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Geological parameters of soil exhibit spatial variability. Inverse analysis allows the
acquisition of accurate spatial distributions of key geological parameters, which
is crucial for structural safety assessment. In this study, an ensemble Kalman filter
(EnKF) is employed in the context of data assimilation. Random fields are used
as the initial input ensembles for the algorithm. The present study effectively
integrates the ensemble Kalman filter with the numerical simulation software
ABAQUS, enabling the inversion of parameter fields under various operating
conditions. An in-house Python code script is developed to control ABAQUS for
finite element computations and to obtain observations at target points. During
the stepwise computation process, the algorithm can utilize newly acquired
observations to accelerate the convergence of the parameter field to the true
field. The effectiveness of the algorithm is validated, and the method is applied
to a case study of double-tunnel excavation and a stepwise excavation analysis
of a three-layered slope. The impact of the number of ensemble members and
the ratio of the horizontal correlation scale to the vertical correlation scale of
random fields on the effectiveness of updating the parameter field have also
been investigated.
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1 Introduction

The stratigraphy of natural environments is formed through prolonged sedimentation,
resulting in soil exhibiting heterogeneity. Many scholars regard soil as a complex
heterogeneous substance and have demonstrated that soil parameters constitute a spatial
stochastic variable (Lumb, 1966), implying that soil parameters possess different values
at different locations. Due to the inability to access all material parameters possessed
by soil within a given area, rock and soil material parameters are typically treated as
stochastic variables. Vanmarcke Erik (1977) presented stochastic models using random
fields, achieving more accurate spatial simulations of geological parameters. Building upon
the concepts of Vanmarcke’s random field theory, Griffiths and Fenton Gordon (2004)
proposed amore rigorous probabilistic analysismethod known as the randomfinite element
method (RFEM), which incorporates considerations of spatial correlation length. In RFEM,
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Monte Carlo methods and random field theory are employed
to address the challenge of simulating spatial variability in soil
parameters. To tackle the issue of spatial variability in soil
parameters, Li X. et al.(2015) focused on the role of conditional
random fields. Li et al. (Li et al., 2013; Li Y. J. et al., 2015; Li et al.,
2016) concentrated on the domain of three-dimensional slope
stability. Furthermore, Li (2017) utilized RFEM to investigate
three-dimensional spatial variability in slope stability analysis and
conducted performance comparisons with other methods.

Inaccuracies often arise in computational simulations compared
to actual engineering scenarios when a crucial geological parameter
of the model is crudely defined as a single value. Numerical
simulation and monitoring are very important for geohazard and
geohazardmitigation (Fang et al., 2023; Fang et al., 2024; Yuan et al.,
2024). To address the challenge of obtaining precise soil parameters,
the methods of inverse analysis have garnered significant attention
in the field of geotechnical engineering. Cividini et al. (1983)
employed both the least squares method and Bayesian method to
inversely compute Young’s modulus of foundation soil layers based
on foundation displacements. Honjo et al. (1994) extended the
Bayesian method, while Lee and Kim (1999) applied this approach
in tunnel engineering, inversely computing four parameters.
Ledesma et al. (1996) provided a brief overview and comparison
of four commonly used inverse analysis methods: the least squares
method, maximum likelihood method, Bayesian method, and
Kalman filtering (KF). Other inverse analysis methods include the
Markov Chain Monte Carlo method (MCMC) (Zhang et al., 2010)
and the Hamiltonian Monte Carlo method (HMC) (Koch et al.,
2020). While inverse analysis methods have shown great potential
in geotechnical engineering, they face several challenges, i.e., the
bayesian method require numerous forward simulations, which can
be computationally expensive for complex geotechnical models.
Moreover, traditionalmethods often struggle to properly account for
uncertainties in both measurements and model parameters.

The Kalman filter, particularly the ensemble Kalman filter
(Evensen, 1994; Evensen, 2006), and particle filter (Doucet et al.,
2000), among other nonlinear methods, have gradually evolved into
data assimilation techniques when combined with finite element
methods. Among these, EnKF has stood out due to its excellent
computational efficiency and has found widespread application.The
EnKF has the following advantages over the traditional methods,
for example, it provides a probabilistic framework that can handle
multiple possible solutions, allowing for sequential updating, which
is particularly suited for time-evolving geotechnical problems and
it is more computationally efficient. Data assimilation techniques,
particularly the Ensemble Kalman Filter (EnKF), have gained
significant traction in geotechnical engineering over the past decade.
EnKF, originally developed for weather forecasting, has proven to
be a powerful tool for integrating observations with numerical
models in geotechnical applications. For instance, Chen and Zhang
(2006) employed EnKF to update permeability coefficients and
pressure heads. Vardon et al. (2016) utilized EnKF to reduce spatial
variability in permeability coefficients.

In the context of slope stability, recent studies have shown the
potential of data assimilation methods to improve predictions and
reduce uncertainties. Liu et al. (2018) proposed a data assimilation
framework based on EnKF, utilizing measurements of pore
water pressure to improve estimates of hydraulic parameters

and consequently predict slope stability. Caballero Perez et al.
(2018) enhanced the prediction accuracy of coupled fluid and
geomechanical sequential methods at a lower computational cost
using EnKF. Li and Liu (2019) combined conditional random fields
with EnKF, effectively improving estimates of parameter spatial
distributions. Tao et al. (2020) utilized EnKF to investigate key issues
in geotechnical and geological domains, such as surface subsidence,
and compared simulation results with actual data. Mohsan et al.
(2021) combined the EnKF with PLAXIS to investigate the
influence of the Mohr-Coulomb model and the Hardening Soil
model on the inversion of key parameters in coupled hydro-
mechanical slope. Ren et al. (2022) estimated the spatial distribution
of the Young’s modulus of an earth‐fill dam using EnKF by
assimilating arrival times of surface waves.

The use of EnKF for inverse analysis within data assimilation
methods requires a forward solver, which in geotechnical
engineering is often a custom code script rather than a standardised
implementation. In this paper, EnKF is integrated with the
numerical simulation software ABAQUS, taking advantage of
ABAQUS’ robust problem-solving capabilities. This approach
provides a versatile and flexible method for inverse data assimilation
analysis, significantly reducing the learning curve associated with
this technique.

Themain objective of this paper is to achieve parameter updates
through EnKF, a data assimilation algorithm. In this process,
random fields of critical parameters are generated as the initial
input ensemble for filtering. A Python script is employed to control
ABAQUS and its subroutines for finite element computations,
obtaining observations at each step. This enables the stepwise
updating of the parameter field, progressively reducing uncertainties
inherent in structural stability analysis. While our work builds
upon the foundation laid by Li and Liu (2019), we introduce
several innovative aspects. By integrating EnKF with ABAQUS, we
extend the applicability of the method to a wider range of complex
geotechnical scenarios. Our approach offers enhanced flexibility in
problem formulation, improved computational efficiency through
optimized scripting, and the ability to handle multi-stage analyses
effectively. Furthermore, we provide a comprehensive sensitivity
analysis, offering insights into the method’s performance under
varying conditions.

The paper is organized into several sections: Section 2 delves
into the primary implementation methods of EnKF. A detailed
description of the implementation steps and key aspects of the
inverse analysis method is provided in Section 3. Section 4 presents
a simplified four-step excavation case for comparative analysis and
validation of the method’s effectiveness. Section 5 discusses the
analysis of a double-tunnel excavation case, focusing on the impact
of ensemble size and the ratio of horizontal to vertical fluctuation
scales in the random fields on the update results. An analysis of a
slope excavation case involving three steps is included in Section 6.
The final section is the conclusion of the paper.

2 Ensemble kalman filter

Under normal circumstances, the outcomes of observations
come from the observation space. This can be mathematically
expressed as follows in Equations 1, 2:
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FIGURE 1
Flowchart of the parameter field inversion method achieved by coupling EnKF with ABAQUS.

y = f(z) (1)

In which,

z = (z1,z2,…,zn)
T (2)

in this context, y ∈ ℝm represents the output at measurement points,
and z ∈ ℝn denotes a combined vector of model parameters and
state variables. Here, m signifies the number of ensembles, while n
represents the total count of model parameters and state variables.

Utilizing the algorithmproposed byEvensen (2003), we generate
a set of ensembles Xb (Equation 3) of state variable predictions
describing the model’s forecast error at time ti. Here, m denotes the
number of ensembles:

Xb = {x
b
1,x

b
2,…,x

b
m} (3)

In Equation 4, the average value of the set of ensembles of state
variables is given by:

xb = 1
m
∑m

i=1
xbi (4)

let x′bi = x
b
i − xb denote the difference of the i-th ensemble from the

mean of ensembles. The matrix representation of these differences
can be expressed in Equation 5 as:

X′b = {x
′b
1 ,x
′b
2 ,…,x

′b
m} (5)

The covariance matrix of the predicted errors in the state
variables can be obtained in Equation 6 as follows:

Bf = 1
m− 1

X′b[X′b]T (6)

The calculation formula for error statistics in the Kalman Filter
is defined as follows in Equations 7, 8:

Bf = (Xb −Xt)[Xb −Xt]T (7)

Ba = (Xa −Xt)[Xa −Xt]T (8)

where Ba represents the covariance matrix of analysis errors, Xb

represents the analysis state, and Xt denotes the true state. EnKF
approximates the ensembles’mean as the optimal estimate. Centered
around the mean, the covariance matrix of the ensembles can be
defined as follows in Equations 9, 10:

B f ≈ (Xb −Xb)(Xb −Xb)
T

(9)

Ba ≈ (Xa −Xa)(Xa −Xa)T (10)

Monte Carlo sampling of random numbers is employed to
simulate Gaussian white noise with a mean of 0 and a standard
deviation equal to the observation multiplied by a noise scaling
factor. In this scenario, the displacement vector of measurement
points constitutes a set of observations with added perturbations,
where the i-th sample can be expressed in Equation 11 as:
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FIGURE 2
Four-step excavation case: first layer excavation (A) second layer excavation (B) third layer excavation (C) and fourth layer excavation (D) (dots indicate
12 displacement measurement locations).

yi = y+ y
′
i (11)

where the statistical characteristics of y′i exhibit a mean of 0 and
an error covariance of R. The inclusion of perturbed observations
is crucial for EnKF. If the observations are not treated as random
variables, the updated ensembles, while possessing the correct
mean, may result in excessively low variance, leading to eventual
divergence of the algorithm (Burgers et al., 1998).

In Equation 12 the Kalman gain matrix is given by:

K = BfHT(HBfHT +R)−1 (12)

whereH is the observation operator.H is composed solely of 0s and
1s, and by adjusting its composition, one can succinctly describe the
linear or nonlinear relationship between the model and the data.

The primary computational burden of the Kalman filter
lies in the calculation of the covariance matrix. In EnKF
process, it is evident that the observation operator H and the
state error covariance Bf consistently appear in the updating
process. Consequently, the operations involving H and Bf can be
approximated to replace the actual covariance matrix operations,
resulting in a substantial simplification of the computations.

Finally, update the state variables by:

xai = x
b
i +K(yi −Hx

b
i ) (13)

In Equation 14 the optimal estimate is obtained by taking the
mean ofm ensembles of state variables:

xa = 1
m
∑m

i=1
xai (14)

The initial value of the state variable are random fields of key
geological parameters, which will be updated through EnKF. Upon
completion of all iterations, the ensembles’ mean can be regarded as
the optimal estimate.

3 Parameter field inversion method
using EnKF with ABAQUS

ABAQUS, recognized as a robust finite element analysis
software, possesses the capability to simulate a diverse range
of mechanical problems and intricate engineering scenarios. It
has found widespread application in numerical simulations and
engineering computations. Notably, the functionality of ABAQUS
subroutines is highly potent. By leveraging these subroutines
and connecting them within the ABAQUS framework, various
functionalities can be achieved through the utilization of customized
Python or Fortran code script. This study specifically employs
ABAQUS and its subroutines to assign distinct material parameters
to all nodes in the model and to extract displacement values
for selected nodes. The flexibility afforded by subroutines ensures
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FIGURE 3
Young’s modulus field using Fortran of: reference field (A) first layer excavation and update (B) second layer excavation and update (C) and third layer
excavation and update (D).

FIGURE 4
Young’s modulus field using ABAQUS of: reference field (A) first layer excavation and update (B) second layer excavation and update (C) and third layer
excavation and update (D).
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FIGURE 5
RMSE for Young’s modulus fields after three updates using Fortran
and ABAQUS.

the theoretical problem-solving capacity of ABAQUS, rendering
it’s theoretically capablity of addressing a spectrum of problems
through corresponding inverse analyses.

Accurately predicting the stability of a structure through
existing observations is crucial for structural maintenance and
safety assessments. The main objective of this paper is to achieve
parameter updates through EnKF, a data assimilation algorithm. In
this process, random fields of critical parameters are generated as
the initial input ensemble for filtering. Customized Python code
script is employed to control ABAQUS and its subroutines for
finite element computations, obtaining displacement values of the
observation points at each step. This enables the stepwise updating
of the parameter field, progressively reducing uncertainties inherent
in structural stability analysis.

This study utilizes random fields of key geological parameters
as the initial ensembles for EnKF. The displacements or stresses
at measurement points in the corresponding finite element model
are considered as observations. ABAQUS and its subroutines are
employed as the computational tools for the model, ultimately
achieving the update and inversion of the parameter field.

The general steps of the parameter field inversion method using
EnKF with ABAQUS are as follows:

1. Initialization: Generate initial ensemble members using
random fields of key parameters. Obtain key parameters such
as mean, variance, and spatial correlation from soil data. Use a
local averaging subdivision method to generate unconditional
random fields of geological parameters to be inverted.

2. Forward Simulation: For each ensemble member, use
ABAQUS to simulate the system response.Map the parameters
of the randomfields to theAbaqus finite elementmesh perform
finite element analysis.

3. Observation Simulation: Extract simulated observations from
ABAQUS output corresponding to measurement locations.

4. EnKF Update: Apply the EnKF update equation to adjust
parameter fields based on the difference between simulated

and actual observations. The EnKF update equation
is given by Equation 13.

5. Use the updated parameter fields for the next round of
finite element calculations. Repeat for a specified number
of iterations. Upon completion of all iterations, consider the
ensembles’ mean as the optimal estimate of the parameter field
to be inverted.

The integration with ABAQUS is achieved through custom
Python scripts that control the ABAQUS simulations, extract
relevant outputs, and feed them into the EnKF algorithm. This
approach allows for seamless coupling between the finite element
simulations and the data assimilation process.Thedetailed flowchart
of the parameter field inversion method achieved by coupling EnKF
with ABAQUS is illustrated in Figure 1.

In the section on stochastic finite element analysis, an in-house
Python code script is employed to map the input parameter field
onto the mesh nodes of the computational model. The size of
the input parameter field is Nm ×Ncell, where Nm is the number
of ensembles, and Ncell = nxe× nye represents the cell scale of
random fields. Initially, the input parameter fields are random
fields, serving as the initial ensembles for which the subsequent
fields are progressively updated by EnKF. For each ensemble, a
parameter field of size Ncell is used as the input for finite element
calculations. In ABAQUS, a user subroutine called UFIELD is
adopted.This ensures that each node in the finite elementmodel can
access its corresponding parameter in the mapped parameter field.
Subsequently, customized Python code script is utilized to submit
computations and obtain displacement values (or stress values at
observed Gauss points) corresponding to the measurement points.
A snippet of the code is provided in Supplementary Appendix SA.

4 Simplified excavation case for
validation

To validate the proposed Abaqus Enkf framework in
geotechnical engineering applications, a simplified excavation is
considered in this section. Li and Liu (2019) investigated the
influence of unconditional and conditional random fields on the
inversion of parameter fields. They conducted a computational case
study involving the inversion of Young’s modulus for a simplified
four-step excavation, as shown in Figure 2. Measurement points
were strategically placed within the model, which can obtain
observations after each excavation step. These observations were
then utilized to update the parameter field. The updated parameter
fields were subsequently employed in the next excavation step.

In this paper, the feasibility of the parameter field inversion
method using EnKF with ABAQUS was validated by a reference
case study. Li and Liu (2019) used the Enkf with an in-house
Fortran finite element code for this case study. The excavation
problem assumed in this case had a dimension of 4m× 4m. The
domain is divided into eight-node quadrilateral elements, each
with a grid size of 0.5m× 0.5m. The boundary conditions are
fixed base and rollers on left and right sides. The model applied
the Mohr-Coulomb failure criterion with cu = 9kPa, φ = 30°, ψ =
0.1°, soil density γ = 20kN/m3, and a Poisson’s ratio of 0.49. The
inverted parameter field was Young’s modulus field with a mean
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FIGURE 6
Size and boundary conditions of double-tunnel excavation (dots indicate 15 displacement target points).

TABLE 1 Soil property values of double-tunnel excavation.

ρ c φ v

2 × 103kg/m3 5 × 104Pa 20° 0.3

μE = 1.0× 10
8Pa, coefficient of variation VE = 0.2, and isotropic

fluctuation scale θ = 1m. The model underwent excavations in
four steps, with each excavation depth being 0.5m, resulting in
a total excavation depth of 2m. Simultaneously, parameters such
as the number and distribution of measurement points, values of
observation noise, etc., were consistent with Li and Liu’s setup (Li
and Liu, 2019). For the selection of the reference field, it aligned with
Li and Liu’s approach.

When generating unconditional random fields as the initial
ensembles, an additional reference field was generated specifically
for the current parameter field inversion. To facilitate a better
comparison of the two methods in parameter field inversion, both
methods utilized the same reference field.

The results of the inversion of Young’s modulus field after the
first three excavation steps using Fortran code and the parameter
field inversion method using EnKF with ABAQUS are illustrated in
Figures 3, 4, respectively. In the plots, cells closer to red indicate higher
values, while those closer to blue indicate lower values. For better
numerical comparison, the maximum and minimum values in the
legend of the plots for each step of both methods are kept identical.
Additionally, root mean square error (RMSE) is introduced to better
evaluate the results of the parameter field inversion:

RMSE = √ 1
N
∑N

i=1
(St − Sa)2 (15)

here, N represents the number of parameters in the parameter field,
which, in this case study, is 64. St denotes the true parameter field
values, and Sa represents the updated parameter field values. The
RMSE values for the corresponding parameter fields after three
updates using both methods are shown in Figure 5.

Following the first update, the distribution of larger and smaller
values in the parameter field is already essentially consistent with
the reference field, reflecting the spatial variability of the parameters.
However, there is still a significant numerical deviation. This issue
sees substantial improvement after the second update, and by the
third update, the parameter field is nearly identical to the reference
field. As seen in Figure 5, the RMSE values of the parameter fields
obtained by the two methods continue to decrease, indicating that
the uncertainty of the parameter field decreases continuously under
the updating of the algorithm, and the updated parameter field
converges to the reference field continuously.

Thus, through the comparison with the results of the four-step
excavation case studied by Li and Liu, the feasibility and effectiveness
of the parameter field inversion method using EnKF with ABAQUS
has been demonstrated.

5 Parameter field inversion of
double-tunnel excavation

In the previous section, the feasibility and effectiveness of
the parameter field inversion method using EnKF with ABAQUS
was validated using a simplified four-step excavation case. In this
section, a more complex and realistic two-dimensional double-
tunnel excavation case is introduced. The double-tunnel excavation
case is selected to demonstrate the applicability of our method
to complex, multi-stage geotechnical problems. This case presents
challenges in capturing the spatial variability of soil properties
and their evolution during sequential excavations, which are
common in urban tunneling projects. By applying our EnKF-
ABAQUS integration to this scenario, we aim to show how
the method can improve parameter field estimations in realistic
engineering contexts.

The schematic diagram of themodel is shown in Figure 6, with a
length of 80m and a height of 40m.Moreover, 15 displacement target
points are used in this study (the black dot points in Figure 6). The
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FIGURE 7
Reference field of Young’s modulus values.

FIGURE 8
Young’s modulus field of: first tunnel excavation and update (A)
second tunnel excavation and update (B).

FIGURE 9
RMSE for Young’s modulus fields of random fields and two updates.

model involves the sequential excavation of two tunnels from left
to right, each with a radius of 3m. Adjustments have been made to
the grids around the tunnels to reduce computational errors. The
boundary conditions for the model are fixed base and rollers on
left and right sides. The model adopts the Mohr-Coulomb failure
criterion, and detailed material parameters are provided in Table 1.

According to the parameter sensitivity analysis by Wang et al.
(2022), under the Mohr-Coulomb criterion, the sensitivity of
displacement values to Young’s modulus is much higher than
other parameters. Additionally, since not all elements enter the
plastic stage during the simulated excavation process, parameters
such as cohesion and friction angle only affect displacement in
a few elements. Therefore, in this case, Young’s modulus field is
chosen as the parameter field for inversion. To simulate geological
stratification and make the inversion results clearer, the reference
field is set to have four distinct layers, as shown in Figure 7. Young’s
modulus values from top to bottom are: 2.0× 107Pa, 1.7× 107Pa,
2.1× 107Pa and 2.4× 107Pa. In this Figure, regions closer to red
indicate higher Young’s modulus values, while regions closer to blue
indicate lower Young’s modulus values.

A customized Fortran code was used to generate an
unconditional random field of Young’s modulus as the initial
ensembles for EnKF. The ensemble size as well as the number
of random fields were set to 500. The mean of Young’s modulus
was μE = 2.0× 10

7Pa, the coefficient of variation was VE = 0.15, the
horizontal fluctuation scale θh = 16m, the vertical fluctuation scale
θv = 2m, resulting in an anisotropy ratio of aniso = θh/θv = 8. A user
subroutine called UFIELD assigned parameter values to all nodes
in the model and initiated the computations. Displacement values
at measurement points were read from the Odb files, and Gaussian
noise with a mean of 0 and a variance of approximately 10% of the
surface maximum settlement (1.8 cm in the reference field) was
added to the observations.

After the first excavation, the updated parameters were used for
the second excavation. The mean of the parameter fields from the
500 ensembles after the two excavations can be considered the best
estimate for the parameter field.

The distribution of the parameter field after two excavations is
shown in Figure 8. In this Figure, regions closer to red represent
higher values, while those closer to blue represent lower values.
From Figure 8, it is evident that after the first excavation and
update, the distribution of Young’s modulus field already exhibits
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FIGURE 10
Young’s modulus field of double-tunnel excavation after one update using: 200 ensembles (A) 300 ensembles (B) 500 ensembles (C) 1,000
ensembles (D).

FIGURE 11
RMSE for Young’s modulus fields using different numbers of
ensembles.

a clear four-layer pattern, although the boundaries are not well-
defined, and there are mixed regions between every two layers.
The inversion results for Young’s modulus field in the left edge and
right edge regions of the model are not as pronounced. After the
second excavation and update, the four-layer pattern, especially in
the central region, has clearer boundaries. Young’s modulus field in
the left and right regions of the model is now consistent with the
reference field, and the distinguishability of Young’s modulus values
between the four layers is higher and closer to the corresponding
values in the reference field. The trend of RMSE (Equation 15)
values for the random fields and the updated fields after two
excavations, as shown in Figure 9, also indicates that the inversion
of the parameter field has been quite effective after the two-step
excavations.

The primary focus is to investigate the influence of the ensemble
size and the ratio of the horizontal fluctuation scale to the vertical
fluctuation scale aniso = θh/θv on the results of the parameter field
inversion.

In the first part of the investigation into the impact of ensemble
size on the results of the parameter field inversion, while keeping
other parameters constant, the ratio of the horizontal fluctuation
scale to the vertical fluctuation scale is set to aniso = θh/θv = 8. The
mean of the observation noise is 0, and the variance is 1% of the
maximum displacement value. Figure 10 displays the distribution of
the parameter field after one step of update for ensemble sizes of 200,
300, 500, and 1,000, along with the reference field.

In this Figure, regions closer to red indicate higher Young’s
modulus values, while those closer to blue indicate lower values.
When the ensemble size is 200, the four-layer stratification in
the distribution of the parameter field after one update is almost
invisible, with unclear layer boundaries and even mixing between
different layers. This outcome is nearly unusable. However, with an
increase in the ensemble size, this situation is significantly improved.
After one update, the parameter field already exhibits a more
distinct four-layer stratigraphic distribution. When the ensemble
size is increased to 500, the stratigraphic distribution becomes more
apparent, and the contours between each layer are clearer, with no
mixing at the layer edges. Increasing the ensemble size to 1,000 does
not show a significant improvement compared to an ensemble size
of 500, as the results are already fairly close to the reference field.
Meanwhile, the RMSE values of the parameter fields for the four
ensemble sizes after one update are shown in Figure 11. From this
Figure, it can be seen that the curve converges when the ensemble
size reaches 500, and further increasing the ensemble size does
not lead to a noticeable improvement. It is essential to note that
an increase in ensemble size implies a proportional increase in
computational cost (i.e. increase the ensemble size from 500 to 1,000
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FIGURE 12
Probability density distributions of Young’s modulus field values after one update using: 200 ensembles (A) 300 ensembles (B) 500 ensembles (C) 1,000
ensembles (D) (The dashed lines in the illustration denote the parameter values of the reference field).

will double the computational cost), as each ensemble’s parameter
field undergoes finite element calculation at least once. Considering
these factors, an ensemble size of 500 appears to be a reasonable
choice for this case.

Figure 12 presents the probability density distributions of
parameter field values for four ensemble sizes after one update,
as part of the investigation into the impact of ensemble size on
the results of the parameter field inversion. When the ensemble
size is 200, the data distribution is extensive, and the four values
corresponding to the reference field (1.7× 107Pa, 2.0× 107Pa, 2.1×
107Pa and 2.4× 107Pa) are not prominent. This situation persists
when the ensemble size increases to 300. However, when the
ensemble size reaches 500, three distinct peaks become evident in
the data, indicating a more effective reduction of uncertainty in
the parameter field updates. With an ensemble size of 1,000, the
distribution plot clearly exhibits four peak intervals, ranging from
small to large as follows: 1.6725× 107 ∼ 1.7× 107Pa, 2.0025× 107 ∼
2.03× 107Pa, 2.1125× 107 ∼ 2.14× 107Pa and 2.36× 107 ∼ 2.3875×
107Pa. These values are very close to the four values in the
reference field.

In the second part, the focus is primarily on exploring the impact
of the ratio of horizontal to vertical fluctuation scales, denoted as
aniso = θh/θv, on the results of the parameter field inversion. Other

than the aniso values, all other parameters are kept consistent. In
this case, the ensemble size is set to nens = 500, and the mean of
the observation noise is 0, with a variance of 1% of the maximum
displacement value.

Figure 13 presents the distributions of the reference field and the
parameter field after one update for aniso values of 2, 4, 8, 12, 16,
and 20. In this Figure, regions closer to red indicate higher values of
Young’s modulus, while regions closer to blue indicate lower values.
When aniso is set to 2, the parameter field distribution shows almost
no discernible four-layer stratification, and the boundaries between
layers are relatively unclear, with different layers even exhibiting
mixing, making it nearly unusable.

However, when aniso is set to 4 and 8, this situation improves
significantly. After one update, the parameter field already exhibits
a more apparent stratified distribution, although the contours of
the layers are still not very clear, and there are still mixed regions
along the edges. When the value of aniso increases to 12, the
layer distribution becomes more distinct, with clearer contours
between each layer, and the edges of the layers no longer exhibit
mixing. When aniso is set to 16 or higher, the parameter field
after one update is essentially indistinguishable from the reference
field, showing a very clear stratification, and the contours of
the layers are highly distinct. Simultaneously, the RMSE values
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FIGURE 13
Young’s modulus field of double-tunnel excavation after one update using: aniso = 2 (A) aniso = 4 (B) aniso = 8 (C) aniso = 12 (D) aniso = 16 (E) aniso =
20 (F).

of the parameter field after one update for six values of aniso
are shown in Figure 14. From this Figure, it is evident that increasing
the value of aniso from 2 to 4 results in a significant improvement
in the inversion effectiveness. However, subsequent increases in
aniso have a relatively less pronounced impact on the inversion
effectiveness. The results depicted in the two Figures can be
explained by considering that when the value of aniso is excessively
large, the horizontal fluctuation scale approaches the width of the
model. As a result, the two-dimensional spatial variability tends
to become one-dimensional along the vertical axis, making the
inversionmuch less challenging for one-dimensional data compared
to two-dimensional data. In practical geological distributions, layers
are unlikely to be so regular and uniformly distributed, rendering
excessively large values of aniso meaningless in realistic scenarios.

Figure 15 presents the probability density distributions of
parameter field values after one update for six values of aniso when
investigating the influence of the ratio of horizontal to vertical
fluctuation scales, denoted as aniso = θh/θv. When aniso is set
to 2, the data distribution is quite wide, and the four values in
the reference field (1.7× 107Pa, 2.0× 107Pa, 2.1× 107Pa and 2.4×
107Pa) are not particularly prominent.This situation improves when
aniso is set to 4, as three peaks become discernible. When aniso
is increased to 8, the data clearly exhibits three peaks, indicating
that the parameter field’s update has effectively reduced uncertainty.
When aniso is further increased to 16, the distribution graph

FIGURE 14
RMSE for Young’s modulus fields using different values of aniso.

distinctly presents four peak intervals. The four peaks become more
pronounced when aniso is set to 20, with values are 1.64× 107 ∼
1.66× 107Pa, 2.0× 107 ∼ 2.02× 107Pa, 2.12× 107 ∼ 2.14× 107Pa and
2.36× 107 ∼ 2.38× 107Pa.These values are very close to the values in
the reference field.
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FIGURE 15
Probability density distributions of Young’s modulus field values after one update using: aniso = 2 (A) aniso = 4 (B) aniso = 8 (C) aniso = 12 (D) aniso = 16
(E), aniso = 20 (F) (The dashed lines in the illustration denote the parameter values of the reference field).

6 Parameter field inversion of slope
excavation

In the previous section, we employed a two-dimensional
case of a double-tunnel excavation to validate the accuracy of
the algorithm and conducted an analysis of relevant parameters.
Building upon that foundation, this section will introduce a
simplified two-dimensional layered slope with a three-step
excavation case for additional validation. The three-layered slope

excavation case was chosen to further validate our method in a
different geotechnical context and to explore its performance in
capturing distinct stratigraphic features. Slope stability analysis
is a critical aspect of geotechnical engineering, and accurate
estimation of soil parameters in layered slopes is essential for reliable
stability assessments. This case study allows us to demonstrate the
method’s capability in handling varying spatial correlations and its
effectiveness in updating parameter fields across different geological
layers.
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FIGURE 16
Excavation sequence: first layer excavation (A) second layer excavation (B) third layer excavation (C). (D) Represents the regions involved in the inverse
analysis (Black dots indicate displacement measurement locations and the red dot indicates the target point).

TABLE 2 Soil property values of slope excavation.

ρ c φ v

2.5× 103kg/m3 2× 106Pa 35° 0.3

The schematic diagram of the model is shown in Figure 16,
with a length of 240 m, height of 120 m. The three-step excavation
is carried out from top to bottom as indicated in the diagram.
Excavation sequence is as follows:

1) Initial state: Full slope profile;
2) First excavation: Remove top 20 m from the slope face,

part (a) in Figure 16;
3) Second excavation: Remove additional 20 m from the slope

face, part (b) in Figure 16
4) Third excavation: Remove final 20 m to achieve the target slope

profile, part (3) in Figure 16

Each excavation stage is followed by an EnKF update of the
parameter field.

The boundary conditions of the model involve constraining
horizontal displacements at both ends, while the bottom is fixed.The
model employs the Mohr-Coulomb failure criterion, and detailed
material parameters are provided in Table 2.

Consistent with the double-tunnel excavation case, a parameter
inversion will be conducted for Young’s modulus field. In order
to simulate geological stratification and enhance the clarity of
the parameter inversion results, a reference field is set with an
apparent three-layer stratification, as illustrated in Figure 17. Young’s
modulus values are assigned from top to bottom as 5.0× 109Pa、
6.0× 109Pa and 8.0× 109Pa. In this Figure, regions with colors closer
to red indicate higher values, while regions with colors closer to blue
signify lower values.

A Fortran code was employed to generate random fields of
Young’s modulus for the initial ensembles in EnKF. The ensemble
size and the number of random fields remained at 500. The mean of
Young’s modulus μE = 6.0× 10

9Pa, the coefficient of variation VE =
0.2, the horizontal fluctuation scale θh = 24m, the vertical fluctuation
scale θv = 2m, resulting in an anisotropy factor of aniso = θh/θv = 12.
Consistentwith the double-tunnel excavation case, a user subroutine
named UFIELD was used to assign parameter field values to all
nodes of the model. Displacement values at observation points
were read from the Odb files, with Gaussian noise added to the
observations.Themean of the addedGaussian noisewas set to 0, and
the variance was approximately 10% of the maximum displacement
value. After the first excavation and parameter update, the updated
parameters were used for the second excavation. Subsequently, the
parameters updated after the second excavation were applied to the
third excavation. Finally, the mean of the parameter fields from
the 500 ensembles was considered as the best estimate for these
parameter fields.

The distribution of the parameter field after the three-step
excavation update is depicted in Figure 18. In this Figure, regions
closer to red indicate higher values, while regions closer to blue
signify lower values. From Figure 18, it is obvious that after the
first excavation and update, Young’s modulus field distribution has
clearly exhibited a three-layer pattern, with distinct edges. Notably,
there is no evident lack of inversion effectiveness for Young’s
modulus field in the regions at the left and right ends of the
model. The results after the first update are superior to the double-
tunnel excavation case, primarily due to the increased value of the
anisotropy factor (aniso).

In the second and third excavations and updates, the boundary
lines of the three-layered region become more distinct. Young’s
modulus field at the left and right ends of the model also
aligns closely with the reference field, and the discriminability of
Young’s modulus values in the three layers is higher, numerically
approaching the reference field. The RMSE values for the updated
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FIGURE 17
Reference field of Young’s modulus values.

FIGURE 18
Youngs modulus field of: first excavation and update (A) second
excavation and update (B) third excavation and update (C).

FIGURE 19
RMSE for Young’s modulus fields of three updates.

fields of the three-step excavation are shown in Figure 19. After the
first excavation and update, the inversion of the parameter field is
already quite effective.

As depicted in Figure 16, the red dots therein represent the
selected target point. The displacement distribution of this point
in both the horizontal and vertical directions under the reference
field, as well as within the three successive updating fields,
is illustrated in Figure 20. The histograms in the figure depict
the distribution of displacements in the horizontal and vertical
directions for the target point. The blue curve represents the fitted
curve, while the black dashed line signifies the displacements
in the horizontal and vertical directions under the reference
field for the selected point in the three excavation scenarios.
Following each update, the displacement distributions under the
parameter fields approximate a normal distribution. Simultaneously,
with an increasing number of steps, the mean values of the
displacements under the parameter fields converge towards those
under the reference field. Additionally, the standard deviation of
the displacement distribution progressively decreases. After the
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FIGURE 20
Probability density distributions of target point’s displacement values: in X direction after step 1 (A) in X direction after step 2 (B) in X direction after step
3 (C) in Y direction after step 1 (D) in Y direction after step 2 (E) in Y direction after step 3 (F) (The dashed lines in the illustration denote the target
point’s displacement values of three steps under the reference field).

three excavation and updating steps, the mean values of the
displacements in the horizontal and vertical directions under the
updated parameter fields closely resemble those under the reference
field, indicating the effectiveness of the parameter field updates.

7 Conclusion

This paper presents a parameter field inversion method
based on a data assimilation method named EnKF with a finite

element analysis tool called ABAQUS. The method employs an
ABAQUS subroutine to assign material parameters to nodes, and
a customized in-house Python code script is used to control
ABAQUS for computations and to read observation points data,
which is subsequently utilized for EnKF updates. The method
can be applied to various scenarios, including double-tunnel
excavation and slope excavation. By using random fields of key
parameters as the initial input ensembles for EnKF and utilizing
displacement data from observation points, precise inversion of the
parameter field can be achieved.

Frontiers in Earth Science 15 frontiersin.org

https://doi.org/10.3389/feart.2024.1456186
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2024.1456186

For geological formations characterized by stratified
distribution, the ratio of horizontal to vertical fluctuation scales
in the random fields, denoted as aniso, significantly influences
the results of parameter updates. Similarly, the ensemble size
is also a major factor affecting the updating outcomes. In
general, a larger ensemble size tends to yield better updating
effects. However, a larger ensemble size also implies a greater
computational burden. For a specific problem, once the ensemble
size reaches a certain value, the improvement in updating results
becomes limited.

The results indicate that, owing to higher precision of ABAQUS
in finite element computations, this method provides more accurate
updates for the parameter field. For multi-step engineering or
practical problems, new observations are generated after each
step, and these can be utilized for updating the parameter field.
Consequently, the parameter field gradually converges to the true
values. This characteristic can be beneficial in guiding realistic
engineering applications.

The integration with ABAQUS allows for the use of high-
performance computing resources to handle more complex and
finely discretized models. Future work will focus on optimizing
the method for large-scale applications, potentially incorporating
techniques such as localization or model reduction to manage
computational costs effectively.
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