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Full waveform inversion (FWI) is commonly used in seismic exploration to
calculate parameters of the medium, such as velocity, from the signal as it
passes through the medium. To obtain an accurate result, FWI usually needs
to have an initial model that is not too far from the true velocity model.
However, using noisy low-frequency data to build the initial model can be a
challenge for FWI in practice. To solve this problem, we propose a wavefield
reconstruction method based on the first type of Rayleigh–Sommerfeld
integral and apply the multiple reconstructed wavefield (MRW) to the gradient
calculation. The MRW combines different reconstructed wavefields, and those
wavefield components with similar properties are enhanced by superposition.
The reflected waves, which are critical for updating the deep portions of
the velocity model, are strengthened in the MRW to significantly reduce
the negative effects of data noise when calculating FWI gradients. The
MRW optimizes the gradient of the FWI, yielding high-quality results despite
noise interference. Incorporating the MRW into the FWI effectively mitigates
overfitting problems associated with noisy data and improves the robustness
of the FWI.

KEYWORDS

full waveform inversion (FWI), noisy data, modelling, Rayleigh–Sommerfeld integral,
Kirchhoff integral

1 Introduction

Full waveform inversion (FWI) is a powerful technique used in seismic exploration
to obtain high-resolution images of subsurface structures. Since it is proposed by Lailly
(1983) and Tarantola (1984), many researchers are trying to use FWI to solve practical
inverse problems. However, FWI has some shortcomings preventing it from being used
in some practices. One of the key points is that FWI is a nonlinear inverse problem and
local minima in the objective function make it difficult for FWI to obtain ideal results.
Multiscale inversion strategies are developed to reduce this nonlinearity. The inversion
scheme from low to high frequency (Pratt and Worthington, 1990; Sirgue and Pratt,
2004; Xie et al., 2024) reduces the influence of local minimum on the global convergence
of inversion. Shin and Ha (2008) found that the Laplace-domain inversion can more
easily obtain a smooth background velocity model than the frequency-domain inversion
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and the frequency-domain inversionwhose initialmodel is the result
of the Laplace-domain inversion can successfully invert complex
models. Brossier et al. (2009a) tested some multiscale strategies of
elastic FWI in the frequency domain, and they thought that the
inversion strategy with frequency group data as input has less cycle-
skipping phenomena than that with single frequency data as input.
In the time domain, the multiscale FWI decomposes the data into
different frequency parts, and the inversion processes the different
parts of the data in order of frequency from low to high (Bunks et al.,
1995). With the existing computing capacity, Vigh and Starr (2008)
realized the 3D multiscale FWI in time domain by using the plane-
wave gathers as input. Poncet et al. (2018) and Smith et al. (2019)
successfully applied 3D FWI to the actual acquisition data and
obtained accurate results. Another way to solve the nonlinearity
was proposed by Choi and Alkhalifah (2012), Alkhalifah and
Choi (2012), and they took advantage of the unwrapped phase to
construct the objective function, so that the waveform inversion can
avoid cycle-skipping.

Some researchers (Mora, 1987; 1988; Pratt et al., 1996) had
emphasized that it is a key point for the common use of FWI
in practice to recover large-scale structures from long-offset data.
Vigh et al. (2013) introduced a comprehensive two-coil multi-ship
acquisition methodology, which has been demonstrated to be an
effective approach for capturing long-offset oceanic 3D seismic
data. da Silva et al. (2024) presented a novel circular acquisition
geometry for use in the ocean, which facilitates ultra-long offset
acquisition while simultaneously reducing costs. Although long-
offset data are critical to improving FWI results, they are not always
available (Virieux and Operto, 2009). Wu et al. (2013), Wu et al.
(2014) proposed an envelope inversion, which extracts ultra-low-
frequency information from seismic records, to provide a smooth
initial model for the time-domain multiscale FWI. Alkhalifah and
Wu (2016) revealed that applying the multi-scattering wavefield
to inversion helped to obtain a smooth background model. In
the short-offset acquisition system, due to the limited penetration
depth of the turning and refracted waves, only the reflected wave
in the data carries the information of the deep part of the model
(Yao et al., 2020). In reality, the data usually contain a lot of noise,
which makes the data quality quite low. The presence of noise can
result in the amplitude of the data becoming anomalous, thereby
impeding the inversion model from approximating the true model
(Asnaashari et al., 2013; Virieux and Operto, 2009).The L2 criterion
will amplify the negative effects of the noise, resulting in inversion
failure, if the data residuals are caused by non-Gaussian noise
(Brossier et al., 2009b). Constable (1988) discussed the problem of
parameter estimation in non-Gaussian noise and evaluated various
parameter estimation algorithms. Mitigating the effects of data
amplitude errors is one of the challenges for FWI (Virieux and
Operto, 2009). Generally, low-frequency data generated by active
sources are more likely to be corrupted by noise. The minimum
frequency of the filtered data tends to be greater than 3 Hz
(Tejero et al., 2015), which is not sufficient to meet the requirement
of the FWI for a low frequency signal. Adding regularization term
to the objective function is one of the commonly used methods to
resist noise. Brossier et al. (2009b), Brossier et al. (2010) provided
evidence that the L1 norm of the data residual remains relatively
unaffected bynon-Gaussiannoise. Additionally, the results indicated
that the elastic frequency-domain FWI, which employs an objective

function based on the L1 norm, is robust. As a consequence of the
non-differentiability of the L1-regularized objective function, the
limited memory quasi-Newton method (l-BFGS) (Byrd et al., 1994)
is not suitable for combination with L1-regularization (Andrew and
Gao, 2007; Dai et al., 2017). Andrew and Gao (2007) proposed the
Orthant-wise Limited Memory Quasi-Newton method, which can
be combined with L1-regularization, based on l-BFGS. Dai et al.
(2017) applied noisy data in FWI with a mix of the Orthant-wise
LimitedMemory Quasi-Newtonmethod and L1-regularization, and
their method showed acceptable resistance to noise. Cui et al.
(2017) combined reflection full waveform inversion and FWI to
obtain relatively accurate deep structures, and this method has some
robustness to noise. Wang et al. (2021) successfully used machine
learning model with good noise immunity to predict velocity model
from synthetic data and recorded field data. da Silva and Kaniadakis
(2022) improved FWI by building an optimal transportmetric based
on κ-statistics to enable it to better handle outliers in the data.

In the field of imaging, Berryhill (1979) proposed wave equation
datuming to solve the problem of seismic data profile distortion
caused by the complexity of the model. The survey sinking
(Claerbout, 1985; Wu et al., 2017) was proposed to extrapolate and
rebuild the seismicwavefield in depth. Chen and Jia (2014) proposed
a staining algorithm marking part of the extrapolated wavefield to
improve the imaging resolution of the target region. Based on this, Li
and Jia (2017) developed a generalized staining algorithm in the time
domain, which enhanced the resolution of weakly illuminated areas
while preserving the imaging amplitude. According to the concept
of the generalized staining algorithm, Yu and Jia (2021) used the
first type of Rayleigh–Sommerfeld (RS) integral (Berkhout, 1984) to
adjust the composition of the wavefield.

In this study, we develop an algorithm of multiple wavefield
reconstruction and illustrate the implementation of the algorithm
for l-BFGS inversion (Byrd et al., 1994) in the frequency domain.The
totally reflected wavefield is generated along with the reconstructed
wavefield. Reflected waves are very important for the inversion
of the deep parts of the velocity model. The superposition of the
reconstructedwavefield enhances the reflectedwaves, suppresses the
invalid waves and yields multiple reconstructed wavefield (MRW).
We utilize the MRW to optimize the gradient of FWI to improve
the robustness of the FWI with noisy data. In addition, we analyze
computational efficiency of the FWI using the MRW under strong
Wolfe conditions (Nocedal and Wright, 1999).

2 Materials and methods

2.1 Frequency-domain reconstructed
wavefield

Thetwo-dimensional acoustic equation in the frequency domain
has the general form of

( ∂2

∂x2
+ ∂2

∂z2
+ ω2

v(x,z)2
)a(x,z,ω) = s(x,z,ω), (1)

where ω is the angular frequency, v is the P-wave velocity, a is the
pressure field, s represents the seismic source, and x and z represent
the horizontal and vertical coordinates, respectively. The matrix
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equation with seismic source related to Equation 1 is given by

FA = S, (2)

where F represents the Helmholtz operator matrix,A is the pressure
field matrix, and S is the source matrix. The LU factorization
techniques are generally used to solve Equation 2 by

F = LU, (3)

Y = L−1S, (4)

A = U−1Y. (5)

We can simply express Equation 2 as

A = F−1S. (6)

As illustrated in Figure 1, according to the frequency-domain
Kirchhoff integral (Berkhout, 1984), the wavefield at a point (P1)
situated outside of the closed surfaceO can be expressed as

a(P1,ω) = −
1
4π
∬
O

[( ∂a
∂n
+ jk

∂r1
∂n

a+ 1
r1

∂r1
∂n

a)G]dO, (7)

where G is Green’s function related to r1 or r2, k = ω/v and j is
the imaginary unit. In this equation, the variable “a” on the right-
hand side represents the wavefield on the closed surface O. We can
calculate wavefields at other spatial locations based on the known
wavefields on the closed surfaceO and their directional derivatives.
The wavefield at a point (P2) within the closed surface O can be
expressed as

a(P2,ω) =∭
Ω

s(ω)GdΩ+ 1
4π
∬
O

[( ∂a
∂n
+ jk

∂r2
∂n

a+ 1
r2

∂r2
∂n

a)G]dO.

(8)

The volume integral term represents the contribution of the source
distributed in the volume Ω to the wavefield at P2. The first term
of the equation can be regarded as the background wavefield, and
the second term is the primary or multiple scattering wavefield. If
O is infinite, the energy on it has little influence for the wavefield.
Therefore, we can ignore the second term of Equation 8 and then

a(P2,ω) =∭
Ω

s(ω)GdΩ. (9)

Comparing Equation 9 with Equation 6, we have Equation 10 as

F−1 =∭
Ω

GdΩ. (10)

When subjected to rigid boundary conditions, the Kirchhoff
integral, as illustrated in Equation 7, can be reduced to the first type
of RS integral (Berkhout, 1984)

a(P1,ω) = −
1
2π
∬
O1

[( ∂a
∂n
)G]dO. (11)

This equation demonstrates that thewavefield atP1 can be calculated
using the wavefields on the planeO1 and their directional derivative.
Huygens’ principle (Born andWolf, 1999) states that fluctuations on

FIGURE 1
Schematic diagram of the Kirchhoff integral. O is the closed surface
consisting of O1 and O2; n is the outer normal direction of O; P1 and
P2 are two typical space locations; r1 and r2 are the vectors from P1

and P2 to a point on O, respectively; the source s is located in the
volume Ω.

the surface O1 can be treated as sources, thereby allowing ∂a/∂n
in Equation 11 to be treated as a source.∭ΩGdΩ and ∬O1

GdO
represent the same wave propagator F−1 for a given velocity model.
In Equation 6, A represents the wavefield for the entire space. In
Equation 11, a(P1,ω) is thewavefield atP1. Accordingly, Equation 11
can be expressed in the following form:

A = βF−1E, (12)

where A is the reconstructed wavefield, β represents the amplitude,
E acts as the reconstructed source, and

E = ∂a
∂n
. (13)

Where E represents an element of E. Equation 12 is the frequency-
domain formula of wavefield reconstruction. As shown in Figure 2,
the red lines represent the positions of the reconstructed sources
(E1-En) and the blue areas represent where the reconstructed
wavefields propagate. According to the first type of RS integral
(Berkhout, 1984), the wavefields propagating in the white areas
above the reconstructed sources are total reflections of the
reconstructed wavefields from the reconstructed sources. Unless
otherwise specified, the reconstructed wavefield mentioned in the
following section of this paper refers to the wavefield below the
reconstructed source. After obtaining the original wavefield, we use
the original wavefield on the red line to calculate the reconstructed
source (such as E1) according to Equation 13. Subsequently, the
reconstructed source (such as E1) is positioned in the corresponding
red line position, thereby yielding the reconstructed wavefield
(such as C1) in accordance with Equation 12. For simplicity, we
set a constant on β to calculate the reconstructed wavefield. The
reconstructed source can be placed at any desired location, and
different reconstructed wavefields (such asC1–Cn) can be generated
by loading the appropriate reconstructed sources (such as E1–En).
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FIGURE 2
Schematic diagram of multiple wavefield reconstruction. The red lines represent the positions of the reconstructed sources (E1-En); the blue areas
represent where the reconstructed wavefields (C1-Cn) propagate; the wavefields propagating in the white areas above the reconstructed sources are
total reflections of the reconstructed wavefields from the reconstructed sources.

2.2 Frequency-domain FWI utilizing MRW

For a two-dimensional velocity model as shown in Figure 2,
the reconstructed sources (E1–En) calculated with the original
wavefields at different depths are loaded to obtain reconstructed
wavefields (C1–Cn). We sum a proportion of the reconstructed
wavefields to obtain the MRW and enhance reflected waves in the
MRW. If we load all the reconstructed sources to amodel at the same
time, according to Equation 12, we have (Yu and Jia, 2021)

C = βF−1(E1 +E2 + · · · +En) = C1 +C2 + · · · +Cn. (14)

The wavefield calculated by Equation 14 is the MRW. According to
Figure 2 and Equation 14, The different depth parts of the MRW
are the superposition of different amounts of the reconstructed
wavefield. For amplitude preservation, the different depth parts of
the MRW should be divided by the number of stacking times. The
value of n can be freely set according to the specific needs and
the size of the velocity model. The reflected waves in the MRW,
which can facilitate the update of the deep velocity (Lian et al., 2018;
Dong et al., 2018; Yao et al., 2020), are enhanced. The MRW is used
in place of the original wavefield to optimize the gradient of the FWI.
For noisy data, dot product of the adjoint wavefield with the MRW
can mitigate the effect of noise on FWI gradients.

The FWI problem is to minimize the objective function

min f(q) = 1
2
∑
ω
∑
i
‖RiAi −Bi‖

2, (15)

where q is the squared slowness, Bi denotes the recorded data, Ri
represents the operator for extracting simulated data from simulated
wavefield Ai, and the subscript i indicates the shot-gather number.
The gradient of the objective function (Equation 15) is expressed by
the adjoint state method (Plessix, 2006; Métivier et al., 2012) as

∇ f = Re(∑
ω
∑
i
ω2λ∗i (ω)Ai(ω)), (16)

where λi
∗
is the complex conjugation of the adjoint wavefield, andRe

denotes the real part of a complex value. According to Taylor series,

the exact model update format is

Ql+1 =Ql −H−1(l)∇ fl, (17)

where l represents the number of updates,Q andH are the parameter
matrix and the Hessian matrix, respectively. Using l-BFGS method,
we approximate the Hessian matrix from Equation 17 to derive
Equation 18, which is

Ql+1 =Ql + αlDl, (18)

where α denotes the step length, andD is the search direction. In this
paper, the line search method for calculating the step length satisfies
the strong Wolfe conditions (Nocedal and Wright, 1999)

f(Ql + αpDl) ≤ f(Ql) + θ1α
p∇ fTl D

l, (19)

and

|∇ f(Ql + αpDl)TDl| ≤ θ2|∇ fTl D
l|, (20)

where 0 < θ1 < θ2 < 1, T denotes the matrix transpose, and p
represents the p-th searching iteration.

We used the l-BFGS to explain the FWI utilizing the MRW
(i.e., l-BFGS-MRW). In the process of the l-BFGS-MRW inversion,
after the original wavefield (Equation 6) of forward propagation
is obtained, the MRW is calculated according to Equation 14 and
then applied to the optimized gradient by Equation 16. The forward
wavefield Ai(ω) in Equation 16 is replaced by the MRW, and other
processes are consistent with the original l-BFGS inversion. The
specific details of the workflow of the l-BFGS-MRW inversion
are shown in Figure 3.

In order to evaluate the inversion results quantitatively,
we introduce the residual sum of squares (RSS),
defined by Equation 21 as:

RSS =∑
x
∑
z
[v(x,z) − vtrue(x,z)]2, (21)

where v(x,z) and vtrue(x,z) represent inversion model and the true
model respectively. The RSS represents the discrepancy between the
inversion results and the truemodel. A smaller RSS value indicates a
greater similarity between the inversion results and the true model.
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FIGURE 3
The workflow of the l-BFGS-MRW.

3 Results

3.1 Numerical analysis on
frequency-domain reconstructed
wavefield

Figure 4A shows a two-layer velocity model, where the red
hexagon represents the location of the seismic source. The solid
magenta line denotes a part of a closed surface O with n as
its outer normal vector. Note that the solid magenta line also
represents the position of the reconstructed source E. The grid
spacing was 15 m. Figure 4B shows the original wavefield for a
frequency of 10 Hz. After obtaining the original wavefield, we

calculated the reconstructed source and the reconstructed wavefield
according to Equations 13 and 12, respectively. Figure 4C shows
the reconstructed wavefield for 10 Hz, and the wavefield above the
reconstructed source is the totally reflectedwavefield. To reconstruct
the wavefield accurately, the reconstructed source contained a
number of grid points in the n-direction. The residual between
the reconstructed wavefield and the original wavefield is displayed
in Figure 4D. Although the residual wavefield has different spatial
characteristics, the energies of all its components are much smaller
than those of the original wavefield (Figure 4B). Figure 4E shows
the real parts of the original wavefield and the reconstructed
wavefield along the dotted white line in Figure 4A. As shown in
Figure 4E, the curves of the original wavefield and the reconstructed
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FIGURE 4
Two-layer velocity model and frequency-domain wavefield. (A) Two-layer velocity model; (B) original wavefield for 10 Hz; (C) reconstructed wavefield
for 10 Hz; (D) the residual between the reconstructed wavefield and the original wavefield; (E) the real parts of the original wavefield (OW) and the
reconstructed wavefield (RW) along the dotted white line in (A); (F) the real parts of the original wavefield and the reconstructed wavefield along the
dashdotted white line in (A).

wavefield are overlapped and their residual is approximately three
orders of magnitude smaller than the original wavefield, which
indicates that the reconstructed wavefield is almost equal to the
original wavefield when their positions are close to the source.
When the position of the reconstruction wavefield is far from
the source, as shown in Figure 4F, there is a small amplitude
difference between the reconstructed wavefield and the original
wavefield. Because we just take attention to a part of the closed
surface O and ignore the rest of it, some energy, which exist
in the original wavefield, is not involved in the reconstruction
wavefield; therefore, the reconstructed wavefield and the original
wavefield have little amplitude difference in the area far from
the source.

In the example of a complex model, we can get the same
conclusion as the former. Figure 5A shows a slice of the Marmousi
velocity model, where the solid magenta line represents the
location of the reconstructed source. The shot was located at
distance of 6.9 km and depth of 0.09 km. The grid spacing was
15 m. Figure 5B displays the original wavefield for 10 Hz, and
Figure 5C displays the reconstructed wavefield for 10 Hz. The
residual between the reconstructed wavefield and the original
wavefield is shown in Figure 5D.

Figure 5E illustrates the real parts of the original wavefield and
the reconstructed wavefield on the dotted black line in Figure 5A.
The reconstructed wavefield in Figure 5E is close to the source;
therefore, the residual of the two wavefields is approximately 2
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FIGURE 5
(A) A slice of the Marmousi velocity model; (B) original wavefield for 10 Hz; (C) reconstructed wavefield for 10 Hz; (D) the residual between the
reconstructed wavefield and the original wavefield; (E) the real parts of the original wavefield and the reconstructed wavefield on the dotted black line
in (A); (F) the real parts of the original wavefield and the reconstructed wavefield on the dashdotted black line in (A).

orders of magnitude smaller than the original wavefield, which
suggests that the two wavefields are almost the same. Figure 5F
shows the real parts of the original wavefield and the reconstructed
wavefield on the dashdotted black line in Figure 5A, which indicates
that the two wavefields have amplitude differences in the area
far from the source. Nevertheless, as Figure 5F indicates, the
reconstructed wavefield still preserves most of the energy of the
original wavefield and the phases of these two wavefields are
almost identical.

In the reconstructed wavefield, most of the original wavefield
are completely preserved. Although the reconstructed wavefield far
from the source have small energy differences from the original
wavefield, their phases are almost identical. These small differences

are not enough to interfere with FWI to obtain accurate results. In
addition, according to the propagation path of the deep residual
wavefields (the deep parts of Figures 4D, 5D), lots of the residual
wavefields propagated outside the study area and could not be
detected by the geophones distributed on the surface; the deep
energy that cannot be received by the geophones is useless for
FWI. The MRW is a superposition of different reconstructed
wavefields; in the MRW, the components of the wavefield with the
same character, including those far from the source, are enhanced
by superposition; among them, the reflected waves are more
enhanced because they are reconstructedmore accurately compared
to the other components. In other words, the proportion of the
reflected waves in energy is increased.
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Updates to the deep part of themodel rely primarily on reflected
waves (Lian et al., 2018; Dong et al., 2018; Yao et al., 2020). Noise in
the data can lead to unwanted adjoint wavefields; in the deep part of
themodel, the dot product of these unwanted adjointwavefieldswith
the deep wavefield components that are useless for the FWI gradient
is detrimental. The enhanced reflected waves will be highlighted in
the gradient calculation to suppress the detrimental dot product.
Therefore, the MRW can be used to mitigate the adverse effects of
data noise on the FWI gradient. In addition, the difference between
theMRW and the original wavefield will avoid FWI from overfitting
the noisy data. For these reasons, whenwe employ theMRW in FWI,
we generally obtain a result with high resolution.

3.2 Experiments of frequency-domain
reconstructed FWI

For the FWI experiments below, the source was a Ricker wavelet
and the dominant frequency was 7 Hz. 436 geophones were evenly
distributed on the surface and 109 seismic sources were sequentially
placed on the surface. The grid spacing was 25 m and the time
interval was 0.5 ms. The recorded data were generated by forward
modeling with uniformly distributed noise added. Some of the
data are displayed in Figure 6. We made J to represent the ratio
of the mean value of the noise energy to the mean value of the
signal energy. We took the model in Figure 7A as the true model
and employed the initial model shown in Figure 7B. The initial
model is derived by applying a high degree of smoothing to the
true model. During the inversion (Figures 2, 3), the reconstructed
sources (E1−En) filled the entire current model space to obtain the
MRW. Figures 7C, E, G illustrate the l-BFGS results (1–6 Hz) when
J is 8.97%, 53.83%, 269.13%, respectively. Figures 7D, F, H show the
l-BFGS-MRW results (1–6 Hz) when J is 8.97%, 53.83%, 269.13%,
respectively.

In the experiment on data with a modest noise level (J =
8.97%), the results of l-BFGS-MRWand l-BFGS are not significantly
different. The residual sum of squares (RSS) of the l-BFGS-MRW
result is 1,689, which is slightly smaller than that (2,159) of the
l-BFGS result. For a detailed comparison, Figure 8A exhibits the
velocities extracted along a line (Distance = 0–7.335 km, Depth =
2 km) in Figures 7A, C, D. The result of l-BFGS-MRW is closer to
the true model than that of l-BFGS and there are some large outliers
in the l-BFGS result.When J is 53.83%, the RSS of the l-BFGS-MRW
result shown in Figure 7F is 2,187, which is much smaller than that
(29,533) of the l-BFGS result shown in Figure 7E. The result of l-
BFGS-MRW has fewer artifacts and a clearer structure than that
of l-BFGS. Figure 8B displays the velocities extracted along a line
(Distance = 0–7.335 km, Depth = 1.85 km) in Figures 7A, E, F. The
l-BFGS result has many large outliers and the l-BFGS-MRW result is
much better than the l-BFGS result. The l-BFGS-MRW inversion is
more robust than the l-BFGS inversion. Despite the high noise level,
the l-BFGS-MRW inversion can obtain a relatively accurate initial
model for high-frequency inversion.When J is large as 269.13%, the
result of l-BFGS (Figure 7G) becomes worse than its former result.
Because the data is severely damaged by noise, the l-BFGS-MRW
inversion can only use less information from the data and restore the
low-wavenumber velocity structure as demonstrated in Figure 7H.

The RSS of l-BFGS-MRW result is 2,728, while that of l-BFGS result
is 100,370.

The data convergence of the 1–6 Hz inversion corresponding to
Figures 7C, D is exhibited in Figure 8C. Figure 8D shows the data
convergence of the 1–6 Hz inversion corresponding to Figures 7E, F.
The values of the objective function following the initial iteration
are distinct, resulting in a misalignment of the curves at the starting
point in both figures. As illustrated in Figures 8C, D, despite the
disparate descending paths of the objective values for the two
methods, all objective values converge to a sufficient degree with
the same number of iterations. It is challenging to eliminate the
introduction of data noise into the calculation of the objective value.
While fitting data noise may reduce the objective value, it also
carries the risk of diverging the inversion model from the true
model. Because the gradients were optimized by the MRW, the
models of the l-BFGS-MRW inversion would resist being updated
in the direction of data noise guidance. On the contrary, the l-BFGS
inversion would fall into local minima generated by data noise,
which can result in inversion models that do not approximate the
true model. As a consequence of the aforementioned factors, the
objective values of l-BFGS-MRW inversion are larger than those
of l-BFGS inversion after numerous iterations. Figure 8E illustrates
the same phenomenon as the formers. When J equal to 269.13%,
the value of the objective function that utilizes the strong noisy
data is meaningless. Our gradient construction can hardly reduce
the value of the objective function that utilizes the strong noisy
data. Therefore, the objective value of the l-BFGS-MRW was not
sufficiently reduced (Figure 8E). The l-BFGS inversion overfitting
the recorded data is equivalent to fitting some data noise. Despite
the objective values being reduced to relatively low values, the
results shown in Figures 7E, G exhibit significant discrepancies from
the actual models.

The grid spacing of the low-frequency inversion and the high-
frequency inversion is 25 m and 15 m, respectively. RSS is calculated
based on the velocity at the grid point and all RSS are kept as integers.
The low-frequency inversion has a larger grid spacing and fewer
grid points than the high-frequency inversion, so the RSS of the
high-frequency inversion result may be larger than that of the low-
frequency inversion result for the same inversion method. In the
experiment of the 7–10 Hz inversion, Figure 9A demonstrates the l-
BFGS result (J = 8.97%) with the initial model shown in Figures 7C,
9B illustrates the l-BFGS-MRW result (J = 8.97%) with the initial
model shown in Figure 7D. The RSS of the l-BFGS-MRW result
is 3,897, which is smaller than that (5,224) of the l-BFGS result.
Although J is small, the l-BFGS result shown in Figure 9A has a
low resolution in the deep part of the model. In contrast, the l-
BFGS-MRW result has a high resolution in the entire model space.
Figure 9C displays the l-BFGS result (J = 53.83%) with the initial
model shown in Figures 7E, 9D exhibits the l-BFGS-MRW result
(J = 53.83%) with the initial model shown in Figure 7F. Their RSS
are 37,822 and 167,925 respectively. Although the noise level has
increased, the result of l-BFGS-MRW still has a higher resolution
than that of l-BFGS. The detailed comparisons for the results of the
two methods are shown in Figures 10A, B. In order to facilitate the
display, some extremely large outliers in the results of l-BFGS have
been manually suppressed. In the high-frequency inversion with
noisy data, the l-BFGS-MRW is still robust.The aforementioned RSS
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FIGURE 6
(A–D) display the frequency-domain data of 2, 6, 7 and 10 Hz, respectively; The source is a Ricker wavelet with a dominant frequency of 7 Hz; J
represents the ratio of the mean value of the noise energy to the mean value of the signal energy.

have been synthesized into Table 1 for purposes of clarity and ease
of reference.

The data convergence for Figures 9A, B is illustrated in
Figures 10C, D shows the data convergence for Figures 9C, D.
As shown in Figures 8E, 10C, D, the objective values of l-BFGS-
MRW converge quickly, while the objective values of l-BFGS can
barely converge even in a long iteration epoch. The RSS of the
1–6 Hz and 7–10 Hz inversion results are plotted as a function
of J in Figures 10E, F, respectively. In comparison to the l-BFGS
inversion, our FWI is not susceptible to data noise.

FWI is a time-consuming inversion technique, in which LU
factorization (Equation 3) of the Helmholtz operator matrix accounts
formostofthetotal time.L−1 andU−1werestoredafterLUfactorization
for solving thewavefieldusingEquations 4, 5. In theFWIwith l-BFGS-
MRW,wecoulduseL−1 andU−1 to solve theMRWwithoutconducting
an additional LU factorization. We did not need to calculate a series
of reconstructed wavefields (Equation 12) and add them to obtain the
MRW.According to Equation 14, we loaded a series of reconstruction
sources at the same time to obtain the MRW, which costed the same
time as calculating a single reconstructedwavefield. In FWI, a suitable
searchmethodcanhelpquicklyfind the appropriate step length to save
calculation time.The line searchmethod for the step length employed
inthisworksatisfiedthestrongWolfeconditionsasshowninEquations
19, 20 (Nocedal andWright, 1999). During the inversion process, the
step length was dynamically adjusted according to the number of the
searchesandtheobjectivevalues. In theory, the total timeconsumption

of our FWI is approximately 1.5 times that of l-BFGS FWI at the same
iterations.When the noise is strong in the data, in addition to the time
for solving the reconstructed wavefield, the l-BFGS-MRW inversion
will costmore calculation time than the l-BFGS inversion in searching
for the right step size to reduce the data residuals. The time spent on
searching the step lengths accounts for most of the additional time. In
some cases, such as that shown in Figures 8E, 10C, D, l-BFGS-MRW
inversion requires less computational time than l-BFGS inversion
because the objective value of l-BFGS-MRW converges much faster
than that of l-BFGS, and we can stop the iteration of l-BFGS-MRW
when the convergence occurs.

4 Discussion

The demand for oil and gas resources has prompted the
development of deep and ultra-deep reservoirs. It is challenging
for conventional FWI to obtain high-resolution deep or ultra-deep
subsurface structures, particularly when the observational data is
contaminated by non-Gaussian noise (Virieux and Operto, 2009;
Brossier et al., 2009b; Asnaashari et al., 2013). Nevertheless, the l-
BFGS-MRW inversion method has the potential to yield relatively
accurate results with regard to deep stratigraphic structures. As
illustrated in Figures 9A, B, the l-BFGS-MRW inversion is capable
of achieving comparable precision to the l-BFGS inversion in the
shallow region of the model. In the deep part of the model, the

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2024.1463723
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yu et al. 10.3389/feart.2024.1463723

FIGURE 7
(A) shows a slice of the Marmousi velocity model and (B) is the initial velocity model for inversion. J represents the ratio of the mean value of the noise
energy to the mean value of the signal energy. (C), (E) and (G) show the l-BFGS results (1–6 Hz) when J is 8.97%, 53.83%, 269.13%, respectively; (D), (F)
and (H) show the l-BFGS-MRW results (1–6 Hz) when J is 8.97%, 53.83%, 269.13%, respectively.

majority of deep wavefield components are unable to propagate
to the surface and be received by the geophones. Consequently,
this part of the deep components does not contribute to the
FWI. Furthermore, the dot product of these components with the
noise-based adjoint wavefield represents an artifact in the FWI
gradient. The updates to the deep part of the model are primarily
based on the reflected waves (Lian et al., 2018; Dong et al., 2018;
Yao et al., 2020). The MRW is obtained by superimposing the
reconstructed wavefield, thereby enhancing the reflected waves.
The FWI gradient calculated with the enhanced reflected waves
can effectively mitigate the impact of data noise-induced artifacts.
Consequently, the l-BFGS-MRW inversion is capable of effectively
resisting data noise and obtaining relatively accurate results in
the deep part of the model (as illustrated in Figures 7D, F, H,

Figures 9B, D). The use of MRW in FWI prevents data overfitting
and increases the robustness of the inversion process, as shown
in Figures 8A, B, 10A, B.

In general, the deep part of the initial velocity model can
be effectively provided by the reflection full waveform inversion
(Xu et al., 2012; Dong et al., 2018; Yao et al., 2020). An accurate deep
structure can be obtained by combining reflection full waveform
inversion with FWI (Cui et al., 2017). Our inversion method
is capable of obtaining high-resolution deep velocity structure
without reliance on the reflection full waveform inversion technique.
Furthermore, it is resilient to noise interference. It should be noted
that the data utilized in the experiment is synthetic data. Subsequent
efforts will be made to apply our inversion method to actual
detection data.
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FIGURE 8
(A) The velocities extracted along a line (Distance = 0–7.335 km, Depth = 2 km) in Figures 7A, C, D; (B) the velocities extracted along a line (Distance =
0–7.335 km, Depth = 1.85 km) in Figures 7A, E, F; (C) the data convergence of 1–6 Hz inversion for Figures 7C, D; (D) the data convergence of 1–6 Hz
inversion for Figures 7E, F; (E) the data convergence of 1–6 Hz inversion for Figures 7G, H.

FIGURE 9
The inversion results (7–10 Hz) with different J. (A) The l-BFGS result (7–10 Hz, J = 8.97%) with the initial model shown in Figure 7C; (B) the
l-BFGS-MRW result (7–10 Hz, J = 8.97%) with the initial model shown in Figure 7D; (C) the l-BFGS result (7–10 Hz, J = 53.83%) with the initial model
shown in Figure 7E; (D) the l-BFGS-MRW result (7–10 Hz, J = 53.83%) with the initial model shown in Figure 7F.
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FIGURE 10
(A) The velocities extracted along a line (Distance = 0–7.335 km, Depth = 2.25 km) in Figures 7A, 9A, B; (B) the velocities extracted along a line
(Distance = 0–7.335 km, Depth = 1.98 km) in Figures 7A, 9C, D; (C) the data convergence of 7–10 Hz inversion for Figures 9A, B; (D) the data
convergence of 7–10 Hz inversion for Figures 9C, D; (E) lg(RSS) curve with J for 1–6 Hz inversion; (F) lg(RSS) curve with J for 7–10 Hz inversion.

TABLE 1 The RSS of the inversion models specified by the tags and the true model.

Figure 7C Figure 7E Figure 7G Figure 9A Figure 9C

RSS 2,159 29,533 100,370 5,224 167,925

Figure 7D Figure 7F Figure 7H Figure 9B Figure 9D

RSS 1,689 2,187 2,728 3,897 37,822

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2024.1463723
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yu et al. 10.3389/feart.2024.1463723

5 Conclusion

We develop a method to reconstruct a wavefield using
the Helmholtz operator matrix and the first type of
Rayleigh–Sommerfeld integral. In addition, we establish the
multiple reconstructed wavefield (MRW) by stacking the
reconstructed wavefields. The reflected waves of the MRW are
enhanced relative to the other components. In the depth of the
model, the enhanced reflected waves can dominate the calculation
of the FWI gradient, suppressing artifacts created by data noise.
The difference between the MRW and the original wavefield can
effectively suppress the FWI fitting data noise.Therefore, calculating
the gradient of the FWI using the MRW can mitigate the influence
of data noise on the FWI. We employ the MRW to optimize the
gradient of the FWI for improving the robustness of the FWI.
Numerical experiments have proven that the MRW can help FWI
avoid falling into the minimum caused by data noise and maintain a
relatively high resolution. The l-BFGS inversion utilizing the MRW
can obtain a stable model even though the input data is heavily
affected by noise. Given that the L1-norm penalty can hardly be
combined with l-BFGS to handle noisy data in the FWI, the MRW
provides an anti-noise method for the FWI with l-BFGS.
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