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The pressure on coal affects the pore fracture structure, altering the seepage
characteristics of fluids such as gas or water. A special pseudo-triaxial loading
nuclear magnetic gripper was used for uniaxial compression testing of the
coal body. The T2 map of the lignite was tested online, and MRI imaging
was performed. The correlation between the pore fracture structure evolution
and seepage characteristics of lignite was studied. The results show that (1)
there are three stages, namely, compression, pore development, and post-peak
failure, which promote the development and evolution of medium pore and
macropores in lignite. (2) Under uniaxial compression, the permeability of the
lignite sample shows a “V-shaped” trend, first decreasing and then increasing.
When the axial pressure reaches approximately 3.0 MPa, themutation of theMRI
signal increases, and the enhancement of the MRI signal of the sample is due to
the cumulative effect of mutation after aggregation. The aggregation of water
image signals reflects the distribution area of pores that dominate seepage.
(3) Under uniaxial compression, the pore change rate Si slightly decreased.
The pore change rate Si of medium pores and macropores showed a positive
correlation with axial pressure, which is consistent with the total pore change
trend. The compressibility coefficient Cp of the porous pores (medium pores
and macropores) and the permeability stress sensitivity coefficient Cf exhibited
a linear correlation. The fractal dimension D2 and D3 values of pores in the
medium and macropores scale range are close to 3, with the maximum value of
D2 being 2.971. This indicates significant fractal characteristics, suggesting that
medium pores are the most developed in this scale range. Researches show
that that the middle pore has a greater stress sensitivity and shows obvious
fractal characteristics during the load failure. The compressibility of the large
pore is correlated with the permeability sensitivity, These results show can help
elucidate the influence of the pores fracture structure on the seepage evolution
of lignite.
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1 Introduction

Mining disturbance has a significant impact on the stress state
and internal structure of deep coal bodies. This, in turn, accelerates
the process of coal body damage and destruction (Zhang B. Y. et al.,
2022; Chen et al., 2024; Wang et al., 2023; Wang L. et al., 2021).
Additionally, the loading effect of stress intensifies coal deformation,
alters permeability, and influences the seepage of gas or water
(Liu et al., 2022; Gao et al., 2023; Yao et al., 2022). Scholars have
conducted numerous studies on changes in coal permeability
under various loads Zhu et al. (2021) conducted an experimental
test on coal loading and unloading, observing a decrease in gas
permeability during the initial stages. However, when the stress
difference exceeded the coal sample yield strength, coal expansion
and increased permeability occurred Liu (2019) conducted a study
on the evolution of coal permeability under cyclic loads and revealed
a negative correlation between the change in permeability during
loading/unloading and changes in confining pressure (Xu et al.,
2018) examined the damage-permeability aging characteristics of
briquette samples under different mechanical paths, discovering
varying degrees of damage expansion and permeability changes.
The differential stress ratio was identified as the primary factor
influencing the varying damage-permeability characteristics
of loading and unloading coal Li et al. (2010) analyzed the
evolution of coal sample permeability under bidirectional loading
and unloading stress, highlighting that the maximum change

rate occurred when a substantial number of internal fractures
appeared near the peak value of the sample Jia et al. (2020)
found that the permeability of raw coal samples varied
significantly at low confining pressures and only slightly at high
confining pressures. Conversely, briquette samples displayed
nearly equal changes in permeability throughout the entire
loading and unloading process Zhai et al. (2022) performed
a damage-permeability test using a coal-rock adsorption-
percolation-mechanical coupling characteristic tester and examined
coal under different loading and unloading rates, ultimately
determining the influence of such rates on permeability
characteristics.

During the process of coal failure under loading, the pore
fracture structure of the coal body undergoes significant changes
(Liu et al., 2021; Zhang T. et al., 2022; Tang et al., 2023). To
analyze the structural changes in the holes and cracks, nuclear
magnetic resonance (NMR) analysis technology was used for the
mechanical tests Zhou et al. (2021) conducted online tests of the T2
spectrum and water content distribution of raw coal samples under
different water injection pressures and found that macropores and
microfractur4es accounted for more than 99% of the permeability
during water injection Yin et al. (2023) conducted five groups
of uniaxial compression tests on pressure water-impregnated coal
samples with different initial damage levels. Pores and microcracks
in the coal samples initiated and developed, while macrocracks
expanded and the interparticle bonding force decreased (Li et al.,
2019) used anNMR test system to study the evolution characteristics

FIGURE 1
Schematic diagram of the seepage testing system under uniaxial compression.
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FIGURE 2
Lignite samples.

of pores and cracks in coal and rock under impact loading and
discovered that the evolution of pores and cracks in coal under
impact loading occurs through pore expansion, crack expansion,
extension, and the generation of secondary cracks. Furthermore, the
impact load enhances the connectivity between pores and cracks.

In that study of coal seepage Liu (2019), studied that the
permeability of the different stratified coal samples is exponentially
related to the maximum principal stress, the intermediate principal
stress, the minimum principal stress and the effective stress. The
initial permeability of the vertically stratified coal samples is only
13.5%, which is 22.2% of that for skewed bedding Fathi et al.
(2012) studied that new double-slip Klinkenberg equation includes
a characteristic length scale (L Ke) that is proportional to the
kinetic energy per capillary cross-sectional area of the bouncing-
back molecules by the capillary walls Ye et al. (2023) used the
triaxials ervo-controlled seepage equipment for thethermo-fluid-
solid coupling of coal containing. In the process of pore pressure
loading,the permeability of coal firstly decreases rapidly and then
tends to be flat, while the permeability of coal recovers when
unloading,but it is smaller than the loading stage; under the same
porepressure,the permeability of coal decreases with the increase of
cycletimes.

Exploring the evolution and distribution law of the fine
microstructure of coal and rock under loading can provide a
reference and guidance for coal mine gas control and prevention
of spontaneous coal seam combustion disasters in coal mine
production. Therefore, a special pseudo-triaxial loading nuclear
magnetic gripper was used to conduct uniaxial compression
seepage tests on coal to explore the correlation between

pore evolution characteristics and seepage during uniaxial
compression.

2 Experimental system and scheme

2.1 Experimental system

The experimental system consisted of a low-field nuclear
magnetic resonance experimental instrument, a special pseudo-
triaxial loading nuclear magnetic clamp, a magnetic field unit,
a constant pressure water injection system, an axial pressure
control system (including a constant pressure and constant speed
pump), and a back pressure and nuclear magnetic analysis
system (Figure 1).

2.2 Test

Coal samples were selected from the Yihua coal in Xinjiang
as depicted in Figure 2. Prior to the experiment, coals with good
flatness and consistent bedding were chosen. The samples were the
raw coal of Group B in Yihua, Xinjiang, and the coal recovered
from the underground is polished into a 25mm× 50 mm cylindrical
sample along the parallel bedding core. The physical parameters of
the samples are listed in Table 1. The samples are lignite.

(1) Place the prepared lignite sample into the drying box and set
the drying temperature to 70°C. Allow the sample to dry for
24 h to remove any water, and then allow it to naturally retain
moisture for 12 h.

(2) Cover the lignite sample with a heat shrink tube and insert it
into the gripper. Give a fixed confining pressure of 0.5 MPa. Set
the experiment temperature to 25°C and connect the constant
pressure and constant speed pump. The axial pressure control
system for the coal sample experiment should start at 0 MPa,
and increase the pressure loading by 0.5 MPa, until the coal
sample is damaged.

(3) Connect the constant pressure water injection system and
design the seepage liquid with an inlet end face pressure of
0.2 MPa, and an outlet pressure of 0.1 MPa. use the balance at
the end of the gripper to record the water quality, the seepage
test time, and calculate the flow rate.

(4) Replace the lignite sample and repeat steps 1–3.

TABLE 1 Industrial analysis parameters.

Lignite sample Porosity (%) Mad (%) Aad (%) Vad (%) FC (%)

NO. 1 25.23

16.72 2.78 26.78 53.72
NO. 2 23.56

NO. 3 22.94

NO. 4 23.45

Remark: Mad represents water content (%) of coal, Aad represents the ash content (%) of coal, Vad represents the amount of volatiles (%) of coal, and FC, represents the content of fixed carbon
(%) of coal.
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FIGURE 3
T2 spectrum and pore volume changes under uniaxial compression. Lignite sample No. 3-T2 spectrum. Pore volume change of lignite sample No. 3.
Lignite sample No. 4-T2 spectrum. Pore volume change of lignite sample No. 4.
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FIGURE 4
Stress‒strain-permeability relationship diagram under uniaxial compression. Lignite sample No. 1. Lignite sample No. 2. Lignite sample No. 3. Lignite
sample No. 4.

3 Results and discussion

3.1 Evolution characteristics of lignite
pores and fractures under uniaxial
compression

For the T2 spectrum, the existing pore classification method
categorizes the three peaks as micropores (0 < T2 < 2.5 m),
medium pores (2.5 m ≤ T2 < 100 m), andmacropores (T2 ≥ 100 m)
(Tian et al., 2024; Xiong et al., 2022; Chao et al., 2022).
Under uniaxial compression, lignite undergoes compression,
pores development, and post-peak destruction. Experimental
tests revealed that the T2 spectrum and pore volume change
diagram of lignite under uniaxial compression exhibit an
increasing trend in the total pore signal, with no significant
change in the T2 spectrum of micropores (Li et al., 2020;
Ren et al., 2017; Ren et al., 2022). However, the middle and
macropores gradually connect with the axial compression load,
resulting in an overall rightward shift in the T2 spectrum.
Micropores are commonly referred to as adsorption pores, whereas

medium pores and macropores are collectively referred to as
seepage pores.

Through T2 spectrum analysis, the four coal samples, the
pore peak areas of micropores decreased by 2.44%, 1.35%, 2.97%,
and 9.23%, respectively, during loading from 0 MPa to failure.
Conversely, the pore peak areas of medium pores increased by
17.61%, 19.56%, 14.14%, and 10.02%, respectively. Specifically, the
pore peak areas of the macropores increased by 8.21%, 12.84%,
14.47%, and 7.25%, respectively. These results indicate that uniaxial
compression promotes the development and evolution of porous
pores, particularly medium pores and macropores. Initially, at
the onset of pressure compression, the pore signal of the lignite
body does not experience significant changes. However, as stress
increases, the pore peak area of the medium pores rapidly increases
when the lignite sample pressure reaches 80% of the peak stress,
signifying the area of stress concentration pore evolution.

To analyze the contribution of various pores to lignite
deformation, Ai and j represent the T2 spectral area of pores in
the i aperture range under J-axis compression, Aj represents the T2
spectral area of total pores under J-axis compression, and Φi and j
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TABLE 2 Values of Cp, Cf and ρ under uniaxial compression.

Axial compression (MPa) Lignite sample No.
1

Lignite sample No.
2

Lignite sample No.
3

Lignite sample No. 4

Cp Cf ρ Cp Cf ρ Cp Cf ρ Cp Cf ρ

0.5 0.3551 0.6351 1.0000 0.3543 0.6193 1.0000 0.3648 0.6050 1.0000 0.3563 0.6357 1.0000

1 0.1791 0.3155 1.0000 0.1775 0.3077 1.0000 0.1865 0.3015 1.0000 0.1787 0.3159 1.0000

1.5 0.1193 0.2083 0.9999 0.1193 0.2019 0.9999 0.1248 0.2004 0.9999 0.1199 0.2100 1.0000

2 0.0897 0.1516 0.9999 0.0894 0.1514 0.9999 0.0939 0.1498 0.9999 0.0897 0.1567 1.0000

2.5 0.0722 0.1131 0.9998 0.0716 0.1208 0.9999 0.0755 0.1134 0.9999 0.0732 0.1221 0.9999

3 0.0606 0.0882 0.9997 0.0598 0.0909 0.9998 0.0631 0.0855 0.9998 0.0613 0.0954 0.9998

3.5 0.0494 0.0791 0.9997 0.0496 0.0809 0.9998 0.0513 0.0896 0.9993 0.0460 0.0836 0.9997

4 0.0425 0.0807 0.9992 0.0414 0.0740 0.9997 — — — — —

3.9 — — — — — 0.0400 0.0872 0.9979 — — —

4.1 — — — 0.0371 0.0765 0.9992 — — — — —

4.5 0.0322 0.0726 0.9998 — — — — — — 0.04003 0.0808 0.9993

represent the proportion of pores in the i aperture range under J-axis
compression.

Φi,j = Ai,j/Aj (1)

Based on the pore volume change using Formula 1, the
pore proportion of the lignite samples, as depicted in Figure 3,
and the permeability variation under uniaxial compression,
as shown in Figure 3, it can be concluded that the change in the pore
proportion of the medium pores aligns with the trend of the total
pore porosity. During the compression stage, the pore proportion of
the four lignite samples decreases slowly, decreasing by 2.42%, 1.04%,
2.72%, and 2.70%, respectively. Conversely, the proportion of pores in
mediumholes rapidly increases until the failure of the lignite samples,
withincreasesof22.24%,16.61%,17.66%,and15.57%,respectively.On
theotherhand, theproportionofsmallholesgraduallydecreasesunder
pressure, decreasing by 7.61%, 11.37%, 6.42%, and9.48%, respectively.
These findings indicate that the stress sensitivity is greater for the
medium pores than for the micropores.

3.2 Stress-seepage characteristics of lignite
under uniaxial compression

In the process of uniaxial compression, the four lignite
samples gradually experience failure under loading, with peak
stresses of 4.5 MPa, 4.1 MPa, 3.9 MPa, and 4.5 MPa. Based on
the permeability change observed during uniaxial compression
and the MRI image (Figure 3), the permeability change trend of
the lignite samples shows a “V” shape. When the stress loading
reaches approximately 80% of the peak stress, the permeability
decreases to its minimum value. Specifically, the permeability of

lignite samples 1–4 decreases by 11.21%, 12.54%, 19.05%, and
13.54%, respectively. This indicates that the initial pressure applied
to the lignite leads to compression deformation of the seepage
hole, resulting in the closure of cracks, a reduction in effective
seepage channels, and a significant decrease in permeability. In
the pore development stage, the permeability of lignite samples 1-
4 increases by 21.62%, 11.83%, 29.41%, and 17.16%, respectively.
This increase suggests that friction and compression of the lignite
matrix under axial pressure after lignite compaction produces a large
number of connected porous pores (medium pores + macropores).
With stress loading approaching the peak point, a substantial
amount of water passes through these porous pores, resulting in a
sudden increase in permeability. In the post-peak failure stage, the
permeability of the four lignite samples exhibits continuous growth
due to fracturing, increasing by 1.27%, 2.56%, 2.73%, and 2.87%,
respectively.

During the uniaxial compression seepage process,
MRI inversion imaging was performed on the four
lignite bodies (Figure 4). The MR image shows regions with weak
water signals in blue and regions with strong water signals in red.
Darker colors indicate higher water content. In the early stage of
compression, water diffuses axially through the top of the four
lignite samples. However, the water signal in the axial direction
of the lignite samples is not completely transmitted. When the
axial pressure reaches approximately 3.0 MPa, the MRI signal of
the samples is enhanced. This stage represents the development
stage of pore cracks, indicating an increase in seepage pores
(medium pores and macropores) and a notable enhancement
of the MRI signal. The aggregation of water image signals
reflects the development process and distribution area of vadose
pores.
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FIGURE 5
Pore change rate Si of lignite samples. Micropore, Medium pore, Macropore, Total pore.

3.3 Discussion on pore evolution and
permeability correlations

To analyze the sensitive correlation between the evolution
of different pore sizes and the permeability of lignite, the
pore change rate and permeability change data under uniaxial
compression were dimensionless. This analysis was conducted
using Formulas 2, 4. The correlation between pore evolution
and permeability was further discussed based on the formula
for compressibility Cp (3) (Liu et al., 2016; David et al., 1994;
Jiao et al., 2011), the permeability stress sensitivity coefficient Cf
(5) (Wang M. L. et al., 2021; Liu X. G. et al., 2023; Liu H. H. et al.,
2023), and the correlation degree Formula 6. The specific
data can be found in Table 2, and the relationship diagram is

depicted in Figure 5.

Si = Si,j/Si,0 (2)

Si,j is the total pore area of aperture i (i represents micropores,
medium pores and macropores); Si,0 is the total pore area within the
aperture range of i in the initial state.

Cp =
1
V0

dv
dσ
= (

Si,j
Si,0
)
‐1

/(σ‐σ0) (3)

Cp is the coefficient of pore compressibility, V0 is the pore
volume, σ is the acting stress, and σ0 is the initial stress.

∆Ki = Ki/K0 (4)
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FIGURE 6
Cp, Cf and correlation diagram under uniaxial compression. No. 1. Lignite sample No. 2. Lignite sample No. 3. Lignite sample No. 4.

ki represents the permeability of the coal sample under I-axial
compression, and k0 is the initial permeability.

Cf =
∆Ki

K0

1
∆σi

(5)

Cf is the permeability stress sensitivity coefficient, and σ0 is the
stress variation.

ρ =
Cov(x,y)
μxμy

(6)

Where Cov is the covariance of the two groups of
data, μ is the variance, and x and y represent the
dimensionless ratios of the pore change rate and permeability,
respectively.

Under uniaxial compression, the pore change rate Si of the lignite
samples (Figure 5) exhibits certain characteristics. In the early stage
of the axial compression loading process, the pore compression of
small holes decreases due to stress. In the later stage of the axial
compression loading process, the pore development and evolution
result in a slight decrease in the pore change rate Si of small holes.
The reduction rates of pore Si for the four coal samples are 3.43%,
1.37%, 2.71%, and 3.18%. In the early stage of axial compression
loading, due to lignite body deformation, internal fracture closure,
skeleton compaction, and extrusion, the pore change rate Si of
medium andmacropores also slightly decreases.The decrease rates of
mediumporeSi for the lignite coal samplesare2.42%、2.11%、4.79%
and 4.41%. The decrease rates of macropore Si for the lignite coal
samples are 8.88%, 2.11%、4.86% and 3.35%. However, when the
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FIGURE 7
Value ranges of fractal dimensions of different pores.

axial compression loading is near 80% of the peak stress, the pore
change rate Si of the medium and macropores shows an increasing
trend. The increase rates of medium Si for the lignite coal samples
are 26.14%, 18.09%, 21.25%, and 17.46%. The increase rates of Si in
the macropores are 17.66%, 18.21%, 6.99%, and 10.72%, respectively.
In summary, under uniaxial compression of lignite samples, the pore
evolution is mainly characterized by slight decrease of medium and
large pores and obvious increase of development in later period,
which is consistent with the change trend of total pores. On the
other hand, micropore Si slightly decreases and negatively correlates
with axial pressure. Therefore, the compressibility coefficient Cp
and permeability stress sensitivity coefficient Cf of medium and
macropores are selected to explore their correlation.This analysis was
conducted using Formulas 3, 5 and 6.

The correlation between the compressibility coefficient Cp
and permeability stress sensitivity coefficient Cr of the medium
and macropores can be observed from this table and Figure 6.
During uniaxial compression, the four samples exhibit strong linear
correlations, with minimum coefficients ranging from 0.9983 to
0.9992. This indicates a significant relationship between these two
factors. Furthermore, it is evident that changes in the volume of
medium pores and macropores directly influence permeability.

3.4 Fractal characteristics of lignite pores
under uniaxial compression

The fractal dimension (D) of the seepage space is correlated with
the content of the seepage space (the peak area in the T2 spectrum)
and the separation coefficient of the coal samples (Yang et al.,
2020; Li et al., 2023a; Li et al., 2023b). Within the effective range
(approximately 3), a smaller D corresponds to a larger content of
pore cracks in the seepage spaces of the lignite samples, a larger
separation coefficient, and reduced heterogeneity. According to the
equation r = CT2, the nuclear magnetic resonance T2 is directly
proportional to the aperture r, and the cumulative volume fraction

SV with a radius less than r can be expressed as (Zhang and Weller,
2014; Wang X. J. et al., 2021; Zhang et al., 2018):

SV =
V(r)
VS
=
r3‐D‐r3‐Dmin

r3‐Dmax‐r
3‐D
min

(7)

The value of rmin is typically significantly smaller than that of
rmax. As a result, Formula 7 can be simplified as follows:

SV =
r3‐D

r3‐Dmax
=

T3‐D
2

T3‐D
2max

(8)

The logarithm is applied to both sides of the equation to
derive an approximate fractal geometric formula for the NMR
T2 spectrum.

lg (Sv) = (3‐D) lg (T2) + (D‐3) lg (T2max) (9)

lg (Sv) = (3‐D) lg (T2/T2max) (10)

The pore diameter corresponding to T2C is taken as the dividing
point to calculate the fractal dimension of the pore volume through
the nuclear magnetic field test data. Based on the basic principle
of fractal geometry, Used Formulas 8-10 to analyze and calculate,
0.03 ≤ lgT2 < 0.46 is selected as the value range of the small hole
fractal, and 0.46 ≤ lgT2 < 2.57 is selected as the middle hole by
deducing the theoretical formula of the T2 spectrum. lgT2 ≥ 2.57
is taken as the value range of the large hole (Figure 7), and SV is
calculated through the T2 signal map. The fractal dimensions of the
pore volume for small, medium, and large holes are called D1, D2,
and D3, respectively, and the relationship between the axial pressure
and fractal dimension is obtained.

According to the data in Figure 3, the fractal dimension
relationships of micropores, medium pores, and macropores under
uniaxial compression are shown in Figure 8. D1 of coal sample No.
1 ranges from 1.106 to 1.186, D1 of coal sample No. 2 ranges from
1.057 to 1.156, D1 of coal sample No. 3 ranges from 1.168 to 1.231,
and D1 of coal sample No. 4 ranges from 1.121 to 1.185 (Reference
2). The fractal dimension fitting correlation coefficient within the
adsorption pore scale is low.TheD2 values of theNo. 1 lignite sample
range from 2.966 to 2.970, those of the No. 2 lignite sample D2 range
from 2.961 to 2.963, those of the No. 3 lignite sample D2 range from
2.960 to 2.964, and those of the No. 4 lignite sample D2 range from
2.965 to 2.971. Lignite sample D3 ranges from 2.618 to 2.642, No. 2
lignite sample D3 ranges from 2.589 to 2.619, No. 3 lignite sample D3
ranges from 2.618 to 2.644, and No. 4 lignite sample D3 ranges from
2.623 to 2.642. In the uniaxial compression process, D2 and D3 both
show a decreasing trend, and the values of D2 and D3 are close to
3, indicating that the pores in the porous pores (medium pores and
macropores) of lignite have obvious fractal characteristics, in which
D2 is the largest and closest to 3, indicating that the medium pores
are the most developed in the scale range.

We add image binary method to discuss the relationship
between pore fractal and seepage. he fractal dimension of the binary
graph under each stress path is calculated and analyzed, and the
evolution law of the fractal dimension of the seepage channel is
obtained. The decrease of fractal dimension of binary diagram
indicates that the uniformity of seepage channel distribution in coal
body decreases, while the increase of fractal dimension indicates that
the uniformity of seepage channel distribution increases.
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FIGURE 8
Fractal dimensions of micropore, medium pore and macropore under uniaxial compression.

FIGURE 9
Binary diagram under stress.
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FIGURE 10
Dimension of seepage channel box in different loading stages of coal.

The gray MRI images obtained by the test were binarized by
Matlab program, and the grid was divided. Figure 9 is based on the
collection of white pixels formed by the high signal area in the MRI
image, whose practical significance is the seepage channel inside
lignite. One piece of sample is selected for analysis. In the early stage
of loading, the original white pixels gradually disappear, and the
regions are dispersed into points; in the late stage of loading, the
pixels begin to increase, and the original points begin to connect
with the new points to create a new white pixel region, and the final
region is linked with the region to form a complete seepage channel.

Combined with the decreasing fractal dimension of themedium
and large pores in the coal body, it indicates that the coal body is in
the process of compression, and the seepage channel is not opened
in the early stage, and the evolution of the seepage channel occurs
only in the peak stress area close to 70%–80%.The change of fractal
dimension is not linear reduction, but a cumulative process, just
like the change of the pores in the coal body. In the early stage of
loading, the change is small, and with the increase of stress, the
seepage channel will be completely opened.

Combined with the calculation results of the fractal dimension
of the seepage hole and the box dimension of the seepage channel, it
is obtained (Figure 10). In the elastic deformation stage of the coal
body before 3Mpa, the connection of the seepage hole is poor, and
the fractal dimension of the seepage hole increases in the early stage
of compression. After the plastic deformation, the micro-fracture of
the coal body is generated, the seepage channel is generated, and the
fractal dimension of the seepage hole is reduced. The change of the
box dimension of the seepage channel indicates that the distribution
of the seepage channel in the space is more evenly expanded.

4 Conclusion

By conducting online NMR tests on lignite samples under
uniaxial loading, along with analyzing T2 maps, online imaging,
and permeability test data during lignite loading, we were able
to quantitatively calculate the evolution law of pores and discuss
the correlation between permeability and pore behavior. The
following conclusions were drawn:

1) During the process of load failure in the lignite body, after three
stages of compression, pore development, and post-peak failure,
the change rate of pore signals in the four lignite samples was
found to be minimal. However, the signals from medium pores
andmacropores demonstrated an increasing trend, with average
increases of 18.02% and 8.72%, respectively. This indicates that
uniaxial compression promotes the development and evolution
of medium and macropores in the lignite body, with medium
pores showing greater sensitivity to stress.

2) During the uniaxial compression process, the permeability
of the lignite samples exhibited a “V-shaped” trend, initially
decreasing and then increasing. In the early stage of
compression, the axial water signals of the four lignite samples
were not completely connected. However, when the axial
pressure reached approximately 3.0 MPa, the MR signals of
the samples were enhanced.

3) When subjected to uniaxial compression, the Si in the pores
slightly decreased and exhibited a negative correlation with
the axial pressure. On the other hand, the change rate of the
medium and macropores, Si, exhibited a positive correlation
with axial pressure, which is consistent with the overall trend
observed in all the pores. The compressibility coefficient Cp of
porous pores (medium pores and macropores) was found to
be correlated with the permeability stress sensitivity coefficient
Cf. The fractal dimensions D2 and D3 of pores in the range of
medium pores and macropores in the lignite body were found
to be close to 3, indicating the presence of significant fractal
characteristics in this range. The maximum value of D2 was
determined to be 2.971, which is close to 3, suggesting that the
medium pores are the most developed within this scale range.

4) Combined with the fractal dimension of seepage pore and
seepage channel, it is obtained that in the uniaxial compression
elastic deformation stage of coal body, the connectivity of
seepage pore is poor, the fractal dimension of seepage pore
increases, and the box dimension of flow channel decreases.
When the coal body enters the plastic deformation stage, the
coal body produces cracks, the seepage pore develops obviously,
the fractal dimension of pore decreases, the box dimension
of seepage channel increases, and the distribution space of
seepage process is larger.
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