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The rockburst risk prediction based on microseismic (MS) data is an important
research task in deep mine safety prevention. However, the lack of systematic
research on explicit prediction indexes and the waste of a large amount of
unlabeled data are still two main problems that hinder the development of
rockburst prediction. In this paper, the acoustic emission (AE) event distribution
at each coal rock deformation and failure stage is studied based on the
laboratory experiment. The spatial-temporal evolution of rockburst in MS data
of coal mine fields is explored. Based on systematic research of the AE and
MS distribution features considering the physical logic of coal rock mass
failure, nine different rockburst prediction indexes are employed to describe
the MS data features before rockburst. Then, according to the rockburst
prediction indexes, a new self-supervision rockburst risk prediction algorithm
is constructed, consisting of the pre-trained model and fine-tuning model with
the same encoder and decoder structure. The pre-trained model is trained with
unlabeled MS data to automatically learn rockburst prediction index features
by reconstructing the masked indexes. Based on the pre-trained encoder
and decoder parameters, the fine-tuning model is trained with the labeled
MS data to predict rockburst risk. A large number of experiments show that
the proposed rockburst prediction self-supervision algorithm is far superior
to previous algorithms, by effectively utilizing unlabeled data. The ablation
experiment also proves the validity of the studied rockburst prediction indexes.

KEYWORDS

rockburst prediction, rockburst prediction index, deep learning, self-supervision
algorithm, microseismic data

1 Introduction

Coal mine rockburst is characterized by its sudden occurrence and severe destruction
(Aydan et al., 2017; Basnet et al., 2023), which can cause extensive damage to roadways and
even casualties, which is one of the most serious disasters threatening the safe production
of coal mines. The accuracy of rockburst risk prediction on the basis of reliable data is of
great significance in effectively preventing and controlling rockburst. Currently, scholars
mainly evaluate the risk of the special area by empirical analytical (Yang et al., 2018),
experimental (Cheng et al., 2023), numerical (Manouchehrian and Cai, 2018; Wang et
al.,2021), intelligent (Adoko et al., 2013; Adoko and Zvarivadza, 2018; Xue et al., 2023),
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expert system (Li et al., 2020) and data mining (Askaripour et al.,
2022; He et al., 2023; Pu et al., 2019; Li et al., 2019; He et al., 2018)
methods. Rockburst predictions are generally categorized into
long-termand short-term types (Liang et al., 2020). Long-term
predictions emphasize the utilization of rockmechanical parameters
to develop a prediction model that assesses the likelihood of
rockburst occurrences across varying surrounding rock masses and
field conditions (Liang and Zhao, 2022). Conversely, short-term
predictions aim to predict the timing and scale of potential rockburst
events by the dynamic and continuous analysis of real-time
monitoring data during the excavation phase (Jinqiang et al., 2021).

In the studies of short-term rockburst prediction, microseismic
(MS) monitoring stands as a highly accepted and efficient tool.
It can monitor rockburst occurrences by capturing significant
signals that emerge from the fracturing processes within coal rock
masses. Recently, a significant number of scholars have focused
on rockburst prediction utilizing microseismic (MS) data and
machine learning algorithms. Based on the strength of machine
learning in handling nonlinear problems, researchers have employed
a range of prevalent algorithms for short-term rockburst prediction,
encompassing Support Vector Machines (SVM) (Ji et al., 2020;
Jin et al., 2022), Convolutional Neural Networks (CNN) (Dong et al.,
2023; Zhang et al., 2021; Yin et al., 2021a), diverse Recurrent Neural
Network (RNN) variants (Hu et al., 2023; Di et al., 2023a; Di et al.,
2023b),ConvLSTM(Chen et al., 2023;Ma et al., 2021), andensemble-
learning techniques (Liang et al., 2020; Yin et al., 2021b; Liang et al.,
2021). These algorithms have shown promise in enhancing the
accuracy and reliability of rockburst predictions based on MS data.
To describe the spatiotemporal relationship of microseismic data and
process spatiotemporal indexes of rockburst prediction, Chen et al.
(2023) constructed a deep learning model based on a convolutional
long short-term memory network (ConvLSTM) to predict the
short-term rockburst risks. To effectively capture the progression
of rockburst, Zhang et al. (2021) and Yin et al. (2021a) leverage the
improved convolutional neural network (CNN) to predict rockburst
occurrences. Additionally, ensemble-learning methods (Liang et al.,
2020; Yin et al., 2021b; Liang et al., 2021) have been employed to
integratemultiplemodels, resulting inapowerful androbust rockburst
predictionmodel that leverages variousMSparameters. Byharnessing
the strengths of both ConvLSTM and ensemble learning, these
advancements are poised to enhance the accuracy and reliability of
rockburst predictions significantly. Meanwhile, considering the basic
principles of MS and acoustic emission (AE) are similar, the acoustic
emission (AE) system is also adapted to monitor the associated AE
signals during the rockburst process and to explore the characteristics
of micro-cracks position and acoustic emission event distribution at
different stages (Hu et al., 2019; Su et al., 2018).

In the aforementioned studies, the initial step involves a
thorough analysis of the rockburst impacts on the distribution
of microseismic (MS) data. Subsequently, specific and explicit
rockburst prediction (ERP) indexes are extracted and calculated
based on the MS data, which aims to capture the key features
related to rockburst occurrence. Finally, the supervised machine
learning (ML) algorithm with rockburst prediction indexes as input
is constructed to predict rockburst risk. Almost all previous ML
methods for rockburst prediction based on microseismic (MS) data
necessitate risk targets for supervised learning. Nevertheless, the
process of labeling the rockburst risks for each MS event is not

only costly but also labor-intensive. As a result, a large amount
of unlabeled MS data cannot be used to train the supervised
rockburst prediction algorithms, which represents a significant
waste of potentially valuable information for improving prediction
accuracy. At present, the explicit rockburst prediction indexes based
on MS data are normally analyzed at the data level. There is a lack
of systematic research and summary from the physical logic view of
coal rock mass failure. Simultaneously, in the deployment of a new
mine, these algorithms require a considerable amount of time for
training, resulting in a waste of resources and time.

In this paper, to systematically research and summarize the MS
data features based on the physical logic of coal rock mass failure,
distribution features of experimental acoustic emission (AE) events
and spatial-temporal evolution of rockburst in field MS data are
studied. A systematic study of explicit rockburst prediction indexes
is presented considering the MS data spatiotemporal features and
the failure mechanism of coal and rock mass. Then, a new self-
supervision algorithm for predicting the rockburst risk is proposed,
including self-supervision and fine-tuning models with the same
encoder and decoder structure. In the self-supervision framework,
the explicit rockburst predictions are randomlymasked and the pre-
trained algorithm is employed to reconstruct the masked indexes.
Based on the pre-trained encoder and decoder weights, the fine-
tuning algorithm is properly trained with a small amount of labeled
data, which can be directly used for rockburst prediction in new
mines. In the MS data sets of three mines, the performance of the
proposed algorithm is far better than that of previous methods.
Moreover, the algorithm also provides a strategy that utilizes a
large amount of data for self-supervision to obtain the pre-trained
encoder and decoderweights, and then quickly deploy the algorithm
in new mines through fine-tuning.

2 The distribution features of AE
events in laboratory experiments and
MS events in the coal mine filed

Microseismic (MS) system aims to monitor small seismic
events caused by stress concentration, rock rupture, or other forms
of energy release in geological media, especially in coal rock
mass. Acoustic emission (AE) system refers to monitoring the
phenomenon of transient elastic waves caused by the initiation
and development of material internal defects under the action of
external forces until the rapid release of energy. Since the basic
principles of MS and AE are similar, the AE events distribution
of coal rock mass in the process of deformation and failure and
the MS event distribution in the mining process are studied in
this section.

2.1 The AE events distribution in the
laboratory AE experiment

The AE event distribution features are studied based on
the acoustic emission monitoring equipment of the uniaxial
compression experiment. In this experiment, coal rock masses
from coal mine sites are sampled. Eight 50 mm × 90 mm standard
coal samples are made by sample preparation equipment and
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FIGURE 1
The illustration of the acoustic emission monitoring experiment of coal rock deformation and failure.

cutting machine. The uniaxial compression machine is used for
loading with 0.05 mm/min displacement control. DS5-8B acoustic
emission system is used to monitor the acoustic emission signal
during the loading process, and the signal measurement range is
1 kHZ∼3 MHZ.The illustration of the acoustic emissionmonitoring
experiment of coal rock sample deformation and failure is
shown in Figure 1. The stress-time-AE energy-AE count curves
are shown in Figure 2.

AE events gradually extend from both ends of the coal rock
sample to themiddle of the sample in space during thewhole loading
process. To more clearly explore the distribution characteristics of
events, the distribution of AE events from the process of coal rock
mass from loading to failure are analyzed from four stages, including
compaction stage, elastic deformation stage, plastic deformation
stage, failure stage, and residual deformation stage.

The AE count and the max AE energy per unit time of different
coal rock samples in the compaction stage are very small, and the AE
event activity is in the silent period.With the continuous increase of
axial stress, coal rock samples enter the elastic deformation stage,
in which microporous cracks develop stably. The acoustic emission
count and the max AE energy have some increase compared with
the compaction stage. Then, as the axial stress continues to grow,
the coal rock samples enter the plastic deformation stage. The
microporous cracks continue to develop, expand, and penetrate.
In the coal rock samples, the unstable development of cracks
results in plastic deformation. In this stage, the acoustic emission
count and the max AE energy increase significantly and show a
disordered distribution. When axial stress is loaded to peak stress,
the cracks spread through to form a macro failure surface, and
the coal rock samples are fractured. Meanwhile, the AE count
and max energy of coal rock samples also appear to peak. In the
failure stage, most AE events gather at the macro failure surface,
showing an ordered distribution state. The final macroscopic
damage location is basically the area where acoustic emission events
are most dense.

2.2 The spatial-temporal evolution of
rockburst in MS data

Microseismic monitoring (MS) data is the typical time series
data reflecting the time, 3D location coordinates, and energy

(intensity) of the rock failure. The MS data of a representative
coal mine in the recent 3 years are studied in this section. The
sequential distribution of the normalized microseismic energy
is shown in Figure 3. In many long-term MS data, the fluctuation
of energy gradient released by MS events is small and disordered,
showing a relatively natural calm state. However, the MS event
number increases obviously before the rockburst occurs from a
frequency perspective. Meanwhile, the max energy of the MS event
is obviously increased. During the period before the rockburst
occurs, the fluctuation of the energy gradient is obviously different
from the natural clam state, showing a drastic float in the energy
gradient. The occurrence of dangerous events obviously causes
the energy to reach its maximum during a period, resulting in
an instantly sharp increase and a steep decrease in the energy
fluctuation gradient.

The projecting results of the MS energy on spatial coordinates
are shown in Figure 4. Vast MS events are distributed in several
aggregation areas. In one area, the distribution feature of several
consecutive MS events is similar to the spatial distribution features
of the most related events. When the stress field of the focal region
reaches a limited degree, the distribution of time, space, and intensity
of the MS event activity changes from disorderly to orderly state.
The spatial intensity of MS events increases significantly and gathers
at some special regions before the occurrence of dangerous events
such as rockburst. Meanwhile, there is no large energy MS event
around the rockburst event. This is because, for rockburst events,
the stress in the surrounding rock increases from a steady state
to a limited value within a long-term accumulation, resulting in
a sudden release of energy. The release of large energy events can
keep the stress of surrounding coal rock in a stable state for a
certain period.

3 Explicit rockburst prediction indexes
based on microseismic data

The occurrence of rockburst is often influenced by various
geological and mining conditions. The failure of coal rock mass
is the result of continuous macroscopic crack formation from
crack propagation to penetration, and MS monitoring technology
is an effective means to observe the evolution of cracks in
coal and rock.
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FIGURE 2
Stress-time-AE energy-AE count curves of different coal samples under uniaxial compression. The AE energy is the max AE energy per unit of time.

MS data can reflect the influence of mining on surrounding
rock and geological conditions. According to the previous study
and the laboratory experiment in Section 2, the process of
coal rock mass from loading to failure requires a compaction
stage, elastic deformation stage, plastic deformation stage, failure

stage, and residual deformation stage. Based on the physical
logic of coal rock mass failure and AE/MS distribution features
studied in Section 2, multiple rockburst prediction indexes are
established to describe the time, spatial and intensity distribution
features of MS data in this section.
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FIGURE 3
Microseismic energy expansion on the time sequence. The energy value is standardized. The red and blue area are the energy range of the dangerous
events and normal events.

FIGURE 4
Spatial projection of MS energy. The three-dimensional coordinates
are normalized. The size of the point represents the amount of energy.

3.1 Time sequence indexes

The time sequence rockburst prediction indexes aim to study
the time distribution features of rockburst and MS events at
different stages (Cai et al., 2018), whose key research object is the
relationship between the occurrence time and MS event intensity.
The time sequence indexes based on the MS data in this section
include the temporal concentration, the time interval, and time
information entropy.

According to the equipment results in Section 2, when the
acoustic emission signal changes from a small number of disordered
states to a large number of ordered states, it indicates that the rock
mass changes from the stable state to the unstable state. For coal

mine engineering, there is an obvious MS activity period before
the occurrence of rockburst. This is because the surrounding coal
rock mass is undergoing energy exchange with the outside system,
and the surrounding rock structure is in an unstable adjustment
period, which can be expressed by the temporal concentration and
formalized as Equation 1.

QT = Var(Tn)/ΔTn (1)

where, QT,Var(Tn) and ΔTn are temporal concentration, the
variance and mean value of the time interval of the last nMS events.

Based on the results of Figure 2 and the studies of MS event
distribution in Figure 3, 4, before the coal rock mass failure and
rockburst occurrence, the frequency of AE events and MS events
increase significantly. Therefore, the time interval ΔT is employed,
which can be represented by the interval between the time of the
researched MS event and the previous one MS event.

Referring to the basic idea of dissipative structure theory, the
process from gestation to the occurrence of AE signals and MS
events can be regarded as an open system with energy exchange
with the surrounding environment.When the stress field of the focal
region reaches a limited degree, the distribution of time, space, and
intensity of the MS or AE event activity will change from disorderly
to orderly state. It shows that the AE signal and theMS event develop
towards a certain trend and have broken away from the natural state.
Therefore, the time information entropy Qt is used to describe the
aggregation degree of MS events in the time series, reflecting the
disorder or order in the evolution of MS time.The time information
entropy can be formalized as Equation 2.

Qt =
−(1/n)

n

∑
i=1

pi ln
pi

ln(n−1)
(2)

where, n is the total number of selected MS events. pi =
ti+1−ti
tn−ti

, ti is
the occurrence time of the i-th MS event, and the value of pi is 0∼1.
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3.2 Spatial indexes

The spatial index aims to study the spatial distribution features
of AE and MS events before the dangerous event occurs (Tang
and Xia, 2010; Lu et al., 2015), including space concentration,
spatiotemporal diffusion, etc. Within the scope of the laboratory,
the final macroscopic damage location is basically the area where
acoustic emission events aremost dense. From themacroscopic coal
mine scale, when the distribution of MS events in a certain region is
dense, it indicates that the region has strong MS activity and high
rockburst risk. On the contrary, if the distribution of MS events
in this region is scattered, it indicates that the region has low MS
activity and low rockburst risk.

Similar to AE events from laboratory experiments, the spatial
distribution of MS events corresponds to the occurrence and
development process of microfailures in the inner space of rock
mass. Therefore, the spatial distribution of MS events is important
for understanding the stability of coal rock mass in the mine. The
spatial intensity of MS events will increase significantly before the
occurrence of dangerous events such as rockburst. Therefore, space
concentration is presented as Equation 3.

QD = Var(Rn)/ΔRn (3)

where, QD, Var(Rn), and ΔRn are the space concentration, variance
and mean value of the radius corresponding to the last nMS events.

According to the equipment results in Section 2, the occurrence
of AE events and MS events often does not exist in isolation,
but occurs in a period of time. From the perspective of spatial
distribution, AE and MS events tend to occur in a certain area,
forming the event cluster. The spatial distribution features of these
clusters can reflect the non-uniformity of stress distribution and the
complexity of underground structures.The spatiotemporal diffusion
is summarized to reflect the dispersion degree of MS events in time
and space, which can be formalized as Equation 4.

ds = (X)
2/t (4)

where, X is the average distance between sequential MS events. t is
the average time interval between sequential MS events.

3.3 Intensity indexes

The strength index includes total stress equivalent, energy value,
energy information entropy, and so on Kracke and Heinrich (2004).
Laboratory-wide AEmonitoring results show a rapid increase in the
frequency and energy of AE events prior to macroscopic failure of
loaded coal rock samples. By studying the relationship between the
energy and stress during the occurrence of the engineering scale
MS events, it is found that the square root of the energy released
by the MS event is proportional to the stress variable in the coal
rock mass. Therefore, the square root of the energy released by
MS events can be used to reflect the strain state of coal and rock
mass before the rockburst. The square root of the total energy of
coal rock mass in the unit area and unit time is used as the energy
prediction index, namely, the energy density.The energy density can
be formalized as Equation 5.

Q3 =∑n√Ei/SnTn (5)

where, Ei is the energy of i-th MS events. Sn and Tn are the area and
statistical time window of the n consecutive MS events.

In the laboratory experiments, the peak value of AE counts
means that the crack spread through to form macroscopic failure
surface. Analogously, before a rockburst occurs in a coal mine, the
MS stress in the coal rock mass surrounding the roadway increases
from the steady state to the limit value, resulting in a sudden release
of energy in the rock mass. The MS event count and energy also
increase significantly. Therefore, the energy concentration index is
established to reflect the energy change and MS distribution before
the rockburst, which can be formalized as Equation 6.

QE = Var(En)/ΔEn (6)

where, QE, Var(En) and ΔEn are the energy concentration, the
variance and mean value of the energy corresponding to the
continuous nMS events.

Through the study of stress-time-AE energy-AE count curves
in Figure 2, the sudden change of energy E and event activity value
QS can be regarded as a sign of coal rock failure or rockburst risk.
The activity value should be an index that combines the frequency,
the maximum energy, the average energy and the distribution
concentration of events, which is formalized as Equation 7:

QS = 0.117 lg (N+ 1) + 0.029 lg
1
N

N

∑
i=1

101.5Mi + 0.015M (7)

where, N indicates the total number of microseismic events in the
statistical period; Mi represents the energy level of the MS event in
the statistical period;M is the energy level of the microseismic event
in the statistical period. The AE and MS energy E mainly reflect
the failure strength of coal rock mass under loads, which is also a
prediction index.

Generally,MS data parameters and rockburst prediction indexes
have different values and units. If they are directly input into
the neural networks, the training performance will be poor. After
exploring the solving principle of the neural network, the MS
data parameters need to be standardized and processed after the
rockburst prediction indexes are established. The standardized
calculation equation is shown as Equation 8.

yi=
xi‐

1
n

n

∑
i=1

xi

√ 1
n‐1

n

∑
i=1
(xi‐x)

2

(8)

where, xi and yi represent the i-th data value before and after
normalization. n is the total number of selected data.

4 The self-supervision method for
rockburst prediction based on MS data

In order to make full use of a large amount of unlabeled MS
data, this paper presents a self-supervision method for rockburst
prediction based on MS data. The self-supervision algorithm
consists of a pre-trained model and a fine-tuning model with the
same decoder and encoder. By reconstructing themasked prediction
indexes, the pre-trained model mainly learns the data features
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FIGURE 5
The pre-trained model of the self-supervision algorithm for rockburst prediction.

of rockburst prediction indexes based on a large number of MS
monitoring data. The fine-tuning model perfectly achieves the
purpose of rockburst risk prediction using pre-trained parameters
and a few labeled MS data.

4.1 The pre-trained model of
self-supervision method

The self-supervision pre-trained model for rockburst risk
prediction is mainly trained by reconstructing the masked
prediction indexes, using rockburst prediction index features
based on a large number of MS data. The model consists of an
encoder, a decoder, and an auxiliary task reconstruction head,
as shown in Figure 5.

A large number of unlabeled MS data is first calculated
to the explicit rockburst prediction indexes based on the
Equation 1∼Equation 8. Then, some prediction indexes are
randomly masked with a certain probability. The masked and
unmasked prediction indexes are input into the encoder to obtain
the encoded features. The encoder consists of a five-layer one-
dimensional convolutional neural network (1D CNN). Each 1D
CNNmodule consists of a convolution layer, a Batch Normalization
layer, and a Relu activation function. The number of convolution

kernels in each layer is 12, 12, 12, 24, and 24, respectively. The input
and output feature dimensions of the encoder are [Batch size, 9, 1]
and [Batch size, 24, 1].

The cosine positional encoding is used to encode the position
of encoding features to obtain the input tokens of the decoder
model. The decoder of the self-supervision algorithm consists of 3
layers of feature fusion modules, as shown in Figure 6. Each fusion
module consists of a layer normalization operation, cross-attention
mechanism, layer normalization operation, and a forward neural
network (FNN) layer, as shown in Figure 7. In the cross-attention
mechanism, the input tokens are calculated to query (Q), key (K),
and value (V) vectors, seeing Figure 8. Then, these vectors are fused
by theMatMul, SoftMax, and Scale operations. To speed up training,
the three vectors can be divided and parallelized.The cross-attention
mechanism can be shown as Equation 9.

Attention(Q,K,V) = so ftmax(QK
√D
)V (9)

The output of the decoder is the decoding features.The decoding
features are reconstructed using a reconstruction head composed of
a double-layer forward neural network.The input and output feature
dimensions of the decoder are [Batch size, 24, 1] and [Batch size,
24, 1]. Meanwhile, the input and output vector dimensions of the
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FIGURE 6
The structure of decoder in the self-supervision method.

auxiliary task reconstruction head are [Batch size, 24, 1] and [Batch
size, 9, 1].

In the pre-trained model of the self-supervision algorithm,
the input is the combination of randomly masked and unmasked
rockburst prediction indexes, while the label is the original rockburst
prediction indexes. The MSE loss function is used to evaluate the
difference between the model output and the label.

4.2 The fine-tuning model of
self-supervision algorithm

The presented fine-tuning model of the self-supervision
algorithm is mainly designed for the rockburst risk prediction task,
which is composed of the encoder, decoder, and risk prediction
head, seeing Figure 8. The structure of the encoder and decoder is
the same as the pre-trained model. The encoder consists of a five-
layer one-dimensional convolutional model (CNN). The decoder
consists of 3 layers of feature fusion modules.

The risk output head is mainly designed according to the
requirement of rockburst risk prediction task. The input and output
feature dimensions of the risk output head are [Batch size, 24, 1]
and [Batch size, 9, 1]. The occurrence of rockburst is affected by
many factors such as overlying strata, geological structure, mining
depth, ground stress, coal pillar layout, and stope layout, which can
be analyzed by the decoder and encoder.The output of the rockburst
prediction algorithms is only the probability of rockburst risk or no

rockburst risk. For the risk prediction head of the fine-tuningmodel,
a two-layer forward neural network with ReLU activation function
and Batch Normalization layer is constructed.

During training the self-supervision rockburst risk prediction
algorithm, MS data is processed based on the calculation
formula in Section 3 to obtain the rockburst prediction indexes.
Then, the decoder and encoder parameters in the pre-trainedmodel
are transferred to the fine-tuning model using the transfer learning
method. Finally, a small number of labeledmicroseismicmonitoring
data corresponding to rockburst prediction indexes are used to
complete the training of the fine-tuning model.

5 Experiment implement details

5.1 Dataset construction

The MS monitoring data of two coal mines are used to validate
the performance of the proposed self-supervision rockburst risk
prediction method. For the first mine, the MS monitoring data
includes 13,583 events, monitoring the time, location, and energy
information, and the number of dangerous events is 114. For the
second mine, the MS monitoring data includes 28,371 events and
the number of dangerous events is 195. Firstly, nine calculated
rockburst prediction indexes, such as time series concentration,
space intensity, time interval, and energy, are calculated according
to the MS monitoring data of two coal mines, which are the features
of the samples in the dataset. The label is whether dangerous events
occur in the future. Then, the dataset is divided into a training
set, validation set, and testing set according to the number of 50%,
20%, and 30% on the time scale. The calculations of temporal
concentration, time information entropy, space concentration,
spatiotemporal diffusion, energy density, energy concentration, and
MS activity value need to be fused in consecutive MS event data.
By setting n = 5, 6,., 15, thirty datasets for each coal mine are
constructed.

To simulate the direct application of the model, the joint data set
of the training set, the verification set, and the test set are processed
with unbalanced data respectively, so that the data of the test set
does not cross with other data sets. Considering the importance of
the prediction of dangerous events, this paper sets three test sets,
namely, the testing set of single dangerous events (dangerous set),
the testing set of single non-dangerous events (non-dangerous set),
and the testing set of mixed events (mixed set). In the mixed set, the
number of dangerous and non-dangerous events is equal.

5.2 Comparison methods and
implementation details

The comparison methods are SVM (Ji et al., 2020), CNN
(Zhang et al., 2021), LSTM (Di et al., 2023b), and CNN-
GRU (Ma et al., 2021) methods which are the most popular
supervised deep-learning methods for rockburst prediction. For the
presented self-supervision method, the pre-trained model is trained
100 epochs. Then, by employing the weights of the pre-trained
model, the fine-tuning model also trained 100 epochs for rockburst
prediction testing.The comparisonmethods are trained 200 epochs.
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FIGURE 7
The illustration of cross-attention mechanism.

FIGURE 8
The fine tuning model of the self-supervision algorithm for rockburst prediction.

The masked probability of the rockburst prediction indexes for the
pre-trained model input of the presented self-supervision method is
50%. For the training of the pre-trained model, the unlabeled data
is the entire MS data of each mine training set.

All experiments are implemented on Pytorch 1.10.2 + CUDA
11.3, in FP32 precision by using two RTX A6000 GPU. The
experiments use an AdamW optimizer with a momentum of 0.9,

a batch size of 256, a weight decay of 4 × 10−5, an initial learning
rate of 5 × 10−4. For the supervised methods and the presented
fine-tuning method, the cross-entropy (CE) loss function serves
as the metric to assess the discrepancy between predictions and
ground truth labels. Conversely, for the pre-trainedmodel of the self-
supervision method, the mean squared error (MSE) loss is utilized.
The performance of methods is represented by precision (%).
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FIGURE 9
The performance comparison of the presented self-supervision method and different methods on the (A) dangerous set; (B) mixed set; (C)
non-dangerous set. The rays of radar maps are the mixed numbers of MS events in prediction indexes.

6 Experiment results and discussion

This section mainly uses the comparison experiment on two
selected mines’ MS data to show the performance of the algorithm,
in Section 6.1. The structure and parameters of the algorithm are
studied by ablation experiments on the MS data of the first mine,
in Sections 6.2∼6.6.

6.1 Comparison studies

The comparison study results are shown in Figure 9. For the
first and second mine, when fused MS event number n is 8, the
proposedmethod achieves the best performance on themixed event
testing set with an accuracy of 84.64%/83.17%; the accuracy of the
method on the dangerous event testing set is 81.78%/80.50%; the
accuracy of the model on the non-dangerous event testing set is
87.50%/85.86%. These results on different type datasets are close to
the accuracy of the model on the mixed test set, indicating that the
model is very effective for both dangerous and non-dangerous event
prediction. In contrast, the best accuracy of the comparisonmethods
is 82.19%/79.86%/84.52% on the mixed/dangerous/non-dangerous
event testing set.

When different models reach the highest accuracy on different
data sets, the corresponding n is similar. This is because the
rockburst prediction indexes are mainly physical quantity indexes
presented by considering the physical logic of coal rockmass failure.
For a working face or mine with the same mining situation, the
description content and meaning of these indexes are the same.

6.2 The ablation experiment of rockburst
prediction indexes

In order to explore the importance of different rockburst
prediction indicators, the performance of the different
index combinations on the mixed testing set when n=8
is shown in Figure 10. It is obvious that the energy and
spatiotemporal diffusion are very important for the analysis of
future rockburst risk. When respectively lack of the temporal
concentration, the time interval, time information entropy, space
concentration, spatiotemporal diffusion, energy density, energy
concentration, energy, and MS activity value, model performance
decreased by 3.12%, 1.03%, 2.56%, 2.37%, 5.31%, 3.22%, 2.75%,
6.81%, and 2.65%, respectively.

By studying the effectiveness of different index
combinations, Figure 10 shows that the impact of missing one
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FIGURE 10
The ablation results of missing different rockburst prediction index.

TABLE 1 The ablation experiment results of randommask probability based on the mixed set. The bold values mean the probability and precision when
the model achieve the best performance.

Probability 0.30 0.40 0.45 0.50 0.55 0.60 0.70 0.80

Precision 83.37 83.54 83.81 84.64 83.62 83.08 82.64 82.07

type of index on model performance is much greater than that of
missing the same number of different types of index.This is because
the rockburst or MS event contains three aspects of time, space,
and intensity information, and the lack of any one kind of index
will result in an inadequate description of rockburst information.
Meanwhile, the ablation experiment of the indicators also proved
the rationality and correctness of the time-space-intensity indexes
established in the paper, because no index would have a negative
impact on the performance of the model.

6.3 Random mask probability for rockburst
indexes

Randommask probability is a very important parameter for pre-
trained models in self-supervision algorithms. In this section, the
randommask probability is set as 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8,
respectively. The ablation results are shown in Table 1. Obviously,
when the random probability of the mask is 0.5, the method
performance is the best. When the mask probability is too large
or too small, the model performance will be greatly reduced. Too
large or too small mask probability can cause model performance
degradation. This is because when the random mask probability is
too small, the pre-trained model of the self-supervision algorithm
can easily complete the rockburst index reconstruction. Therefore,
the pre-trained model cannot understand the distribution features
of the rockburst index. However, when the randommask probability
is too large, it is difficult for the pre-trainedmodel to reconstruct the
masked indexes because the useful information is too little.

6.4 Training epochs of pre-trained and
fine-tuning models

As mentioned in Section 3, the pre-trained model in Figure 4
can automatically explore the distribution features of prediction
indexes. Therefore, the pre-trained model can learn useful
information from a large number of unlabeled MS events. In
this section, the self-supervision model is firstly pretrained
with 50/100/150 epochs. Then, the encoder and decoder of
the fine-tuning model are initialized using the pre-trained
parameters. The supervised fine-tuning model is trained with
150/100/50 epochs using labeled MS data of training datasets. The
performance on the mixed set is 83.37%/84.64%/82.86% based on
these settings.

In Table 1, an insufficient number of fine-tuning epochs leads
to a decrease in the model’s performance, as the model is
unable to adequately capture the distribution features of the MS
data. Conversely, when the supervised epochs exceed 100, the
proposed model demonstrates superior performance, especially
when utilizing a significant amount of data for self-supervision
pretraining.The introduced self-supervision approach offers a viable
option for offline pretraining with vast amounts of data, enabling
swift deployment in engineering scenarios.

6.5 The number of unlabeled samples in
the pre-trained stage

For the proposed self-supervision method, the unlabeled data
is used to train the pre-trained model, and the labeled data is
employed to train the fine-tuned model. For the training setting
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FIGURE 11
The ablation experiment results of unlabeled samples.

FIGURE 12
The ablation experiment results of the decoder layer numbers and decoder feature dimensions. 24 indicates that the feature dimension of the encoder
is [Batch size, 24, 1].

of the first mine in Figure 9, the numbers of unlabeled samples
and labeled samples are 6,792 and 6,792. This section increases the
number of unlabeled samples by fusing data from the dataset of
the second mine. Figure 11 shows the self-supervision algorithm
performance changes as the amount of unlabeled data grows
from 6,792 to 20,977. The results show that the increase of the

number of unlabeled data at the pre-trained stage can improve the
rockburst prediction performance of the proposed self-supervision
algorithm. This is mainly because a sufficient amount of MS
data helps the pre-trained model to fully learn the intra-class
variance of the same type of MS events and the inter-class gap
of different types of MS events.
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6.6 The layer number and feature
dimension of decoder

In order to explore the optimal structure of the self-supervision
algorithm, the layer number and feature dimension of the
decoder are studied by the ablation experiments. The layer
number of the decoder is set as 1∼5. The feature dimension
of the decoder is set as [Batch size, 12, 1], [Batch size, 24,
1], [Batch size, 36, 1] and [Batch size, 48, 1]. The ablation
results are shown in Figure 12. When the layer number is less
than 3 and the feature dimension is less than 24 ([Batch size,
24, 1]), the performance degradation is significant. However,
more layer numbers and feature dimensions of the decoder have
limited performance gains with more computational consumption.
Therefore, the decoder with the 3-layer number and [Batch size,
24, 1] feature dimension is the optimal structure for trade-off
performance and computation cost.

7 Conclusion

This paper aims to overcome two main rockburst prediction
problems, including the absence of comprehensive research on
definitive prediction indices and the waste of vast amounts of
unlabeled data. Therefore, the distribution features of acoustic
emission (AE) events at each stage of coal rock deformation and
failure are studied by the laboratory experiment. The spatial-
temporal evolution of rockburst in field MS data is explored.
Subsequently, nine prediction indexes of rockburst risk are
established, including temporal concentration, time interval, and
time information entropy, space concentration, spatiotemporal
diffusion, total stress equivalent, energy value, and energy
information entropy. The formulas of nine different dominant
rockburst prediction indexes are summarized.

To intelligent use the unlabeled data, a new self-supervision
algorithm consisting of the pre-trained and fine-tuning model is
constructed according to the distribution features ofMSdata and the
requirement of rockburst prediction. The pre-trained model of the
self-supervision algorithm can automatically learn the distribution
features of rockburst prediction indexes by reconstructing the
masked indexes. Then, the pre-trained encoder and decoder
parameters are transferred to the fine-tunedmodel using the transfer
learning method. Finally, the fine-tuning model is trained using the
labeled MS data with rockburst risk.

Abundant experiments report that the performance of the
self-supervision algorithm is far superior to previous algorithms.

Meanwhile, the ablation experiment also proves that the proposed
rockburst prediction indexes are effective and the proposed self-
supervision rockburst prediction algorithm can effectively use the
unlabeled data.
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