°. Moreover, our model outperforms
other SAR-FSL methods in both 1-shot and 5-shot test tasks
at all depression angles, demonstrating its effectiveness and
reliability.Figures 8, 9 show the recognition accuracy and loss error
curves for the 1-shot and 5-shot tasks at 17° D/17° D, respectively.
The figures reveal that as the training progresses, the model’s test
accuracy gradually increases and the loss decreases. Additionally,
ADW-HM reaches high recognition accuracy faster than other
models, indicating its rapid adaptation capability. MAML and
Reptile focus only on optimizing well-initialized parameters, while
MSGD not only learns initialization parameters but also optimizes
the learning rate in its update strategy. Unlike previous methods,
our approach not only optimizes initialization parameters and
adjusts the learning rate in the update process but also combines
model outputs to dynamically predict results, while automatically
determining the contribution of eachmodel.The recognition results
of ADW-HM in 1-shot and 5-shot test tasks demonstrate better
performance improvement compared to other SAR-FSL methods,
with increases of 4.53%, 1.52%, and 0.71% in 1-shot tasks, and 3.34%,
1.65%, and 2.91% in 5-shot tasks. This highlights the superiority of
our model over others.

Evaluation experiments were conducted on the OpenSARShip
dataset to further verify the recognition performance of the
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proposed method for few-shot SAR ATR tasks. Table 8 lists
the recognition results of each method for the 1-shot and 5-
shot tasks on the OpenSARShip dataset. From the experimental
results in Table 8, it can be observed that on the more challenging
few-shot OpenSARShip dataset, the proposed ADW-HM method
still demonstrates the best performance in both the 1-shot and
5-shot tasks. Specifically, in the 1-shot and 5-shot settings, the
recognition rates of the ADW-HM method are 43.20% and
50.88%, respectively, outperforming the second-best method by
approximately 0.51% and 2.48%.

4.2.3 Analysis of dynamic weight parameters
In ADW-HM, an adaptive parameter update strategy is

employed to improve the representation and recognition of
few-shot target features. This strategy works by learning the
correlation between two model parameters and integrating the
output predictions for enhanced performance. This is achieved by
combining different model weights, where the adaptive dynamic
weight factor dynamically scales the update of model parameters
during iterative updates, facilitating multi-model learning and
preserving relevant data information. Figure 10 shows the weight
variation process of adaptive weights during training under the
3-way 1-shot condition at 17°D/17°D. As the training progresses,
the weight W deviates from its initial value to adapt to different
learning tasks. This indicates that the contribution of weight W
to the model is not fixed and should be learned through training
rather than predefined. ADW-HM dynamically allocates weights to
each model during each training session, ensuring that each model’s
contribution is reflected in the final recognition result. Considering
adaptive weights further improves SAR few-shot recognition
performance because it helps to learn the correlation between them.
This fully validates the advancement and effectiveness brought by
our proposed ADW-HM.

To determine the contribution of each model to the prediction
outcomes, dynamicweight adaptation is applied.This enablesADW-
HM to automatically adjust and learn the weight W for each
model’s contribution, eliminating the need for manual optimization
of W. Figure 11 illustrates the impact of different weight values on
the recognition accuracy of SAR-FSL meta-test classes under 3-
way 1-shot and 3-way 5-shot conditions. It is evident that the best
recognition results are achieved at 94.14% and 96.78% for 1-shot
and 5-shot tasks, respectively, indicating that the contribution of the
required models varies. This suggests that in different experimental
configurations, the weight factor contributing to the models in
ADW-HM is a variable value rather than a fixed one, and it
should be determined through training and learning to achieve the
optimal value.

Table 9 displays the results of ablation experiments on SAR-FSL
conducted under the experimental configuration of 17° D/17° D for
the 3-way 1-shot task using hybrid model and adaptive dynamic
weight parameters. From the experimental data, it can be observed
that when neither the hybrid model nor the adaptive dynamic
weights are used, the model’s recognition accuracy is 90.67%.
When using only the hybrid model without applying adaptively
learned weight factors, the recognition accuracy reaches 94.08%.
Then, when both the hybrid model and adaptive dynamic weight
factors are used simultaneously, the highest SAR target recognition
performance is achieved at 94.14%.The results indicate that even

without using adaptive dynamic weight factors, good recognition
results can be obtained. However, the initial choice of weight
factors significantly affects the model’s recognition performance.
For convenience and effectiveness, employing adaptive dynamic
weight factor learning to determine the model’s contribution value
is crucial. This approach not only improves the model’s recognition
accuracy but also eliminates the need for manually adjusting weight
parameters.

4.2.4 Analysis of model convolution kernel size
This section explores the impact of different convolution kernel

sizes in the base learner on the performance of ADW-HM in few-
shot recognition tasks. As shown in the results in Table 10, the
convolution kernel sizes of the base learner were set to 3 × 3, 5 × 5,
7 × 7, and 9 × 9, with other experimental configurations remaining
unchanged. According to the experimental results, the recognition
accuracies for few-shot target recognitionwith different convolution
kernel sizes are 94.14%, 90.63%, 92.81%, and 92.63%, respectively.
It can be observed that the model’s recognition performance is
optimal and the parameter size is the smallest when the convolution
kernel size is 3 × 3. Larger convolution kernels result in lower
recognition accuracy. This is because smaller convolution kernel
sizes can effectively capture local texture features of the targets, while
larger kernel sizes focus more on macro features at a larger scale.
For few-shot target recognition, smaller convolution kernels can
better extract target features and improve SAR target recognition
compared to larger kernels.

Additionally, Figure 12 presents the t-distributed stochastic
neighbor embedding (t-SNE) visualization of target sample
recognition for 2S1, BRDM2, and ZSU234 in the meta-test tasks,
using varying convolution kernel sizes. It can be seen that with
a convolution kernel size of 3 × 3, the test targets exhibit a more
compact and distinguishable feature space distribution. In contrast,
larger convolution kernel sizes result in a sparse distribution with
significant overlap, leading to decreased stability in recognition
performance. As a result, ADW-HM utilizes a base learner model
with a 3 × 3 convolution kernel to enhance intra-class similarity
and inter-class differentiation while reducing the number of model
parameters. This approach improves the stability and reliability of
SAR-FSL target recognition.

5 Conclusion

To tackle the challenge of small sample target recognition
under severely limited sample conditions in SAR-ATR, an adaptive
dynamic weight hybrid model is proposed. This method updates
model parameters and integratesmodel results to solve the problems
caused by small samples in model parameter updates and unknown
class recognition. By using meta-learning and ensemble learning
to construct the hybrid model, the stability and accuracy of
unknown class recognition are enhanced. The TASK-MSTAR and
OpenSARShip datasets are designed to effectively train and evaluate
the model, consistently outperforming the baseline models in terms
of accuracy and stability.

While much attention has been given to SAR-based vehicle
target classification, ship-based SAR research is equally active and
promising. However, the complexities of themaritime environment,

Frontiers in Earth Science 16 frontiersin.org

https://doi.org/10.3389/feart.2024.1469032
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Geng et al. 10.3389/feart.2024.1469032

such as irregular weather patterns, ocean waves, and other sea-
related disturbances, introduce additional challenges to target
detection and classification. Maritime target classification differs
significantly from land-based tasks due to the intricate nature of the
background environment. The dynamic sea surface, strong waves,
and the presence of sea ice can adversely affect the quality and
accuracy of SAR images. For example, adverse weather conditions at
sea may reduce the contrast between the target and its background,
impacting detection performance. This necessitates more advanced
image preprocessing techniques or the incorporation of additional
features to enhance classification accuracy. Future research could
benefit from integrating the latest advancements in oceanography to
improve target classification in complexmaritime environments. For
instance, combining meteorological models with deep learning may
offer valuable insights for modeling environmental backgrounds
in SAR images, thereby improving recognition and classification
accuracy. By merging advancements in oceanography with deep
learning, more precise target identification and classification under
these challenging conditions can be achieved, ultimately supporting
maritime surveillance and security efforts. In conclusion, while
radar-based deep learning hasmade significant strides, there remain
many challenges. Continuous innovation is required to enhance the
performance and robustness of radar systems, tailored to the specific
needs of real-world applications.
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