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Accurate landslide susceptibility assessment is vital for disaster prevention,
but current mapping lacks systematic analysis of the underlying mechanisms
betweenmulti-scale factors and model performance. Taking Zhenxiong County
as an example, this paper combines the IV, WOE, LR models, and PCA to
reveal the impact of methodological differences and scale selection onmapping
results, and quantitatively evaluates them using ROC curves and landslide
density statistics. Results show that: 1) The scale effect of influencing factors
is significant. Natural factors such as topography, geological conditions, and
rainfall play dominant roles at the regional scale, while the impacts of human
activities, geological features, and soil erosion intensity are more pronounced
at local and moderate scales. 2) The landslide susceptibility mapping results
of the three models at different spatial scales show similar spatial distribution
trends. As the spatial scale increases, high/very high susceptibility areas and
low/very low susceptibility areas spread outward, while the spatial distribution
of medium susceptibility areas shows a fragmented expansion outward first
and then agglomeration and contraction inward. 3) Scale selection significantly
affects the accuracy of landslide susceptibility mapping, and expanding the
spatial scale appropriately improves mapping precision. The IV andWOEmodels
show the highest AUC at the 600-m buffer, while the LR model peaks at
400 m. In terms of landslide identification accuracy, the IV model performs
best at 400-m buffer, WOE at 600-m buffer, and LR at 100 -meter buffer. 4)
Different methods have different mapping performances. Overall, the IV model
performs best, followed by the WOE model, with the LR model lagging behind.
In terms of high-risk area recognition, the LR model excels, followed by the IV
model, while the WOE model performs relatively poorly. 5) Scale and method
selection significantly impact landslide susceptibility mapping outcomes. The IV
model excelled in global prediction at the 600-m buffer, whereas the LR model
was effective in pinpointing high-risk areas at the 100-m buffer. This paper
proposes a landslide susceptibility evaluation method that integrates model
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performance and scale effects, enhancing disaster assessment and prevention
capabilities.
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landslide susceptibility mapping, principal component analysis, statistics-based model,
multiscale analysis, ROC

1 Introduction

Landslides are one of the most common and destructive
geological disasters in theworld, causing a large number of casualties
and huge economic losses every year (Di Napoli et al., 2021). As an
important tool for landslide hazard research, landslide susceptibility
mapping (LSM) can effectively identify the spatial distribution areas
of potential landslides, provide a scientific basis for early warning,
risk assessment, and disaster prevention and mitigation decisions of
landslide disasters, and is of great significance to reducing the impact
of landslide disasters.

With the advancement of GIS and remote sensing technologies,
landslide susceptibility mapping using statistical and machine
learning models has become widespread. Traditional statistical
models such as IV (Guo et al., 2023), WOE (Thiery et al.,
2007), and LR (Zhao et al., 2019) have achieved good predictive
results by analyzing the statistical relationship between landslides
and influencing factors, establishing a mathematical model
between landslide occurrence probability and influencing factors
(Guzzetti et al., 2006). It has the advantages of high computational
efficiency, relatively low data requirements, and strong model
interpretability (Lima et al., 2021). However, there are limitations
in dealing with complex nonlinear relationships, which greatly
affect the accuracy of landslide susceptibility mapping. In contrast,
machine learning models such as Support Vector Machines (SVM)
(Huang and Zhao, 2018), Random Forests (RF) (Dou et al., 2019),
and Artificial Neural Networks (ANN) (Conforti et al., 2014;
Nanehkaran et al., 2023) have significantly improved the accuracy
of landslide susceptibility mapping due to their powerful non-linear
fitting and classification capabilities (Dou et al., 2021; Feng et al.,
2022) ̥In addition, some studies have attempted to integrate different
machine learning models, such as AdaBoost, Bagging, etc., to
further improve prediction accuracy (Binh Thai et al., 2017; Chen
and Li, 2020; Wu et al., 2020) ̥Although machine learning models
perform well in landslide susceptibility mapping, they have some
inherent limitations, such as high requirements for data quality and
quantity, complex models, and poor interpretability (Huang et al.,
2020; Zhang et al., 2024) ̥To address these issues, some studies
have proposed methods to optimize data quality (Sun et al., 2023;
Yang et al., 2023), Or enhance the interpretability of the model by
introducing fuzzy logic basedmulti decisionmethods (Mallick et al.,
2018; Nanehkaran et al., 2021) ̥However, in situations where data
is limited and in-depth exploration of landslide mechanisms
is needed, statistical models still have certain advantages
(Merghadi et al., 2020).

In view of the data characteristics and research objectives,
this paper selects statistical models and focuses on the impact of
the scale effect of influencing factors on landslide susceptibility
mapping. However, through the analysis of existing statistical model

studies, we found that the following two aspects seriously affect
the accuracy and reliability of landslide susceptibility mapping.
First, the choice of mapping method directly affects the accuracy
of the results, that is, different models perform differently when
dealing with complex geological conditions (Pourghasemi and
Rahmati, 2018). Second, the choice of spatial scale also significantly
affects the mapping results, and there are significant differences
in mapping results at different spatial scales (Lin et al., 2021).
Therefore, it is urgent to carry out multi-model and multi-scale
landslide susceptibility mapping research, quantitatively analyze the
relationship between model performance and scale, and select the
optimal model and scale combination to improve the accuracy and
reliability of landslide prediction.

Situated in the Wumeng Mountains of the northeastern
region of Yunnan Province, Zhenxiong County exhibits varied
topography and intricate geological characteristics, rendering
it prone to precarious geological hazards like landslides. A
major landslide catastrophe occurred in Liangshui Village in
Tangfang Town on 22 January 2024. The landslide volume
was estimated to be 50,000 cubic meters, resulting in the loss
of 44 lives and causing substantial casualties and property
damage. This tragic event highlights the urgent need to improve
landslide susceptibility mapping and implement effective risk
prevention measures.

In view of the shortcomings of existing studies in multi-
scale analysis and scale effects of influencing factors, this paper
takes Zhenxiong County, Yunnan Province as the research area,
uses principal component analysis to quantitatively analyze
the scale effects of influencing factors, and combines three
statistical models, namely, information content (IV), weight of
evidence (WOE) and logistic regression (LR), to explore the
performance of landslide susceptibility mapping of different
models at different scales. The models are evaluated by ROC
curve and landslide density statistical indicators, and finally
the optimal model and scale combination is proposed. The
multi-model and multi-scale analysis framework developed
in this study provides new insights for optimizing landslide
susceptibility mapping and serves as a scientific basis for improving
the precision and effectiveness of landslide disaster prevention
and mitigation.

2 Materials and methods

2.1 Materials

2.1.1 Study area
Zhenxiong County, administered by Zhaotong City in

Yunnan Province, is located in the northeastern part of
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FIGURE 1
Research location map (A): China, (B): Yunnan Province, (C): Zhenxiong County.

Yunnan, where the borders of Yunnan, Guizhou, and Sichuan
provinces converge (Figure 1). The county spans geographical
coordinates from approximately 104°18′E to 105°19′E longitude
and 27°17′N to 27°50′N latitude, covering a total area of 3,696
square kilometers. The county is located on the mountainous
slopes of the northern foothills of the Wumeng Mountains, at
the northern edge of the Yunnan-Guizhou Plateau. Positioned
within the source region of the Chishui River, Zhenxiong County
is characterized by multiple plateau canyon-type rivers. The area
boasts relatively complete strata and welldeveloped geological
structures, with mountains and rivers following structural lines and
stratigraphic trends. Zhenxiong County experiences a subtropical
plateau monsoon climate. Its topography facilitates the entry of
cold air but hampers its dissipation, resulting in persistent fog and
mist throughout the year. The climate is characterized by moderate
temperatures, infrequent clear skies, significant temperature
fluctuations, frequent frosts, and distinct dry and wet seasons.
Zhenxiong County showcases distinctive vertical climate zones
due to significant elevation differences, frequently facing cold waves
during winter and spring as a result of its unique 'three-dimensional
climate. With an average yearly temperature of 13.7°C and average
annual rainfall of 935 mm, the area’s climatic characteristics
are notable.

2.1.2 Data source
This study utilizes a wide array of data sources, including

digital elevation models, topographic maps, geological maps, land
use data, remote sensing imagery, rainfall data, landslide reports,

geological hazard records, national spatial planning data, mineral
resource planning data, geomorphological maps, and engineering
geological rock group classification maps. Detailed information is
provided in Table 1.

2.1.3 Landslide inventory mapping
Through on-site investigations, verification of statistical data

from Zhenxiong County, remote sensing interpretation, and newly
identified landslide-prone points during the survey process, a
total of 217 landslides were identified in Zhenxiong County as
of July 2022. The analysis of Figure 1 indicates that landslides
predominantly occur in close proximity to valley areas and at the
entrances of mountain gullies. Based on the investigation data
and collected information, landslides in Zhenxiong County can
be classified into two categories: natural landslides (caused by
rainfall, earthquakes, river erosion, and other natural factors) and
engineering landslides (resulting from cutting slopes and other
human engineering activities). Among the 217 landslides, 156
(71.82%) were triggered by natural factors, while 61 (28.18%) were
triggered by a combination of natural and human factors. No
landslides were solely attributed to human factors.

2.1.4 Determination of landslide influence area
This study provides a comprehensive assessment of landslide

impact by incorporating key factors such as landslide scale,
thickness, and the potentially affected area. Using statistical
analysisof landslides inZhenxiongCounty, thebufferzonemethod
was employed to determine the extent of landslide influence,
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TABLE 1 Data sources used in this study.

Serial number Data Scale/Resolution Source Aim

1 Digital elevation models 30 m http://www.gscloud.cn/ Slope、Slope height

2 Topographic maps 1:10,000、1:50,000 Yunnan surveying and
mapping data Archives

Driving factor analysis

3 Geological maps 1:50,000 Yunnan surveying and
mapping data Archives

Driving factor analysis

4 Land use data 30 m Resources and Environment
Science Data Center of

Chinese Academy of Sciences
(https://www.resdc.cn/)

Driving factor analysis

5 Remote sensing images 30 m Landsat TM (2022年) Normalized vegetation index
and soil erosion intensity map

6 Rainfall data Average annual rainfall Zhenxiong county
meteorological Bureau

Rainfall distribution map

7 Landslide reports Zhenxiong County natural
resources Bureau

Landslide inventory map

8 2021 geological hazard records Zhenxiong County natural
resources Bureau

Landslide inventory map

9 National spatial planning data 1:10,000 Zhenxiong County natural
resources Bureau

Driving factor analysis

10 Mineral resource planning
data

1:10,000 Zhenxiong County natural
resources Bureau

Driving factor analysis

11 Geomorphic type maps 1:10,000 Yunnan Geological
Engineering Survey Co., LTD

Driving factor analysis

12 Engineering geological rock
group classification maps

1:50,000 Yunnan Geological
Engineering Survey Co., LTD

Driving factor analysis

following the approach of Dagdelenler et al. (2016). Previous
studies have shown that the extent of landslide influence is often
related to their size and type. Small, shallow landslides generally
affect areas ranging from tens of meters to over a hundred meters,
while large, shallow landslides can impact areas extending from
several hundred meters to over a kilometer (Meier et al., 2020).
Given that landslides in Zhenxiong County are predominantly
small to medium in size and mostly shallow, a buffer distance of
100 m is chosen as the standard. This distance not only covers the
direct impact range of most landslides but also strikes a balance
between computational efficiency and result interpretability. To
further explore the effects of various influencing factors across
different spatial scales, this study also uses a multi-scale analysis
by establishing buffer zones around individual landslide points
at intervals of 200 m, 400 m, 600 m, 800 m, and 1,000 m. This
approach allows for a more nuanced understanding of landslide
dynamics across varying distances, following the methodology of
similar studies (Wei et al., 2024), which have shown that using
multiple buffer distances can better capture the variations in
landslide influencing factors from local to regional scales.

2.1.5 Pretreatment of landslide influencing
factors

The selection of influencing factors is crucial in the process of
mapping landslide susceptibility. Both domestic and international
research have extensively discussed various influencing factors.
While some factors, such as slope angle and lithology, are
widely accepted, others—like aspect, land use, soil types, and
the topographic wetness index—remain subjects of debate
(Segoni et al., 2012; Shu et al., 2019; Arabameri et al., 2020).
The effectiveness of landslide susceptibility models is influenced
by several factors, including data availability and the geological
characteristics of the study area (Van Westen et al., 2006;
Pereira et al., 2012; Catani et al., 2013).Therefore, the contribution
of individual factors to landslides can vary across different study
locations. Despite these variations, we selected factors that are
commonly discussed and supported in the literature.Additionally,
after a comprehensive evaluation of different factors, this study
introduces an innovative factor—slope height (represented as
the product of slope length and slope gradient)—to more
comprehensively and accurately characterize the terrain.
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FIGURE 2
(Continued).

Utilizing findings from both domestic and international
research, as well as taking into account the specific conditions
within the research field, this study has identified 15 key factors
for developing a comprehensive index system for mapping landslide

susceptibility, and thematic layers for these factors generated in
ArcGIS. Given that the selected factors consist of both discrete and
continuous variables, it is imperative to categorize the continuous
variables into distinct categories with fixed intervals when utilizing
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FIGURE 2
(Continued). Drivers used in landslide susceptibility modeling (A) Distance from mining areas, (B) Distance from roads, (C) Distance from settlements,
(D) Distance from structures, (E) Distance from rivers, (F) Digital elevation models (DEM), (G) Slope, (H) Slope height, (I) Rainfall, (J) Land use, (K)
Normalized vegetation index (NDVI), (L) Soil erosion intensity (SEI), (M) Landform type, (N) Slope structure factor, (O) Engineering rock group.).

a statistical model. Currently, there is no consistent criterion for
determining the quantity of classification intervals for continuous
variables. Considering that using too many or too few intervals can
lead to model complexity issues, and referring to the 4-9 intervals

commonly used in existing studies, this paper divides all continuous
factors into 4-9 intervals (Chen et al., 2017; Huang et al., 2017;
Park et al., 2018). The selected impact factors and their classification
results are shown in Figure 2.
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FIGURE 3
Technical flow chart.

2.2 Methodology

2.2.1 Principal component analysis
Principal component analysis (PCA) is a dimensionality reduction

technique widely used in multivariate data analysis. It transforms a
set of possibly correlated variables into a set of linearly uncorrelated
variables through linear transformation (Sabokbar et al., 2014).
In landslide susceptibility research, PCA is often used to reduce
the redundancy and correlation between influencing factors, while
evaluating the contribution of each factor to landslide susceptibility.
Its main steps are as follows:

The initial dataset (X) can be represented in
matrix form by Equation 3:

X =

[[[[[[[

[

x11 x11 ⋅ ⋅ ⋅ x1m

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

xn1 xn1 ⋅ ⋅ ⋅ xnm

]]]]]]]

]

(1)

where m is the number of causal factors, n is the landslide number,
and xij (i = 1, 2, … , n; j = 1, 2, … , m) is the jth factor of the ith
landslide. The mean and standard deviation of these factors can be
calculated as follows:

xj =
1
n

n

∑
i=1

xij (2)

Sj = √
1

n− 1

n

∑
i=1
(xij − xj)

2 (j = 1,2, ...,m) (3)

Where xj and Sj are the mean and standard deviation of
factor j, respectively. These two parameters can be used to
normalize the original data X and obtain the correlation matrix
R = (rjk)m × m:

yij =
xij − xj
Sj
 (i = 1,2, ...,n;  j = 1,2, ...,m) (4)

rjk =
1

n− 1

n

∑
i=1

(xij − xj)
Sj

(xik − xk)
Sk
 (j = 1,2, ...,m;k = 1,2, ...,m) (5)

The eigenvalue and eigenvector of matrix R can be
determined by Equation 8:

(R− λiI)li = 0 (6)

where λi (i = 1, 2, … , m) and li (i = 1, 2, … , m) are the eigenvalues
and eigenvectors of matrix R, respectively, li corresponds to the
principal components, and λi corresponds to the variance obtained
from each principal component. The effect of each eigenvalue is
given by the contribution rate. A larger contribution rate indicates
a larger eigenvalue. The largest eigenvalues represent the principal
components regarding most of the variability in the observed data.
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The cumulative contribution rate α for a specific eigenvalue λk (i =
1, 2, … , m) can be obtained as follows:

α =
λ1 + λ2 + ... + λk
λ1 + λ2 + ... + λm

× 100% (7)

If the value of α is equal to or more than 90%, k principal
components are considered to contain sufficient information to
represent the complex original data array. The matrix (Fij)n × k,
composed of k principal components, can be expressed by:

Fij =
m

∑
i=1

yitltj (i = 1,2, ...,n;  j = 1,2, ...,k;  t = 1,2, ...,m) (8)

In this matrix, the largest contribution rate is given by the first
principal component, followed by the other components, which have
gradually decreasing contribution rates.

2.2.2 Susceptibility modelling for landslide
This study utilized IV, LR, and WOE models for landslide

susceptibility analysis. The main steps of the modeling process are
as follows.

(1) The landslide inventory map is prepared, which includes
historical landslide points;

(2) We Generat thematic layers of landslide influencing
factors using GIS;

(3) PCA is used to calculate the weight of each factor, and conduct
subsequent analysis based on these weights.

(4) We calculate the IV, LR, and WOE indices for each factor
category and summarize the values across all categories (per
unit area). According to relevant research (Lee et al., 2004;
Huang et al., 2020a), the landslide susceptibility index (LSI) for
each unit in GIS is as follows:

LSI =
n

∑
i=1

wi ∗ sij (9)

Where wi represents the weight of the ith factor, sij denotes the
statistical index value obtained from the threemodels, and j refers to
the jth class of the ith factor in the given cell. Subsequently, landslide
susceptibility indices (LSIs) were calculated to create susceptibility
maps, and the GIS-based natural breakpoint method was applied to
categorize the mapping results into five susceptibility levels ranging
from extremely high to extremely low.

(5) Resultvalidationandaccuracycomparisonanalysisareconducted.
Based on historical landslide data, 75%of the samples are selected
as training data, while the remaining 25% are reserved for
validation purposes. The training samples provide the model
with information on past landslide occurrences, while the
validation samples are used to verify accuracy (Erener et al.,
2017; Sameen et al., 2020). To ensure the randomness of selecting
training and validation samples, this study utilized the random
selection tools available in ArcGIS. The specific workflow of this
study is illustrated in Figure 3.

2.2.3 Information value model
The information value model, a statistical evaluation technique

rooted in information theory, was introduced by American

information theorist Claude Shannon (Xu et al., 2013). Within
susceptibility research, this method proves useful in pinpointing
crucial factors influencing susceptibility and assessing the impact of
various factors on susceptibility (Yang et al., 2020). The formula for
this method is outlined as follows:

I i = ln
N i/N
Ai/A

(10)

Where N represents the total number of landslides that have
occurred in the study area, N i represents the number of landslides
that occurred within the index Xi. A represents the total area of the
study area. Ai represents the area occupied by Xi.

2.2.4 Weight of evidence model
The WOE model is a binary statistical method based on

Bayesian probability statistics. It is characterized by its intuitive
form, transparent modeling process, and ease of understanding.
These advantages align well with the analytical approach needed for
geological problem-solving, making it widely applied in landslide
susceptibility assessment (Guo et al., 2021). The calculation formula
is as follows:

W+i = ln(
P{B|L}

P{B|L}
) (11)

W−i = ln(
P{B|L}

P{B|L}
) (12)

W =W+i +W
−
i (13)

Where W+i represents the probability of landslide occurring
within the current impact factor level,W−i represents the probability
of landslide occurring in parts other than the impact factor level, P
is the probability of landslide, B is the landslide area under this level
after classification, and L refers to the total area of the study area. , L
is the total area covered by landslides in the study area, andW is the
final weight.

2.2.5 Logistic regression model
The logistic regressionmodel is a widely used statistical tool that

falls under the category of generalized linear models, specifically
designed to analyze binomial categorical variables (Shirzadi et al.,
2012). In the context of landslide susceptibility research, this model
is particularly useful because it directly relates the influencing factors
to the binary outcome of landslide occurrence (whether a landslide
occurs or not) (Cemiloglu et al., 2023). Due to its ability to effectively
model this binary response, the logistic regression model has been
extensively applied in landslide susceptibility mapping. The specific
formula is as follows:

Y = a0 + a1X1j + a2X2j +…+ anXnj (14)

P =
exp (Y)

1+ exp (Y)
(15)

where Y is the landslide event, P is the probability of the event, ai
(i = 0,1,.n) represents the regression coefficient of the explanatory
variable, Xij (i = 0, 1, 2. n) represents the jth class of the ith
explanatory variable.
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2.2.6 Accuracy analysis
The Receiver Operating Characteristic (ROC) curve is a

commonly used method in landslide susceptibility studies to
evaluate the accuracy of models. It provides a simple and intuitive
way to analyze the relationship between specificity and sensitivity
fairly accurately (Pradhan, 2013; Corsini and Mulas, 2017). In this
study, theAreaUnder the ROCCurve (AUC) is used to compare and
analyze the accuracy of themodels.The specific formula is as follows:

AUC = ∫
1

0

exp (a/(1− b))(x/(1− x)(1+b)/(1−b))

1+ exp( a
1−b
)/(x(1− x))(1+b)/(1−b)

(16)

Where the coefficients a and b represent the dependence of test
accuracy on the threshold; x is the value of ROC.

However, in actual landslide susceptibility assessment, more
attention is paid to the model’s ability to identify highly landslide-
prone areas, because these areas often mean greater disaster
risks, and the AUC value cannot fully reflect the model’s
performance in this regard. In order to more comprehensively
evaluate the assessment accuracy of the model, the landslide
density index (Tang et al., 2020) was introduced in this paper to
conduct a comparative analysis of the model recognition ability. The
formula for landslide density is as follows:

DL = PSL/PTL (17)

Where DL is the proportion of landslides within a specific
susceptibility level, PSL is the number of pixels that have landslides
within that level, and PTL is the total number of pixels that have
landslides within the entire area.

3 Results

3.1 Selection and analysis of influencing
factors

Landslides are complex geological hazards influenced by a
combination of natural and human factors. Accurate identification
and quantification of these factors are essential for landslide
susceptibility mapping, which enhances the accuracy of risk
assessment and improves our understanding of the driving
mechanisms behind landslides. Differentmethodsmay yield varying
results when quantifying these factors, due in part to the methods
themselves and in part to the spatial scale effect—where the
influence and mechanism of the same factor may vary across
different scales. To better understand these variations and improve
mapping accuracy, this section first uses principal component
analysis (PCA) to explore the weight changes of each factor at
different scales, revealing the multi-scale effect. Subsequently, the
IV, WOE, and LR methods are applied to quantitatively assess the
contribution of each factor to landslide susceptibility and analyze the
mechanisms underlying these internal differences.

3.1.1 Scale effect of influencing factors
To further explore the influence of various factors on landslides

at different scales, this study uses PCA (Equations 1–8) to calculate
the weights of 15 factors at different scales and analyze the weights.

The results show (Table 2) that the weights of the 15 factors at
different scales are quite different, and some factors have obvious
scale effects. The weights of slope height, rainfall, landform type and
engineering rock group increase with the increase of buffer zone,
suggesting that these factors play a more significant role in landslide
occurrence at broader scales. Specifically, high and steep slopes
provide greater gravitational potential energy, promoting landslide
occurrence; different landform types reflect regional topographic
characteristics, influencing the spatial distribution of landslides; the
properties of engineering rock groups determine rockmass strength
and stability, affecting landslide development; rainfall infiltration
leads to soil saturation and increased pore water pressure, reducing
slope shear strength and triggering landslides. The weights of DEM,
land use type, distance from structure, distance from road, and
distance from mining area at medium scale (400–600 m) are higher
than those at other scales. This indicates that human activities
and geological characteristics influence landslide development at
medium scales by altering slope structure, stress conditions, and
rock fragmentation. Specifically, DEM reflects regional topographic
variations, with landslide susceptibility differing across elevation
ranges; changes in land use (e.g., vegetation removal, road
construction) can destabilize slopes and increase landslide risk; the
distribution of structures, roads, and mining areas controls rock
fragmentation and stress conditions, thereby influencing landslide
development. The distance to the river, soil erosion, and slope have
high weights at the local scale (100–200 m), and then decrease with
the increase of the buffer zone, indicating that these factors directly
act on the slope surface in a small range and significantly affect the
movement and stability of the sliding body. Specifically, river erosion
can weaken slope support, increasing landslide susceptibility near
riverbanks; soil erosion alters slope roughness and permeability,
impacting slope stability; and slope, as a key topographic factor,
directly controls the movement of the sliding mass at the local
scale. Notably, the weight of vegetation cover (NDVI) remains low
across all buffer zones, indicating it has a relatively minor impact on
landslides.Thismay be due to the fact that the vegetation coverage in
the study area is generally good, the impact on landslides is relatively
uniform, and the differences at different scales are not obvious.

3.1.2 IV, WOE, LR coefficient determination
To improve the accuracy of landslide susceptibility mapping,

the intrinsic driving mechanisms of landslides were thoroughly
examined. Each driving factor was divided into four to nine
categories, and the IV, WOE, and LR were calculated by Equations
10–15 for each category of the 15 influencing factors (Table 3).

The results indicate that IV and WOE exhibit strong consistency
in quantifying the classification information and predictive power of
variables. However, the regression coefficient does not always align
with IV and WOE in certain cases. For example, in the category
where the distance to the mining area is less than 200 m, the RC
(Regression coefficient) is 1.25, significantly higher than the IV
of 0.55 and the WOE of 0.5. This suggests that proximity to the
mining area has a clear and substantial influence on the assessment
of landslide risk. Furthermore, the IV and WOE values for distances
from the mining area in different intervals (such as 300m–600m
and 600m–1000 m) show a decreasing trend, indicating that as the
distance increases, the predictive efficacy diminishes. In contrast, the
RC shows an increasing trend in these intervals, indicating that the
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TABLE 2 Weight of landslide influence factors at different scales.

Buffer area/m 100 200 400 600 800 1,000

Distance from roadway 0.051 0.062 0.051 0.075 0.012 0.016

Digital Elevation Model (DEM) 0.065 0.055 0.153 0.059 0.061 0.063

Landform types 0.030 0.029 0.032 0.042 0.040 0.044

Distance from geological structure 0.017 0.018 0.028 0.021 0.000 0.003

Distance from watercourse 0.058 0.059 0.041 0.051 0.035 0.034

Rainfall 0.169 0.187 0.054 0.181 0.228 0.219

Normalized Difference Vegetation Index (NDVI) 0.000 0.000 0.000 0.000 0.001 0.000

Slope height 0.203 0.212 0.205 0.197 0.243 0.231

Distance from residential settlement 0.026 0.007 0.013 0.016 0.017 0.028

Soil erosion 0.072 0.065 0.068 0.057 0.040 0.040

Slope 0.072 0.059 0.049 0.040 0.038 0.042

Land use 0.093 0.089 0.126 0.078 0.079 0.072

Distance from mining area 0.014 0.014 0.034 0.036 0.017 0.019

Slope structure 0.062 0.065 0.062 0.067 0.063 0.065

Engineering geological group 0.070 0.079 0.084 0.079 0.127 0.124

logistic regression model captures more complex relationships. This
may be because logistic regression, based on maximum likelihood
estimation, can flexibly adjust parameters to account for nonlinear
relationships or interaction effects in the data. These findings
highlight the complexity of selecting appropriate methods for
landslide susceptibility mapping. Relying solely on one model may
introduce significant bias in the results. Therefore, a comprehensive
comparison of multiple models’ performance is necessary during
the modeling process. To enhance the accuracy and reliability of the
mapping, model selection should be based on the specific context
and characteristics of the study area.

3.2 Landslide susceptibility mapping and
comparative analysis of performance

The above analysis deeply explores the mechanism of action
and scale effect of landslide influencing factors. On this basis,
this section will focus on the landslide susceptibility mapping
effect and prediction performance of different models at different
scales. By comparing and analyzing the spatial distribution pattern,
ROC curve and landslide density evaluation indicators of the
IV, WOE and LR at multiple scales, we can comprehensively
evaluate the advantages and disadvantages of each model and
select the optimal model and scale combination to provide a
scientific basis for landslide risk assessment and disaster prevention
and mitigation.

3.2.1 Spatial distribution patterns of susceptibility
mapping from various models at multiple scales

To obtain the susceptibility results of landslides at different
scales, multiply and sum the IV, WOE, and LR coefficients of
the internal subcategories of influencing factors determined by
PCA. The levels of susceptibility to landslides are classified into
five categories: extremely low, low, moderate, high, and extremely
high through the application of the natural breakpoint technique.
The calculated susceptibility results for landslides are shown in
Figures 4–6.

According to Figure 4, at the 100-m scale, high/extremely high
prone areas are mainly concentrated in the narrow river valley
areas in the north, southwest, and east of the study area, as
well as the lowland areas in the southeast. Areas with low and
extremely low susceptibility are mainly distributed in the lowlands
and flat regions in the central, southwest, and west. Medium-
susceptibility areas are mainly found in the transition zones
between high/extremely high and low/extremely low susceptibility
areas, showing a cross-distribution pattern with these levels. As
the spatial scale increases to 200 m, the high and extremely
high susceptibility areas begin to expand outward, gradually
encroaching on some of the medium-susceptibility areas. However,
the spatial distribution of low and extremely low susceptibility areas
remains largely unchanged. At a 400-m scale, the high/extremely
high and low/extremely low susceptibility areas continue to
expand outward, displaying a clear trend of forming contiguous
patches. Meanwhile, the medium-susceptibility areas start to
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TABLE 3 IV、WOE and LR coefficient index of each landslide interval.

Factor Range IV WOE LR Factor Range IV WOE LR

Distance from mining area

≤200 m 0.55 0.50 1.25

Rainfall

<900 mm 0.00 0.00 −3.64

200 m∼300 m 0.72 0.68 1.40 900–1100 mm −0.39 −0.29 −0.92

300 m∼600 m 0.58 0.54 0.98 1,100–1,300 mm 0.16 −0.11 0.80

600 m∼1000 m 0.19 0.18 1.04 >1,300 mm −0.09 −0.07 −0.11

≥1000 m −0.20 0.30 −1.43

Land use

Farmland 0.37 0.11 0.85

Distance from roadway

<100 m 0.36 −0.08 0.71 Forest −0.28 0.08 −0.84

100–200 m −0.15 −0.10 −0.11 Shrub 0.09 0.09 0.26

200–300 m −0.61 −0.54 −0.51 Grassland 0.31 0.31 −0.18

300–400 m −0.64 −0.60 −0.93 Water body 1.45 1.45 −0.50

400–500 m −0.83 −0.81 −0.47 Impervious surface 0.00 0.00 1.14

>500 m −1.80 −1.76 −1.89 Bare soil 0.45 0.45 0.85

Distance from residential
settlement

<100 m 0.33 0.32 0.14

NDVI

0–0.1 0.54 0.40 0.67

100–200 m 0.52 0.50 1.03 0.1–0.2 0.36 0.31 0.42

200–300 m 0.10 0.09 −0.02 0.2–0.3 0.17 0.14 0.32

300–400 m 0.21 0.20 0.61 0.3–0.4 −0.06 −0.04 0.01

400–500 m 0.59 0.55 0.46 0.4–0.5 −0.62 −0.45 −0.91

>500 m −0.09 0.28 −0.53 >0.5 −1.18 −1.14 −1.44

Distance from geological
structure

≤500 m 0.35 0.29 0.49

Soil erosion

Slight erosion −0.52 −0.29 0.88

500 m∼1000 m 0.44 0.37 0.68 Light erosion 0.11 0.04 −0.91

1000 m∼1500 m 0.05 0.04 0.38 Moderate erosion 0.38 0.32 0.22

1500 m∼2000m 0.03 0.02 −0.09 Intense erosion 0.47 0.42 0.59

2000m∼2500 m 0.11 0.10 −0.09 Severe erosion 0.43 0.42 0.77

2500 m∼3000 m −0.80 −0.75 −0.97 Violent erosion −0.57 −0.57 0.48

3000 m∼3500 m −0.86 −0.83 −0.92 Extremely violent erosion 0.00 0.00 0.68

>3500 m −0.13 −0.07 −0.24 Tectonic erosion of
mountainous terrain

0.28 0.04 0.80

Distance from river

<200 m 0.86 0.74 1.14

Landform types

Erosion and dissolution of
canyon terrain

−0.82 0.08 −1.05

200–400 m 0.37 0.33 0.68 Terrain with alternating
tectonic and erosional
features

−0.40 −0.21 −0.75

400–600 m 0.19 0.17 0.29 Karst landform with peaks
and depressions

0.07 0.08 0.21

600–800 m 0.33 0.29 0.62 Tectonic erosion of low
mountain terrain

−0.28 0.00 −0.70

(Continued on the following page)
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TABLE 3 (Continued) IV、WOE and LR coefficient index of each landslide interval.

Factor Range IV WOE LR Factor Range IV WOE LR

800–1,000 m −0.20 −0.18 −0.10

Landform types

Exfoliation of low
mountainous terrain

−0.33 −0.47 −0.33

>1,000 m −0.33 0.05 −0.95 Karst landform with low to
medium peaks

0.11 0.04 0.10

DEM

<1,000 m 0.13 0.13 0.82

Slope structure

Downhill slope 0.06 0.04 0.17

1,000–1,500 m 0.44 0.13 1.08 Uphill slope 0.11 0.08 0.16

1,500–2000 m −0.27 0.03 −0.90 Sloping terrain −0.27 −0.21 −0.22

>2000 m −1.33 −1.29 −1.45 Transverse slope 0.15 0.08 0.16

Slope

0∼5° −0.27 −0.26 −0.40 Horizontal rock layer 0.00 0.00 −0.87

5°∼ 15° −0.04 −0.02 −0.11 Massive rock formation −0.51 −0.47 −0.77

15°∼25° −0.06 −0.03 −0.06

Engineering geological rock
group

bedded hard rock formation 0.00 0.00 −2.60

25°∼45° 0.13 0.07 0.23 massive hard rock formation −0.35 −0.32 −0.56

45°∼60° 0.00 0.00 0.13 bedded semi-hard rock
formation

0.71 0.64 1.00

60°∼90° −0.53 −0.53 −0.68 bedded soft rock formation 0.46 −0.05 1.58

Slope height

<10 m −0.04 0.11 −0.34 medium-thick bedded
moderately hard strong
lithified limestone formation
medium-thick bedded
moderately hard strong
lithified limestone formation

−1.16 −1.09 −1.7310–20 m 0.15 0.11 0.34

20–30 m 0.14 0.14 0.23

30–40 m 0.00 0.00 0.00
loose soil mass
bedded hard rock formation

−0.79 −0.62 −1.27
40–50 m 0.00 0.00 0.00

50–60 m 0.00 0.00 0.00 loose rock formation −1.11 −1.05 −1.22

>60 m 0.00 0.00 0.00 loose soil mass 0.00 0.00 −2.81

occupy parts of the space originally classified as high/extremely
high and low/extremely low susceptibility, leading to a certain
degree of spatial contraction and fragmentation in these two
levels. At scales beyond 400 m, as the spatial scale continues
to increase, the outward expansion of high/extremely high and
low/extremely low susceptibility areas persists, further forming
more continuous patches. Although medium-susceptibility areas
experience noticeable spatial contraction, they also exhibit a clear
tendency to form contiguous patches.

As can be seen from Figures 5, 6, in the multi-scale modeling
results of the WOE model and the LR model, the trend of the spatial
distribution of low-susceptibility areas, extremely low-susceptibility
areas, high-susceptibility areas, and extremely high-susceptibility
areas with scale changes is consistent with the modeling results
of the IV model. Specifically, with the increase of spatial scale,
the spatial distribution of low/extremely low-susceptibility areas
and high/extremely high-susceptibility areas shows a trend of

spreading outward, while the spatial distribution of medium-
susceptibility areas shows the characteristics of first spreading and
then contracting.

3.2.2 Comparative analysis of performance of
susceptibility mapping of different models at
multiple scales
3.2.2.1 Performance comparison analysis based on ROC

The above analysis reveals significant variations in susceptibility
mapping across different scales and methods. To quantitatively
assess these differences and validate the accuracy of the landslide
susceptibilitymaps at various scales, 25%of the landslide data is used
as test samples.Themodel’s performance is evaluated using the AUC
value as a metric (Equation 16).

Based on Figure 7A, he AUC value initially increases and then
decreases as the buffer scale expands. The highest value of 0.828
is achieved at the 600-m scale, indicating an optimal scale for
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FIGURE 4
Landslide susceptibility maps at different scales based on the IV model (A) 100-m buffer zone, (B) 200-m buffer zone, (C) 400-m buffer zone, (D)
600-m buffer zone, (E) 800-m buffer zone, (F) 1000 m buffer).

FIGURE 5
Landslide susceptibility map at different scales based on the WOE model (A) 100-m buffer zone, (B) 200-m buffer zone, (C) 400-m buffer zone, (D)
600-m buffer zone, (E) 800-m buffer zone, (F) 1000 m buffer).

landslide susceptibility modeling. The 600-m buffer scale emerges
as the most suitable modeling scale for landslide susceptibility
mapping using the IV model. A comparative analysis with the
benchmark 100-m scale shows that moderately increasing the
buffer scale can enhance mapping accuracy. However, an excessively
large scale reduces accuracy, likely due to the smoothing of local
geological and topographic features, which limits the model’s

ability to capture micro-environmental factors critical to landslide
occurrence. Figure 7B shows a similar trend for the WOE model,
where the AUC value rises, falls, and then rises again as the
buffer scale increases. The AUC reaches its highest value of
0.811 at the 600-m scale, suggesting this as the optimal scale for
susceptibility mapping. As with the IV model, an appropriate scale
enlargement improves mapping accuracy, but overly large scales
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FIGURE 6
Landslide susceptibility map at different scales based on the LR model (A) 100-m buffer zone, (B) 200-m buffer zone, (C) 400-m buffer zone, (D)
600-m buffer zone, (E) 800-m buffer zone, (F) 1000 m buffer.

result in decreased accuracy. This similarity may be due to the
shared weight calculation mechanisms between the WOE and IV
models, leading to comparable responses to scale changes. Figure 7C
illustrates that the AUC value fluctuates with increasing buffer
scale in the LR model, peaking at 0.771 at the 400-m scale. This
indicates that the 400-mbuffer is themost suitable scale for landslide
susceptibilitymapping using the LRmodel. Comparing this with the
benchmark scale, the LR model shows improved mapping accuracy
with larger buffer scales, except at the 200-m scale. This may be
related to the principle of LR. The logistic regression model relies
on parameter estimation and the distribution characteristics of
sample data. An appropriate buffer zone scale can help the model
better capture the environmental variables of landslide occurrence.
However, an excessively large scale may lead to over-smoothing of
environmental variables, making it difficult for the model to capture
local geological differences, thus affecting the model’s predictive
performance.

In addition to the significant differences in ROC curves caused
by the difference in scale, the choice of model also has a significant
impact on the ROC curve. As shown by the AUC values of
each model in Figure, the IV model achieves the highest AUC
values, ranging from 0.804 to 0.828, indicating the best overall
performance in landslide susceptibility mapping and accurate
identification of landslide-prone areas. The WOE model’s AUC
values range from 0.791 to 0.811, ranking second. Although slightly
lower than the IV model, the WOE model still performs well
in identifying most landslide-prone areas. The LR model has the
lowest AUC values, ranging from 0.742 to 0.771, suggesting weaker
performance in landslide susceptibility mapping, with potentially
missed or misclassified landslide-prone areas. Based on these
AUC values, the IV model demonstrates the best overall mapping
accuracy, followed by the WOE model, while the LR model
shows the weakest performance.

3.2.2.2 Performance comparison analysis based on
landslide density

The AUC is a crucial metric for assessing a model’s overall
mapping performance, providing insight into its ability to
differentiate between positive and negative samples. However, in
the realm of assessment of landslide susceptibility, greater emphasis
is placed on the model’s capacity to pinpoint highly landslide-prone
areas, which pose higher disaster risks.TheAUC valuemay not fully
capture the model’s effectiveness in this specific aspect. To offer a
more comprehensive assessment of the model’s mapping accuracy,
this paper introduces the landslide density index (Equation 17) for
a more in-depth analysis of the model’s identification capabilities.

Among the statistical indicators of landslide density, the proportion
of high/extremely high prone areas reflects the accuracy of the model.
As shown in Figure 8A, the accuracy of the IVmodel increases initially
and then decreases with scale. The highest accuracy, 78.21%, occurs at
the 400-m scale, indicating that this is the optimalmapping scale for the
IVmodel. Compared to the benchmark scale, the accuracy at all scales,
except for the 1000-m scale, is higher, suggesting that moderate scale
increases can improve the IV model’s prediction accuracy. However,
excessively large scales may reduce performance. This may be because
moderate scaling helps capture regional geological characteristics,
enhancing prediction accuracy, while overly large scales introduce too
much heterogeneity, reducing performance. Figure 8B shows a similar
trend for the WOE model, where accuracy fluctuates, increasing first
and then decreasing. The highest accuracy, 74.52%, is achieved at the
600-m scale, identifying it as the optimal scale for the WOE model.
Most scales show higher accuracy compared to the benchmark, further
confirming that considering scale can improve landslide susceptibility
mappingaccuracy.TheWOEmodel’sresponsetoscalechangesissimilar
to that of the IVmodel, suggesting bothmodelsmight be influenced by
similar scale effects. In contrast, Figure 8C shows that the LR model’s
accuracy decreases as scale increases, with the highest accuracy at the
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FIGURE 7
ROC curves and AUC values of susceptibility mapping for three models at different scales (A): IV, (B): WOE, (C): LR).

100-m scale.This indicates that the 100-m scale is the optimalmapping
scale for theLRmodel.Notably, theLRmodelperformsbetter at smaller
scales (100 and 200 m), while larger scales (800 and 1,000 m) result in
lower accuracy. This suggests that smaller scales are more suitable for
landslide susceptibility mapping using the LR model, whereas larger
scales may degrade accuracy. The reason for this difference may be
related to the characteristics of the LRmodel. As a parametric statistical
model, the LR model can better fit the nonlinear relationship between
high-risk areas andenvironmental factors at a smaller scale.However, at
a largerscale, thiscomplexnonlinearrelationshipmaybeoversimplified,
resulting in a decrease in the model’s predictive performance.

Further analysis, as shown in Figure 8A, reveals that across
the six scales of the IV model, less than 10% of landslides are
categorized as having low or very low susceptibility. This indicates
that only a small fraction of landslides are mistakenly classified in
lower susceptibility categories. In contrast, over 70%of landslides are
classified as having high or very high susceptibility, suggesting that
the majority of landslide assessments are accurate. In conjunction
with Figure 8B, the results from the six-scale WOE model reveal
that less than 10% of landslides are categorized as having low or
very low susceptibility, while the proportion of those classified
as high or very high susceptibility exceeds 50%, with the highest

value reaching 74.52%. This indicates that the majority of landslide
assessments are accurate, and the model’s predictive performance is
acceptable. Similarly, Figure 9C shows that the LR model, using six
scales, classifies less than 5% of landslides as having low or very low
susceptibility, while over 87% are classified as having high or very
high susceptibility.This underscores the LRmodel’s high success rate
in landslide identification and demonstrates its accuracy. Overall,
the LR model exhibits the highest assessment accuracy, followed
by the IV model and the WOE model. Additionally, the mapping
results from the LR model, displayed in Figure 9C, further validate
its effectiveness in predicting high-risk areas, as evidenced by the
proportion of landslide-prone zones: extremely high vulnerability
zone > high vulnerability zone > medium vulnerability zone > low
vulnerability zone > very low vulnerability zone.

3.2.2.3 Optimal selection of different models and scale
combinations

By analyzing two evaluation indicators, the AUC and landslide
density,wecomprehensively assess themappingperformanceofvarious
models at different scales. In terms of overall assessment performance,
the IV model demonstrates the greatest effectiveness, followed by
the WOE model. Conversely, the LR model shows relatively weaker
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FIGURE 8
Statistical values of landslide density in susceptibility mapping of three models at different scales (A): IV, (B): WOE, (C): LR).

FIGURE 9
The proportion of each prone area in the results of susceptibility mapping with different methods and different scales (A): IV, (B): WOE, (C): LR.

predictive capabilities. In terms of the optimal scale, the IV model and
WOE model exhibit superior assessment accuracy at the 600-m buffer
scale, whereas the LRmodel excels at the 400-mbuffer scale. To achieve
the best overall assessment accuracy, selecting the 600-m buffer scale
for the IV model is advisable.

In terms of identifying high-risk landslide areas, the LR model
demonstrates the superior performance, followed by the IV model,
with theWOEmodel showing relatively weaker performance. In terms
of optimal scale selection, the IV model demonstrates the highest
recognition effect at the 400-m buffer scale, while the WOE model
shows the best recognition effect at the 600-m buffer scale, and the LR
model excels at the 100-m buffer scale. To improve the identification of
landslide hazard areas, using a 100-m buffer scale in the LR model is
recommended.

In practical applications, it is essential to consider the assessment
performanceofvariousmodelsandscalescomprehensively.Theoptimal
combinationshouldbechosendependingontheresearchobjectivesand
particular requirements for reducing and averting disasters. To enhance
both the overall assessment accuracy and the ability to identify highly
susceptible areas, consider utilizing the 600-m buffer scale of the IV
model. This scale not only improves the overall assessment accuracy
but also enhances the detection of zones that are highly susceptible
to landslides. The choice of specific combination should be carefully
considered in light of factors such as the study area’s characteristics, data
accessibility, and computing resources.

4 Discussion

4.1 Scale effect of influencing factors

This paper demonstrates that the weights of landslide
influencing factors exhibit significant variations as the spatial scale
changes through multi-scale analysis. The study concluded that
topography, geology, and rainfall are the primary factors influencing
landslides at a regional scale ranging from 800 to 1,000 m. This
finding aligns with the research by Guzzetti et al. (Guzzetti et al.,
1999), which indicates that geological and hydrological factors
play a significant role in the occurrence of landslides at the basin
scale. There is also a certain similarity with the view of Yang
(Yang Yang et al., 2019) and others that “topography is the main
factor in landslides on a regional scale”. At the buffer zone scale
of 400–600 m, human activities and geological features exert the
most significant influence on landslides. This finding is consistent
with Carrara et al.'s research conclusion (Carrara et al., 1995), which
asserts that at smaller scales, human activities and geological features
notably impact the occurrence of landslides. When the analysis
range is narrowed down to a small local area (100–200 m), the
impact of erosion intensity and topographic factors on landslides
becomes more pronounced. When focusing on a smaller local area
(100–200 m), the influence of erosion intensity and topographic
factors on landslides becomes more significant. This is a degree of
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correlationwithVan et al.'s (Van Westen et al., 2008) conclusion that
topographic factors are suitable for modeling geological hazards in
local areas.

It is worth noting that the vegetation cover (NDVI) within
each buffer zone has a low weight, suggesting a limited impact
on landslide occurrences. This finding contrasts with the results of
HU et al.'s study in a forested area of eastern Mongolia, Yunnan,
China, where they concluded that NDVI is a significant predictor of
landslide susceptibility (Hu et al., 2024). There are several possible
reasons for this difference: (1) Significant differences in topography,
geology, climate, and other natural conditions between the study
area and the eastern Mongolian forest area in Yunnan Province
may lead to varying degrees of influence of vegetation cover on
landslides. (2) The protective effect of vegetation on landslides can
be influenced by factors such as vegetation type, growth status,
and the development of vegetation root systems in various areas.
It is important to consider that the vegetation types and growth
conditions in the study area of this article may differ from those
in the Mengdong forest area of Yunnan. (3) The research methods,
data types, and accuracy employed in this study might differ
from those utilized in HU et al.'s study, potentially impacting the
comparability of the research findings. (4) Landslide occurrences
are impacted by a variety of factors, with varying weights in
different regions. In the research area discussed in this paper, factors
such as topography and precipitation may have a more significant
impact on landslides, potentially overshadowing the role of
vegetation coverage.

4.2 Performance of different statistical
models in landslide susceptibility
evaluation

The research employs three frequently utilized statistical models
(IV, WOE, LR) to assess landslide susceptibility. It then conducts
a comparative analysis of their evaluation performance. From
the overall evaluation performance, the IV model shows better
effectiveness than the WOE model, whereas the WOE model
performs better than the LR model. Sweta et al. confirms this
view (Sweta et al., 2022). In terms of evaluation effectiveness in
high-risk areas, the LR model demonstrates the best performance,
with the IV model coming in second place, while the WOE
model shows relatively weaker evaluation results. This conclusion
is consistent with Tang et al.'s study on the Loess Plateau in Shanxi
Province, which found that the LR model’s forecasting accuracy
exceeds that of the IV and WOE models (Tang et al., 2020).
However, some studies have reached different conclusions. For
instance, Khanna et al. conducted a study in India and discovered
that the WOE model demonstrated superior assessment accuracy
compared to the IV and LR models (Khanna et al., 2021).
There are several possible reasons for this difference: (1) The
geological environmental conditions vary in different study areas,
leading to different dominant factors influencing the occurrence
of landslides. (2) Various studies utilize different numbers and
types of influencing factors, potentially impacting the assessment
accuracy of the model. (3) Variations in the quantity, distribution,
and quality of landslide data across different studies can impact the
model’s performance.

In this research, both the IVmodel and theLRmodel demonstrated
superior performance. This may be because the IV model excels in
accurately evaluating the contribution of a factor to a landslide by
quantifyingthe informationineachfactorclass,whereas theLRmodel is
adept at capturing intricate relationships in the data throughmaximum
likelihood estimation. In contrast, the WOE model primarily relies on
Bayesian theoryandassumes that variables areunrelated tooneanother,
which might not completely align with real-world scenarios, leading to
slightly lowerpredictiveaccuracy.Nevertheless, eachof the threemodels
comeswith its own set of strengths andweaknesses, and can be selected
according to particular requirements and the data situation in real-
world applications. For instance, theWOEmodelmay bemore suitable
when dealing with small amounts of data and few influencing factors,
while the IV and LR models may be more advantageous in scenarios
with large amounts of data, numerous influencing factors, and complex
nonlinear relationships. At the same time, it is also possible to consider
the integration of different models, using their complementarity to
improve the robustness of the evaluation.

4.3 The significance of selecting the
optimal model and scale

This study compares methods in terms of overall assessment
performance and the identification of high-risk areas, ultimately
selecting the optimal scale. The research shows that the highest
overall assessment accuracy is achieved by the IV model at the
scale of a 600-m buffer, whereas at a 100-m buffer scale, the
LR model exhibits the most successful identification of high-
risk regions. This result has important theoretical and practical
significance. Theoretically, this finding suggests that there exists an
optimal combination of models and scales for evaluating landslide
susceptibility. Traditional research often employs a single model
and fixed scale for analysis, overlooking the influence of model
and scale selection on assessment outcomes. This study, through
systematic comparative analysis, demonstrates that the selection of
model and scale greatly affects assessment accuracy, with notable
variations in assessment performance among different model and
scale combinations. These findings contribute to enhancing the
theoretical framework of landslide susceptibility evaluation and
offer novel insights for future research. In practice, utilizing the
optimal model and scale combination when assessing landslide
susceptibility can greatly enhance the accuracy and reliability of
assessments. Compared to analyzing a single model and scale,
the optimal combination can more accurately depict the spatial
distribution patterns of landslides, identify high-risk areas, and offer
a more solid foundation for landslide risk management and disaster
prevention decisions. This has crucial implications for land use
planning, project construction site selection, and emergency plan
development in areas prone to landslides.

The 600-m buffer zone scale of the IV model and the 100-m
buffer zone scale of the LR model, as determined in this study, can
be effectively utilized for landslide risk asessment and prevention
measures in the research area. For application in different regions,
one can consider the concepts and methodologies presented in
this article, conduct analogous analyses depending on regional
circumstances and data accessibility, and choose the most suitable
model and scale combination for the area. This empirical approach
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is deemed more scientifically sound and dependable compared to
solely relying on a specific model or scale.

4.4 Limitations and future prospects of the
study

While this study yielded significant results, there are
limitations that still exist. The study area has a limited
scope, uses a small number of influencing factors, and
requires improved accuracy in field verification data. These
limitations could impact the applicability and reliability of
the study results. In the future, incorporating more high-
precision impact factor data on a larger scale, along with
high-resolution remote sensing images and field investigations,
can enhance the evaluation method of landslide susceptibility.
Furthermore, the potential for utilizing emerging technologies
like artificial intelligence in conjunction with conventional
statistical approaches should be investigated to improve assessment
precision.

5 Conclusion

This paper focuses on landslides in Zhenxiong County
as the research subject and employs principal component
analysis (PCA) to reveal the scale effect of influencing factors.
Additionally, three statistical models—IV, WOE, and LR—are
combined to map landslide susceptibility. ROC curves and
landslide density metrics are used to quantitatively assess the
impact of method and scale selection on the accuracy of
landslide susceptibility mapping. The main conclusions are
as follows.

(1) The weight of landslide influencing factors shows obvious
difference with the change of spatial scale. The factors of
topography, geology, and rainfall have a more significant
influence on landslides at a regional scale. Human activities
and geological features have the most pronounced impact on
landslides at a medium scale, whereas erosion intensity and
topographic factors are notably more significant at a smaller,
localized level.

(2) The prediction results of landslide susceptibility by the
three models at different spatial scales show similar spatial
distribution trends. As the spatial scale increases, the
spatial distribution of high/very high susceptibility areas
and low/very low susceptibility areas both show a trend of
spreading outward and gradually connecting into pieces,
while the spatial distribution of medium susceptibility areas
first experiences a stage of fragmentation and outward
expansion, and then gradually gathers and shrinks inward
into pieces.

(3) The choice of scale affects the accuracy of mapping.
Appropriately expanding the spatial scale can help improve
the accuracy of landslide susceptibility mapping, but too large
a scale may smooth the geological and topographic features,
resulting in a decrease in accuracy, especially for the LRmodel,
where a small scale performs better.

(4) Mapping accuracy is closely related to scale selection.
Considering the overall assessment performance and scale
effect: the IV model and WOE model exhibit the best
overall assessment performance at the 600 m scale, while
the LR model shows the best performance at the 400 m
scale. Considering the identification of high-risk areas and
scale effect: the LR model shows the best mapping effect
at the 100 m buffer zone, the IV model exhibits the best
mapping effect at the 400 m buffer zone, and the WOE
model demonstrates the best mapping effect at the 600 m
buffer zone.

(5) The choice of method and scale influences the effectiveness of
landslide susceptibility mapping. The IV model demonstrated
superior global assessment performance at the 600-m buffer
scale, whereas the LR model excelled in identifying high-risk
areas at the 100-m buffer scale.
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