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Granite buried hill oil and gas reservoirs are relatively scarce worldwide, and
the fine prediction and characterization of their fractures have always been a
significant industry challenge. Particularly in the South China Sea region, large
and thick granite buried-hill reservoirs are influenced by various geological
processes such as weathering and tectonics, resulting in a complex internal
fracture system. The seismic reflection characteristics exhibit high steepness,
discontinuity, and significant amplitude differences, posing significant difficulties
for the fine characterization of fractures. A systematic and comprehensive
research approach has not yet been established. Therefore, this study considers
the large granite-buried hill A reservoir in the South China Sea as a typical case
study and proposes a multi-scale fracture fine prediction and characterization
methodology system. The method starts with analyzing the fracture scale
and genesis to refine the fracture scales identifiable by conventional seismic
data. Based on this, the U-SegNet model and transfer learning are utilized
to achieve fine detection of large-scale fractures. Meanwhile, using high-
resolution ant tracking technology based on MVMD frequency division and
sensitive attribute preferences realizes a fine prediction of medium-to-
small-scale fractures. Furthermore, the discrete fracture network is used
for fracture deterministic modeling, ranging from geometric morphology to
percolation behavior. Ultimately, a post-stack seismic multi-scale fracture
prediction and characterization workflow is established. The results indicate
that the buried hill in the study area exhibits a high degree of fracture
development with evident multi-scale characteristics. Among them, large-scale
fractures have a relatively low development density, primarily oriented in the
NW and NE directions; medium-to-small-scale fractures exhibit high-density
and omnidirectional development. The development of fractures significantly
improves the storage space and fluid flow capacity of the buried hill. Compared
with traditional methods, the proposed method notably enhances the accuracy
of characterizing the degree of fracture development, spatial morphology, and
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percolation behavior in the buried hill reservoir, providing a scientific basis for oil
and gas exploration and development.

KEYWORDS

granite buried hill, multi-scale fractures, deep learning, frequency-division attribute,
fracture prediction and characterization, discrete fracture network model

1 Introduction

With rapid growth in global oil and gas demand and conventional
oil and gas reserves now nearing a 50% extraction rate (Jia, 2022),
unconventional resources have become increasingly crucial in the
petroleum industry (Cui, 2010). Recent discoveries in the Liwan
and Lingshui gas fields highlight the significant exploration potential
in the deepwater area of the South China Sea. Taking the A gas
field in the Pearl River Mouth Basin as an example, this area
consists of granite fracture-type buried hill reservoirs with estimated
reserves of approximately 56 billion cubic meters, making it a future
exploration hotspot. Unlike conventional reservoirs, granite is an
intrusive acidic rock that is dense and hard, and inherently unsuitable
as a hydrocarbon reservoir. Effective reservoir formation occurs
only after structural deformation and weathering leaching increase
porosity. The A gas field’s granite buried hill reservoir typifies a
weathering crust-type reservoir, exhibiting distinct vertical zonation:
upper reservoirsundergo intenseweatheringand leaching, developing
dissolution pores and fractures, forming weathering leaching zones;
lower reservoirs experience weaker weathering, generally compact,
dominated by tectonic fractures, forming endogenous fracture zones;
intermittent dense zones of varying thickness may also be present
(Peng et al., 2024;Wei et al., 2024).These reservoirs undergo complex
transformationsfromweatheringdissolutionandtectonicmovements,
resulting in intricate fracture networks andhighheterogeneity. Single-
detection methods typically identify specific types of fractures or
fracture zones, and the detection results are often a comprehensive
response across different levels and scales of fractures. Therefore,
the precise detection and characterization of multi-scale fractures are
crucial for such reservoirs, posing a significant challenge.

Currently,methods for fault and fracture detectionmainly include
corescanning, logging, seismicanalysis,andmulti-informationfusion.
Seismic detection methods primarily characterize the continuity
or discontinuity of strata through various attribute volumes. The
primary methods include coherence (Bahorich and Farmer, 1995;
Marfurt et al., 1998; 1999), variance (Van Bemmel and Pepper, 2000),
dip and azimuth (Dalley et al., 2007), curvature (Roberts, 2001; Al-
Dossary and Marfurt, 2006; Gao, 2013), edge detection (Di and Gao,
2013), ant tracking (Pedersen et al., 2002), semblance (Hale, 2013;
Wu andHale, 2016), and azimuthal anisotropy analysis (Mallick et al.,
1998; Vasconcelos and Grechka, 2007; Zhang et al., 2013). Although
azimuthal anisotropy analysis offers high fracture prediction accuracy,
its high data acquisition costs often make it infeasible during early
exploration stages. Conventional seismic interpretation typically uses
coherence andedgedetection to identify large-scale fractures,whereas
ant tracking is employed to detect medium-to-small-scale fracture
information. However, noise and stratigraphic features can also
cause seismic reflection discontinuities, which means that traditional
attribute analysismethodsmay be less effective in buried-hill regions.

With the rapid advancement of machine learning and artificial
intelligence, deep learning methods are widely used in seismic
exploration (Zhang et al., ; 2023; Tolstaya and Egorov, 2022; Sun
and Hou, 2024), such as seismic inversion, seismic de-noising, and
facies identification. Among them, large-scale automatic fracture
detection has achieved advanced results in many seismic cases. For
example, Tingdahl and Rooij (2005) implemented fault-probability
estimation using artificial neural networks and fault-enhanced
attributes. Chehrazi et al. (2013) first introduced convolutional
neural networks (CNNs) into fault recognition and demonstrated
promising outcomes in practical applications. Huang et al. (2017)
employed seismic attributes as CNN inputs, enabling automatic fault
identification. Di et al. (2018) compared the experimental results of
MLP and CNN, proving CNN’s superiority in fault detection tasks.
Subsequently, scholars have explored methods that directly utilize
seismic images and fault labels as inputs, enhancing fault recognition
accuracy and relieving computational pressure associated with multi-
attribute techniques (Guo et al., 2018; Pochet et al., 2019; Wu et al.,
2019). In recent years, numerous improved CNN architectures have
emerged, such as hybrid networks based on U-Net and ResNet-34
(Liu et al., 2020), 3D U-SegNet hybrid network integrating U-Net
and SegNet (Lyu et al., 2022), and Fault-Seg-Net (Li et al., 2023),
which further enhance the fault detection performance and efficiency.
Cunha et al. (2020) introduced transfer learning into seismic fault
detection, improving the adaptability of the base model to real
seismicdata.Wei et al. (2022)utilized focal loss to enhance the transfer
learning effectiveness for imbalanced samples. However, research on
large-scale fracture detection in buried hill reservoirs remains scarce,
with limited identification accuracy.

Frequency division technology is an effective seismic data
processing method that can remove redundant information to
accurately highlight seismic reflections at different scales (Naseer,
2024). Typically, as the frequency increases, the responses from the
fracture zones are enhanced, allowing the identification of smaller-
scale fracture zones. In recent years, frequency division technology
combined with seismic attribute analysis has achieved significant
success in identifying fractures in complex areas. For instance,
Zhang et al. (2017) utilized spectral decomposition and anisotropic
attribute analysis to achieve fine identification of small-scale fracture
reservoirs. Liu J. et al. (2022) improved the detection accuracy of
strike-slip fractures in the Tarim Basin using frequency domain
coherence. Ouyang et al. (2020) predicted multi-scale fractures in
shale reservoirs in the Sichuan Basin through wavelet transform
frequency analysis and coherence attributes. Yan (2020) enhanced
characterization of clastic rock faults in the western South China
Sea using generalized S-transform frequency division and coherence
attributes.However,owingtotheHeisenberguncertaintyprinciple, the
above time-frequency analysis methods struggle to simultaneously
balance the time and frequency resolution. Additionally, there is
limited research on buried-hill reservoirs in the southern SouthChina
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Sea, and the sensitive attributes of fractures are not yet clear, posing
challenges for predicting medium-to-small-scale fractures.

For a better description of fracture morphology, size, spatial
arrangement, and orientation characteristics, it is essential to
conduct detailed characterization through deterministic or
stochastic modeling based on fracture detection. For instance,
Zhang J. et al. (2021) utilized seismic attributes and imaging logging
data for deterministic and stochastic modeling to characterize
the spatial features of large-scale fractures and microfractures.
Mi et al. (2023) established a fracture network model using imaging
logging, core, thin section, and scanning electron microscope
data and discussed the impact of microfractures on hydrocarbon
distribution. Generally, mainstream fracture modeling techniques
include discrete medium models (Kim and Deo, 2000; Huang and
Wang, 2011), discrete fracture models (Bahrainian et al., 2015; Zeng
and Yao, 2015), embedded discrete fracture models (Zhou, 2014),
and discrete fracture network models (Baecher, 1983; Zhang et al.,
2016). Among these, discrete fracture network (DFN) models are
widely applied because of their simplicity in construction, broad
applicability, and accurate reservoir description. The deterministic
modeling of this model relies on the precise detection of reservoir
fractures, whereas stochastic modeling is completed by imaging
logging data and fractal law.

Gas reservoirA in theSouthChinaSea is influencedbymultiphase
tectonic movements, with a highly developed and intersecting
basement fracture system. The scarcity of imaging logging and
core data in the study area poses significant challenges for fracture
predictionandcharacterization.Therefore, thisstudyproposesamulti-
scale fracture fine prediction and characterization technology system
tailored for granite buried-hill reservoirs during the early exploration
stage,basedonthescaledivisionandgenesisof fracturesandpost-stack
seismic identification accuracy.Theworkflow is illustrated in Figure 1.
First, anisotropic diffusion filtering is employed to enhance reflection
discontinuities and reduce noise interference. Then, we conduct
transfer learningusingapre-trained3DU-SegNet,adjustingthemodel
weights based on real fracture labels to make it suitable for buried hill
A.During transfer learning, we propose aweighted hybrid binary dice
loss (WHBD loss) to achieve the high-precision detection of large-
scale fractures. Furthermore, we introduce multi-channel variational
modedecomposition (MVMD)forhigh-precision frequencydivision,
calculate various discontinuity attributes within the advantageous
frequency bands, and select sensitive attributes for high-resolution
ant-tracking, thereby enabling fine prediction of medium-to-small-
scale fractures. Finally, deterministic modeling is performed based
on the discrete fracture network (DFN) and multi-scale fracture
prediction information to achieve a detailed characterization of
fractures from geometric morphology to percolation characteristics
in buried hill A. This provides a basis for the subsequent delineation
of favorable reservoirs.

2 Geological setting

Fractures are crucial structural elements of buried-hill
petroleum reservoirs. They not only have important impacts on
the formation, evolution, and trap development, but also serve
as the primary migration pathways and storage spaces for oil
and gas, playing a crucial role in the formation and distribution

of hydrocarbon reservoirs (Yielding et al., 1997; Lyu et al., 2013).
Accurate prediction of the spatial distribution of multi-scale
fractures is crucial for improving the success rate of buried hill
reservoir exploration and development efficiency. However, for
complex geological targets such as deepwater ancient buried hills,
fracture systems are highly developed owing to the influence of
multiple tectonic movements, with seismic responses characterized
by steep, chaotic reflections, weak reflections, or even blank
reflections. Therefore, traditional attribute analysis techniques
struggle to achieve fine characterization of multi-scale fractures.

The Pearl River Mouth Basin (PRMB) is a Cenozoic rift basin
located in the northern South China Sea. The basin extends in
a northeast orientation, with a length of 800 km and width of
300 km, covering an area of 20,000 km2, making it the largest
hydrocarbon-bearing basin in the northern South China Sea. It
consists of multiple tectonic belts from north to south: the northern
uplift belt, northern depression belt, central uplift belt, central
depression belt, southern uplift belt, and southern depression
belt. The first three belts are located in the shallow-water area,
while the latter three are in the deep-water area, forming a
basic pattern of “three uplifts, three depressions” (Cai et al., 2021;
Liu B. J. et al., 2022). The PRMB was controlled by the low-angle
subduction of the ancient Pacific plate towards the South China
plate during the Late Mesozoic era, with an overall tectonic setting
of the Andes-type continental margin magmatic arc. Since the
Cenozoic era, the PRMB has undergone four evolutionary stages: 1)
Paleogene toMiddle Eocene (Tg-T80): fault depression stage. 2) Late
Eocene (T80-T70): fault-depression transition stage. 3) Oligocene to
Middle Miocene (T70-T32): depression stage. 4) Middle Miocene
to Present (T32-Quaternary): tectonic reactivation stage (Pin et al.,
2001; Shi et al., 2005; Zhao et al., 2012).

The Baiyun Sag is located in the deep-water area of the Zhu
II Depression in the PRMB, representing a typical deepwater
slope sedimentary depression in the northern South China Sea
(Figure 2A). According to the “north-south segmentation, east-
west block” structural pattern of the PRMB (Chen et al., 2003),
this area is situated in the central part of the basin sandwiched by
two northwest-trending concealed fractures. The basin’s complex
and significantly heterogeneous structure is characterized by
various styles of large-scale detachment fracture systems. However,
exploration of the ancient buried hills in the deepwater areas of the
PRMB is still in its early stages, with few wells drilled and a lack
of core and sidewall samples. Therefore, effectively utilizing seismic
data and geological understanding to predict and characterize the
development patterns of fracture systems in buried hill reservoirs is
crucial for advancing exploration in this area.

The buried hill A gas reservoir is located in the eastern part
of the Baiyun Sag in the PRMB, adjacent to hydrocarbon-rich
depressions such as the Baiyun Main Sag and the Baiyun East Sag
(Figure 2A), making it a significant natural gas accumulation zone
in the Baiyun Sag (Wang et al., 2023). The basement lithology is
primarily composed of granitoids, with a small amount of volcanic,
volcaniclastic, and metamorphic rocks. Since the Late Mesozoic, this
buried hill has undergonemultiple tectonic stress phases (Figure 2C),
resulting in well-developed fracture systems with distinct vertical
zonation. From top to bottom, these zones include the weathering
zone, internal fracture zone, anddense zone,with varying thicknesses.
The weathering zone is subjected to intense weathering and erosion,
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FIGURE 1
Multi-scale fracture prediction and characterization technology workflow for buried hill A.

leading to small-scale fractures in all directions. The internal zone is
influenced by northwest-trending deep-seated fractures, developing
two pre-existing fracture systems oriented NE-NEE and NW-
NWW (Figure 2C). Buried-hill A has a total of four exploratory
wells, but only one has been drilled into the buried hill, with a
depth of 127 m (located in the weathering zone), and lacks imaging
logging data. Currently, it is difficult to rely on well data for
precise fracture prediction.

3 Conventional fracture prediction
methods

Clarification of the multi-scale characteristics of fractures is
a prerequisite for the accurate prediction and characterization of
fractures at various scales. This article first summarizes the types
and causes of fractures with different development and extension
scales (Zhou et al., 2011; Dong et al., 2016; Ma et al., 2018). Based
on this, it analyzes the geological morphology and seismic response
characteristics of fractures at different scales and summarizes the
conventional geophysical prediction techniques (Table 1). As buried
hillAiscurrently intheearlystageofexploration,minimaldrillingdata

are available.Therefore, we researchedmulti-scale fracture prediction
and characterization methods suitable for granite buried hill A in
the South China Sea based on the identifiable accuracy of post-
stack seismic data. The currently identified medium-to-small-scale
fracturesbelongtothecategoriesoffracturezones,associatedfractures,
and small tectonic fractures caused by regional tectonic movements
or faulting. In the mid-to-late stages of oil and gas exploration,
a comprehensive evaluation of microscale fractures will require a
combinationofwide-azimuth seismicdata, logging, andcore samples.

4 The principles of multi-scale
fracture prediction methods

4.1 Coherent-enhancing anisotropic
diffusion filtering

Anisotropic diffusion filtering (Weickert, 1998; 1999;
Bakker, 2002; Lu and Lu, 2009) can suppress residual noise while
effectively preserving structural information of geological bodies and
fracture development directions, thereby maintaining discontinuous
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FIGURE 2
Geological features of the study area. (A) Structural units division and (B) stratigraphic column of the Pearl River Mouth Basin (modified from
Yu et al., 2022; Peng et al., 2024); (C) Development period and formation mechanism of fractures in Pearl River Mouth Basin (provided by CNOOC).

structuressuchasfaultsandfractures.Thishelpstoobtainfundamental
data for precise fracture prediction and interpretation.

Building upon previous research, Weickert, 1998 introduced
structural analysis into diffusion filtering by converting the diffusion
coefficient into a structure tensor, allowing diffusion to vary with
direction. This approach protects the linear texture features of
images while removing noise. The constructed diffusion model is as
Equation 1 (Weickert and Scharr, 2002):

{{
{{
{

∂u
∂t
= div(D ⋅∇u),

ut=0 = u0
(1)

where u represents the image to be processed, t represents the
diffusion time, u0 represents the image when the diffusion time is
0, and D represents the diffusion tensor. The diffusion direction is
determined by the eigenvectors of the diffusion tensor D. To ensure
that the diffusion filtering proceeds along the structural direction,
Weickert, 1999, Weickert and Scharr, 2002 proposed a coherent-
enhancing anisotropic diffusion filtering, setting the eigenvalues of
the diffusion tensor D as shown in Equation 2:

{{
{{
{

u1 = α λ1 = λ2

u2 = α+ (1− α)exp(−
c

(λ1 − λ2)2
) otherwise

, (2)
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where α is typically set to a positive number close to 0, which
controls the diffusion strength in the direction of greater gradient
change in the image to preserve the structural information of the
image. The threshold c is usually set to 1. Then, the diffusion
tensor is as Equation 3:

D = [v1 v2][

[

u1 0

0 u2
]

]

[

[

vT1
vT2
]

]
, (3)

where (v1,v2) represents the eigenvector, v1 denotes the direction
with the greatest gradient variation.

Figures 3A–D show the seismic profiles and spectrum before
and after coherent-enhancing anisotropic diffusion filtering. Tg
(represented by the black line) indicates the location of the top
of the buried hill. From the seismic profiles, it can be observed
that the noise within the buried hill is significantly suppressed
and the imaging accuracy is notably improved after filtering
(as indicated by the blue box). Additionally, to facilitate the
observation of the method’s effectiveness in preserving structural
edges during de-noising, we mark a shallow fracture zone with the
red boxes. These shallow fractures, being more readily observable
and discernible compared to fractures within the buried hill, clearly
demonstrate that the fracture morphology is well-preserved after
filtering. The spectrum before and after filtering are essentially
consistent, indicating that the anisotropic diffusion filtering
primarily removes random noise without significantly damaging
the effective signal. Figures 3E–H display the time slices of seismic
amplitudeanddiscontinuitydetectionvolumes forboth theoriginal
and filtered data. It can be seen that after coherent-enhancing
anisotropic diffusion filtering, the feature and breakpoint features
are enhanced, resulting in a clearer depiction of the fault zone.

4.2 Intelligent identification technique for
large fractures based on transfer learning
with U-SegNet and weighted hybrid loss

Convolutional neural networks (CNNs) perform image feature
extraction and classification through a series of specific layers and
have achieved state-of-the-art results in seismic fault detection
tasks in recent years. U-Net and SegNet are two commonly used
semantic segmentation network architectures. U-Net utilizes skip
connections to concatenate shallow-level global features with deep-
level local features, achieving multi-scale feature fusion through
convolutions, thus enhancing the restoration of image details and
semantic segmentation (Ronneberger et al., 2015). However, since
the decoder consists of upsampling and transposed convolution
operations, U-Net requires learning more parameters, which slows
down the training speed. SegNet, on the other hand, passes pooling
indices to the upsampling layers during the decoding process,
enabling the network to have fewer parameters and a faster training
speed, but lacks U-Net’s ability to capture multi-scale information
(Badrinarayanan et al., 2017). Therefore, in the previous work, we
constructed a 3D U-SegNet hybrid network (Lyu et al., 2022). This
network is built on the SegNet structure and speeds up model
convergence by passing the pooling indices to the upsampling layers
for unpooling. Additionally, it introduces skip connections before
the transposed convolution layers in the decoder, leveraging abstract

features from the encoder for more detailed image segmentation. As
a result, U-SegNet exhibits better performance and lower training
costs, making it more advantageous for fault segmentation in
complex 3D blocks.

U-SegNet is trained using the error backpropagation algorithm,
enabling the rapid acquisition of optimal model weights. Transfer
learning (TL) (Pan and Yang, 2010) can inherit all or part of the pre-
trained U-SegNet weights from the source domain as an initial state,
adjusting the network weights in the target domain to enhance the
adaptability of the model. As long as there is a correlation between
the two tasks, TL can usually achieve a satisfactory classification
performance with less training on new datasets. Therefore, we
conduct transfer learning based on the U-SegNet model designed
and trained for 3D seismic fault segmentation to improve the
accuracy of the model in buried-hill fracture detection. The model
was trained with 400 sets of synthetic seismic images and fault
labels with a size of 128 × 128 × 128, as detailed in our previous
work (Lyu et al., 2022). Ultimately, this network achieved excellent
fault segmentation capabilities using only synthetic data and
performed well on the Dutch F3 block and Bohai buried-hill data.
Consequently, we chose it as the base model for large-scale fracture
detection in granite buried hills in the South China Sea. Figure 4
illustrates the network architecture.

The network already possessed good feature extraction and
classification abilities. Here, we employ the transfer learning strategy
that uses all the weights of the pre-trained model as the initial
weights, freezes the shallow weight parameters of the network,
and fine-tunes the deep weights to adapt the pre-trained model
to the new dataset. This is because shallow convolutional layers
typically extract globally shared base features, while deeper layers
learn specific features that are closely related to the specific task.
This approach is referred to as partial fine-tuning (PFT) when the
learning rate is low, to avoid sudden changes in the weights during
the backpropagation. The number of epochs is also kept low to
avoid overfitting (epoch = 25 in this study). The training process
is performed with the Adam optimizer (Kingma and Ba, 2014) to
adjust the model weights and bias. As shown in Equation 4, it is an
easy-to-implement algorithm that is computationally efficient and
memory-friendly, suitable for addressing optimization problems
with large-scale data and high levels of noise:

gt = ∇L̂(wt)

mt = αmt−1 + (1− α)gt
vt = βvt−1 + (1− β)gt

2

m̂t =
mt

1− αn

v̂t =
vt

1− βn

wt+1 = wt −
η
√v̂t + ε

m̂t

, (4)

where wt represents the model parameters at the tth iteration, and
gt is the gradient of the loss function with respect to the model
parameters at the tth iteration; mt and vt represent the first-order
and second-order moment-weighted averages of the gradient gt,
respectively; α and β are the decay coefficients for the first and
second-order moments, typically set to 0.9 and 0.999, respectively;
m̂t and v̂t represent bias corrections of mt and vt; wt+1 denotes the
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FIGURE 3
Comparison of seismic data, spectrum and discontinuous detection volume before and after filtering. (A) Original seismic profile; (B) Seismic profile
after coherent-enhancing anisotropic diffusion filtering; (C) Original spectrum; (D) Spectrum after filtering; (E) Amplitude slice before filtering; (F)
Amplitude slice after filtering; (G) Discontinuous detection slice before filtering; (H) Discontinuous detection slice after filtering.

updated parameter value after the tth iteration, and ε is a very small
value to avoid division by zero, often set as 1× 10−8; n represents
the learning rate, which is taken to be 10 times smaller than the
pre-training model (lr = 1× 10−5).

Binary balanced cross-entropy loss (Xie and Tu, 2015) is one
of the most commonly used loss functions in fault detection at
present, which can alleviate class imbalance to a certain extent. The
calculation formula is as shown in Equation 5:
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FIGURE 4
The U-SegNet architecture for 3D large-scale fracture detection.

BCELoss = ‐β
N

∑
i=0

yi log(pi)‐(1‐β)
N

∑
i=0
(1‐yi) log(1‐pi)

β =

N

∑
i=1
(1‐yi)

N
, (5)

whereN represents the total number of pixels in 3D seismic images,
yi denotes the true label of each pixel, pi represents the normalized
predicted probability obtained from the last layer of the network,
and b indicates the proportion of non-fault pixels to the total

pixels. −β
N
∑
i=0

yi log(pi) and −(1− β)
N
∑
i=0
(1− yi) log(1− pi) represent

the prediction errors of pixels labeled as 1 (fault) and 0 (non-fault),
respectively. However, the Binary balanced cross-entropy (BCE) loss
fundamentally performs binary classification on individual pixels,
unable to assess the similarity between the prediction and fault labels
from a global perspective. And it can easily lead to instability in
model training, resulting in poor performance in validation loss.The
Dice coefficient can assess the overall similarity between samples,
and the Dice Loss can be expressed as Equation 6:

LDice = 1−
2|A∩B|
|A| + |B|

, (6)

where A represents the fault probability cube output by the
network; B represents the true fault labels; A∩B denotes the
intersection between the predicted results and the true labels;
|A| and |B| adopt the approach of squaring each element and
summing them. In a binary classification problem, since the true
labels only contain 0 and 1, the predicted values of unactivated
pixels can be zeroed out. For activated pixels, the focus is on
penalizing low-confidence predictions, while higher prediction
values will yield better Dice coefficients. To prevent division by
zero during the calculation process, a small positive number is
commonly added as a smoothing factor, and the formula becomes
as Equation 7:

LDice = 1−
2|A∩B| + smooth
|A| + |B| + smooth

, (7)

in this study, smooth = 1× 10−5.
To combine the focus of BCE and Dice losses on individual

and overall pixels, respectively, this study employs BCE loss and

Dice loss to construct a weighted hybrid loss function, termed
WHBD loss, which effectively alleviates the class imbalance problem
in fault data. Figure 5 illustrates the accuracy and loss curves
for transfer training with different fusion ratios. The light blue
curve in the figure depicts the model’s performance on both
the training and validation sets when utilizing BCE loss. In
this scenario, while the training set loss continues to decrease,
the validation set loss begins to oscillate from the 10th epoch,
suggesting that it is prone to overfitting during training with
a small sample size. The final model stabilizes at approximately
87% accuracy on both the training and validation sets. The
WHBD loss function effectively resolves the oscillation issue on
the validation set, and when the weighted ratio of BCE to Dice
is set at 3:7, the loss curves on the training and validation
sets converge rapidly and decrease steadily. Simultaneously, the
accuracy curve also exhibits the most stable upward trend, with
the final model achieving a stable accuracy of approximately
96% on both the training and validation sets. Consequently, this
study selects the fine-tuned model trained with a 3:7 weighted
hybrid loss to perform large-scale fracture detection for the entire
buried-hill dataset.

4.3 Medium-to-small-scale fracture
identification with HR ant tracking based
on MVMD frequency division and sensitive
attribute preferences

In this study, we introduce the multi-channel variational
mode decomposition (MVMD) to perform high-precision
frequency division on the buried hill A in the South China
Sea. Through analysis, we determine the mid-frequency band as
the advantageous frequency range. Based on this, we calculate
various discontinuity detection attributes, compare and prefer
the sensitive attribute of the buried hill reservoir, and utilize it
as an input for high-resolution (HR) ant tracking. We term this
approach of combining advantageous frequency band analysis with
sensitive attribute selection as the “double optimization” strategy.
Ultimately, we obtain the medium-to-small-scale fracture predicted
probability cube.
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FIGURE 5
Model accuracy and loss curves trained with different weighting ratios. (A) Accuracy convergence curves on training and validation sets; (B) Loss
convergence curves on training and validation sets.

4.3.1 High-precision frequency division
technique based on multi-channel variational
mode decomposition

Variational mode decomposition (VMD) is an adaptive
nonlinear signal decomposition method (Dragomiretskiy and
Zosso, 2014) that effectively addresses the mode-mixing issue in
conventional time-frequency analysis when the frequencies are
close. It has been widely applied in signal processing and seismic
data analysis. MVMD (Rehman and Aftab, 2019) extends VMD
from one dimension to multiple dimensions, ensuring consistency
in component frequencies across various channels during
decomposition, thereby further enhancing the lateral stability in
frequency division. When acquiring the intrinsic mode function
(IMF) components, MVMD introduces a variational model into the
signal decomposition based on the common frequency components
present in each channel of the input data. This process constructs
an optimization problem to determine the optimal solution for
the variational model, where the IMF components of all channels
iteratively update their center frequencies and finite bandwidths
simultaneously, thus adaptively obtaining K IMF components.
For input data X(t) containing C channels, the implementation
of MVMD can be divided into the following four steps:

Step 1: Assume the existence of K multivariate modulated
oscillations uk,c(t), such that Equation 8 holds:

X(t) =
K

∑
k=1

uk,c(t), (8)

where X(t) represents the input seismic data, uk,c(t) =
[uk,1(t),uk,2(t),⋯,uk,C(t)].

Step 2: Utilize the Hilbert transform to analytically represent each
element in vector uk,c(t), thereby obtaining vector uk,c+ (t)
and calculating the single-sided spectrum. By multiplying
uk,c+ (t) with the exponential term e−jωkt, we adjust the center
frequency ωk(t) to modulate the spectrum of each mode
to its corresponding fundamental frequency band. Then,
estimating the bandwidth of mode uk,c(t) through the
L2 norm of the time derivative of the frequency-shifted
analytic signal is crucial. It is essential to ensure that
the sum of all the IMF components can reconstruct the

input signal while minimizing the total bandwidth of the
IMFs. This leads to the following constrained optimization
problem as Equation 9:

minimize
{uk,c},{ωk}

{∑
k
∑
c
‖∂t[u

k,c
+ (t)e−jωkt]‖

2
2
}

subjectto∑
k
uk,c(t) = xc(t), c = 1,2, ...,C

, (9)

where uk,c+ (t) is the analytic representation of the kth component in
the cth channel, and ∂t denotes the partial derivative with respect to
time t.

Step 3: Solve the variational problem mentioned above by
constructing an augmented Lagrangian representation,
as shown in Equation 10:

L({uk,c(t)}, {ωk},λc) = α
K

∑
k=1

C

∑
c=1
‖∂t[u

k,c
+ (t)e−jωkt]‖

2

2

+
C

∑
c=1
‖xc(t) −

K

∑
k=1

uk,c(t)‖
2

2

+
C

∑
c=1
[λc(t),xc(t) −

K

∑
k=1

uk,c(t)]
,

(10)

where α is penalty factor, λc represents the Lagrange multiplier of
the cth channel.

Step 4: Iteratively update the analytic signal uk,c(t), the center
frequency ωk, and the Lagrangian multiplier λc using the
Alternating Direction Method of Multipliers (ADMM), as
shown in Equations 11–13:

ûn+1k,c (ω) =
x̂c(ω) −∑i≠k

ûi,c(ω) + 0.5λ̂c(ω)

1+ 2α(ω−ωk)
2 , (11)

ωn+1
k =

C

∑
c=1
∫
∞

0
ω|ûk,c(ω)|

2dω

C

∑
c=1
∫
∞

0
|ûk,c(ω)|

2dω

, (12)

λn+1c = λnc + τ[xc(t) −
K

∑
k=1

ûn+1k,c ], (13)
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FIGURE 6
MVMD frequency division. (A) Low-frequency volume; (B) Medium-frequency volume; (C) High-frequency volume.

where τ represents the time step and n is the
number of iterations. Adaptively decomposing the
signal by iterative updating, resulting in K finite
bandwidth IMFs.

This study employs the MVMD technique to perform high-
precision frequency division on buried-hill data. Figure 6 shows
the frequency division results of the seismic data, with a), b),
and c) representing low-, medium-, and high-frequency volumes,
respectively. As indicated by the orange box, the medium-frequency
information within the buried hill is abundant, and the medium-
frequency data exhibits high resolution and can clearly reflect
the detailed information within the buried hill. The reflection
boundaries of low-frequency data are blurredwith interference from
adjacent seismic events. The energy of the high-frequency data is
primarily concentrated in shallow regions, with little high-frequency
information contained within the buried hill. This may be related
to the absorption and attenuation of the seismic waves. Therefore,
this study prefers the medium-frequency volume for predicting and
characterizing medium-to-small-scale fracture information within
buried hill A.

4.3.2 Discontinuity detection attributes
For the identifiable medium-to-small-scale fracture

information in seismic data, this paper calculates various
discontinuity detection attributes and selects curvature
as the sensitive attribute to perform the high-resolution
ant tracking. Therefore, this section elaborates on these
technical principles.

4.3.2.1 Curvature
According to Lisle (1994), curvature characteristics show

a consistent relationship with the tensile fractures observed
in the outcrop data. Generally, as deformation and folding
intensify, the bending degree of the strata increases, leading to
an increase in curvature. In this context, the tensile stress on
the rock increases, thereby promoting the development of tensile
fractures. Roberts (2001) elaborated on the fundamental theory
of curvature properties and provided derivation formulas for
surface curvature attributes. His research indicated that curvature
properties exhibit high sensitivity to medium-to-small-scale
fractures. Physically, curvature represents the degree of bending
on a curve at a certain point, which can be defined in the following
differential form:

k = |
dφ
ds
| = ||

|

y″

(1+ y′2)
3
2

||

|

. (14)

Equation 14 indicates that the curvature value is absolute,
whereas in the geological field, the curvature exhibits positive and
negative distinctions.When a local stratum is horizontal, the normal
vectors at each point are parallel to each other, resulting in a zero
curvature. When the stratum is convex (anticline), the normal
vectors diverge, resulting in a positive curvature. Conversely, when
the local stratum is concave (syncline), the normal vectors converge,
resulting in negative curvature. In the geological field, we focus only
on normal curvature.

To fully express the physical significance of seismic data, 3D
curvature is defined as follows: Assuming a plane intersects the
stratigraphic surface along a straight line, the curvature at all points
on this line can be obtained using Equation 14. Therefore, the
calculation of 3D curvature can be transformed into a 2D curvature
calculation. For an extracted stratigraphic surface, a quadratic
surface z(x,y) can be determined using least-squares fitting or other
approximation methods as shown in Equation 15:

z(x,y) = ax2 + by2 + cxy+ dx+ ey+ f, (15)

where a, b, c, d, e, and f are coefficients, a, b, and c are second-order
derivatives of the surface, d and e are first-order derivatives of the
surface, and f is the position of the surface in space. They can be
expressed as Equation 16:

a =
∂p
2∂x

b =
∂q
∂y

c = 1
2
(
∂p
∂x
+
∂q
∂y
)

d = p

e = q

, (16)

where p and q represent the dip angles of the event in inline and
crossline directions, respectively. Using these coefficients, various
curvature attributes can be calculated, including mean curvature,
gaussian curvature, principal curvatures, maximum curvature,
and minimum curvature. Among them, the maximum positive
curvature kpos and minimum negative curvature kneg are most
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TABLE 2 The parameter set of ant tracking used in this study.

Initial ant
boundary

Ant tracking
deviation

Ant step size Illegal steps
allowed

Legal steps
required

Stop criteria

5 2 3 2 2 10

sensitive to structures such as faults, fractures, bends, and folds
(Al-Dossary and Marfurt, 2006; Chopra and Marfurt, 2007). The
calculation formulas are as shown in Equations 17, 18:

kpos = a+ b+ [(a− b)2 + c2]
1
2 , (17)

kneg = a+ b− [(a− b)2 + c2]
1
2 . (18)

In this study, the maximum positive curvature attribute
is calculated with a vertical radius of 12 and inline/crossline
radius of 3.

4.3.2.2 Ant tracking
Colorni et al. (1991) first introduced the concept of ant colony

algorithm and abstracted its process into a specific mathematical
problem. Randen et al. (2001) applied ant colony algorithms
to extract seismic attributes that are indicative of fractures.
This principle involves utilizing electronic ants to search for
discontinuous breakpoints within a region and mark them,
attracting nearby ants to trace anomalies, and ultimately identifying
subtle signal anomalies within the data through collective effort.
However, because of the sensitivity of ant tracking to variations in
seismic data, they are prone to being influenced by noise. Typically,
we initially utilize seismic attributes to convert discontinuous
features in amplitude volumes into relatively continuous fracture
information. Subsequently, we employ ant colony algorithms
to comprehensively trace and enhance the fracture and fault
information, enabling 3D visualization.

The ant-tracing attributes are controlled by a series of tracking
parameters, including the initial boundaries, deviation angles,
search step size, allowed illegal steps, allowed legal steps, and stop
criteria. To obtain clearer fracture detection results, we select a
more sensitive combination of parameters, as detailed in Table 2.
Considering the geological background of the study area, the
buried-hill region has undergone intense weathering and leaching,
resulting in the omnidirectional development of medium-to-small-
scale fractures. Therefore, when constructing the initial ant colony
system, we only apply dip-angle filtering and did not include
azimuthal filtering.

4.4 Deterministic modeling of discrete
fracture networks

Discrete fracture network (DFN) model (Baecher, 1983; Zhang
et al., 2016) employs an object-oriented geostatistical modeling
approach to establish intricate fracture sets by individually
generating fracture segments. Each fracture segment possesses a
series of attributes, such as location, orientation, morphology, and

aperture, enabling an accurate and detailed description of multi-
scale fracture systems from geometric morphology to fluid flow
behavior. In this study, we use the probability cubes of multi-scale
fractures as trend constraints to perform deterministic modeling,
creating fracture segment sets at different scales. Finally, we provide
a unified description of flow characteristics.

5 Results

5.1 Large-scale fracture detection

This paper utilizes the pre-trained U-SegNet model and transfer
learning to conduct large-scale fracture detection. To maximize
the effectiveness of transfer learning, we require preprocessing of
real datasets to closely match the training conditions of the base
model.This process involved fourmain steps. 1)Data normalization:
Owing to the significant amplitude differences between the actual
seismic and synthetic data, normalization (i.e., subtracting themean
and dividing by the standard deviation) is necessary to match
the synthetic data. 2) Data labeling: Referring to fault profiles
interpreted by geological experts, large-scale fracture labeling for
typical profiles in the target area is completed (Figure 7). 3) 3D
expansion and random cropping: Because manual labeling is based
on profile data, we need to replicate the seismic and label images
into 3D volumes and then randomly crop them to a size of 128
× 128 × 128 to meet the input and output requirements of the
model. 4) Data augmentation: Manual labeling is costly and limited
in referencematerials. To reduce the probability of overfitting during
transfer learning, we horizontally and vertically flip the labeled
samples, ultimately generating 105 sets of 3D images containing
actual seismic and large-scale fracture labels.

The environment used for training and testing the network is
a computer equipped with a 12th Gen Intel(R) Core (TM) i7-12700
with 12 compute cores and 20 compute threads at 2.10 GHz and 32G
of RAM. The deep learning platform uses Tensorflow-CPU version
2.10.0. We use the pre-trained U-SegNet as a base model and apply
partial fine-tuning to adapt it to buried-hill data. Table 3 presents the
parameters and numerical performance for both the basemodel and
the transfer learning model. The evaluation metrics are calculated
based on the entire real training dataset. We consider the fracture
classes as the positive class.

The base model exhibits low specificity, resulting in numerous
false positives. Additionally, its sensitivity is also low, indicating
that many fractures may be missed in practice. Despite the low
proportion of the ‘fracture’ class in the actual dataset, transfer
learning models have successfully enhanced sensitivity. Particularly,
the fine-tuned model trained with WHBD loss demonstrates
excellent specificity. Due to the high imbalance in the dataset,
specificity and accuracy are inadequatemetrics for evaluatingmodel
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FIGURE 7
The typical seismic profile and large-scale fracture labels of buried hill (Tg represents the top of buried hill).

TABLE 3 Quantitative evaluation of basic and transfer learning models.

Model Parameters Accuracy Specificity Sensitivity F1-score AUC

Base — 0.7987 0.5154 0.7754 0.5683 0.6425

BCE-PFT BCE loss 0.8743 0.7895 0.9158 0.7432 0.7610

WHBD-PFT WHBD loss (weighted ratio: 3 : 7) 0.9630 0.8328 0.9375 0.8551 0.9682

performance, as 1% specificity could translate to hundreds of false
positives in real-world scenarios. Therefore, we employ F1 score to
assess overall performance, which represents a weighted average of
sensitivity and specificity, reflecting the ability to correctly classify
fractures and non-fractures. Furthermore, we utilize the AUC score
to assess model performance, where a higher score indicates a
lower false positive rate. Across multiple metrics, the WHBD-
PFT model effectively highlights most large-scale fractures while
reducing misidentifications.

We compare the detection results of deep learning with those
of the seismic attributes (coherence and fault factor). Figure 8
shows the detection results of the cross-well profiles of wells A-
C. Figure 8A shows the original seismic data profile, with the
buried hill top marked by a green dashed line, representing the
Tg layer. Figure 8B and c depict detections using coherence and
fault factor, which are two commonly used attributes for identifying
large-scale fractures. Owing to the influence of multiple tectonic
movements in the study area, the fracture system is complex and the
seismic response exhibits high-angle chaotic reflections. Traditional
attributes detect fractures based on the discontinuity of seismic
reflections, resulting in fragmented identifications in the buried hill
data, which cannot meet the requirements for fine characterization
of large-scale fractures. Figures 8D–F display the detections using
three deep learning methods: the base model, BCE-PFT, and
WHBD-PFT. Compared with traditional attributes, the accuracy
and continuity of fracture identification using neural networks are

significantly improved. Among them, the base model exhibits low
identification accuracy, with numerous missed detections and false
positives. While the BCE-PFT model enhances continuity to some
extent, it still detects a considerable number of false positives.
The WHBD-PFT significantly enhances the continuity of fracture
detection, achieving optimal noise resistance and accuracy within
the buried hill. The fracture morphology is clear (as indicated by
yellow arrows), and both false positives and missed detections in
shallow regions are notably reduced (blue arrows).

To further observe the fracture distribution characteristics
within the buried hill, we extract stratigraphic slices for each
method, as shown in Figure 9 (25 ms down along Tg). Figure 9A
presents a manually interpreted basement fracture distribution
by geological experts, which we consider as a trend reference.
Attributes exhibit low recognition accuracy and poor continuity
owing to stratum fragmentation and chaotic reflections, making
it difficult to characterize the planar distribution of fractures
within the buried hill. The base model shows a noticeable
improvement in performance compared to the attributes; however,
its detected fractures exhibit poorer continuity and incompleteness
when compared to Figure 9A. The BCE-PFT enhances continuity
significantly but still lacks detailed information. Overall, the
WHBD-PFT further enhances continuity, depicting clear fracture
plane strikes and rich details (as indicated by red arrows). Well
B is located between two large-scale NW-oriented fractures, and
the WHBD-PFT detection results are consistent with geological
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FIGURE 8
Comparison of large-scale fracture detection results for the cross-well profile. (A) Cross-well seismic profile; (B) and (C) Predicted results for
coherence and fault factor attributes, respectively; (D–F) Predicted results using the base model, BCE-PFT, and WHBD-PFT, respectively.

priors, successfully capturing the features of NW-NWW fractures
intersecting NE-NEE fractures (as shown in the blue box).
Compared to Figure 9A, the WHBD-PFT model still cannot detect
all fractures (this may be related to too few labeled samples), but it
is capable of identifying most basement fracture locations, assisting
in identifying and analyzing the large-scale fracture distribution
characteristics within the buried hill, thereby better guiding the
prediction of buried-hill reservoirs.

5.2 Medium-to-small-scale fracture
prediction

The discontinuous attribute profiles and slices calculated based
on the advantageous frequency band are shown in Figures 10, 11,
respectively. As shown in Figure 10, the mid-frequency curvature

exhibits a higher resolution compared to themid-frequency variance
and coherence, and it is more effective in reflecting medium-to-
small-scale fracture patterns within the buried hill. Consequently, it
is selected as the sensitive attribute for calculating high-resolution
ant tracking, achieving a fine characterization of the high-angle
reticulate fracture system in the buried-hill basement (indicated
by red dashed lines). Figure 11A represents the edge detection
attribute calculated from horizon Tg, which reflects the degree of
stratigraphic deformation. The comparison reveals that the mid-
frequency curvature provides rich and clear information about
medium-to-small-scale fractures within the buried hill (marked
by red arrows). The high-resolution ant tracking based on mid-
frequency curvature can effectively characterize the dense fracture
zones in the study area (marked by red dashed circles). The
medium-to-small-scale fractures exhibit an overall omnidirectional
development feature, which is consistent with the geological
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FIGURE 9
Comparison of stratigraphic slices for large-scale fracture detection results (25 ms down along Tg). (A) Distribution of large-scale basement fractures
within buried hill interpreted by geological experts; (B) Stratigraphic slice of seismic amplitude; (C) and (D) Predicted results for the coherence and fault
factor attributes, respectively; (E–G) Predicted results using the base model, BCE-PFT, and WHBD-PFT, respectively.

FIGURE 10
Comparison of medium-to-small-scale fracture prediction results for the cross-well profile. (A) Cross-well seismic profile; (B–D) Mid-frequency
variance, coherence, and curvature attributes, respectively; (E) High-resolution ant tracking based on mid-frequency curvature.

understanding of intenseweathering and leaching in this region.The
primary orientations include NNE, NEE, NNW, NWW, and EW.

Additionally, we separately extract the stratigraphic slices
of full- and mid-frequency ant-tracking volumes and overlap
them with the edge detection attribute, as shown in Figure 12.
Through comparison, we find that mid-frequency ant-tracking
significantly improves fracture identification accuracy, enabling
rapid recognition of medium-to-small-scale fracture dense zones,

which are predominantly concentrated in areas with significant
tectonic deformation. This demonstrates that the advantageous
frequency band analysis and the selection of sensitive attributes
are crucial for enhancing the precision of buried-hill fracture
prediction. However, the sensitive attributes corresponding
to different regions and reservoir types vary. Therefore, it is
necessary to test and determine appropriate attributes based on
the specific conditions of each case.
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FIGURE 11
Comparison of stratigraphic slices for medium-to-small-scale fracture prediction results (25 ms down along Tg). (A) Edge detection attribute derived
from Tg; (B), (C, D) Mid-frequency variance, coherence, and curvature attributes, respectively; (E) High-resolution ant tracking based on mid-frequency
curvature.

FIGURE 12
Comparison of full- and mid-frequency ant tracking slices (25 ms down along Tg). (A) Full-frequency curvature - ant tracking; (B) Mid-frequency
curvature - ant tracking.

5.3 Multi-scale fine characterization of
fractured reservoirs

Natural fractures exhibit multi-scale characteristics, and
fractures of different scales have varying effects on the physical
properties of reservoirs. Multi-scale characterization of fractures
is crucial for reservoir prediction. This study, based on the
precise prediction of fractures at different scales, utilizes discrete
fracture network modeling to characterize a series of attributes,
such as the location, orientation, and morphology of fractures,
thereby achieving a realistic and detailed description of the
fracture system from geometric shape to percolation behavior.
Large-scale fractures play a key role in hydrocarbon seepage.
We adopt the fracture probability cube established in Section 5.1
using U-SegNet and WHBD loss transfer learning as a trend
constraint to conduct deterministic modeling of large-scale
fractures. Figure 13A and b show the generated fracture segment

model and rose scatter diagram of type I, indicating that the
development density of large-scale fractures in the study area
is relatively low, characterized by sparse distribution, with the
main strike orientations being NW and NE (indicated by light-
yellow sectors). Medium-to-small-scale fractures are crucial
for hydrocarbon storage. We utilize the ant-tracking volume
established in Section 5.2 based on high-precision frequency
division and sensitive attribute preferences as a trend constraint
to carry out deterministic modeling of medium-to-small-scale
fractures. Figure 13C and d show the generated fracture segment
model and rose scatter diagram of type II, revealing that the
development density of medium-to-small-scale fractures in the
study area is relatively high, characterized by a dense distribution
with random strike orientations, displaying omnidirectional
development.

By combining the two types of fracture segment models, we
generate a discrete fracture network (DFN) model of granite buried
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FIGURE 13
Fracture segment models and their rose scatter diagrams at various scales. (A, B) Large-scale fracture segment model (type I) and its rose scatter
diagram; (C, D) Medium-to-small-scale fracture segment model (type II) and its rose scatter diagram.

hill A. The model results (Figure 14A) show that many medium-
to-small-scale fractures develop near large-scale fractures, and their
orientations are basically the same as those of large fractures, which
aligns with geological understanding. According to the statistical
analysis results (Figures 14B–D), the fracture dip angles are
primarily concentrated between 40° and 90°, with a preponderance
of high-angle fractures. The fracture lengths are concentrated
within 0–600 m, suggesting the dominance of medium-to-small-
scale fractures. Furthermore, the fracture apertures are concentrated
between 0 mm and 10 mm.

Based on the characterization and depiction of the fracture
geometric morphology, we further characterize the percolation
behavior through the “equivalence” using the DFN model.
Specifically, the ODA algorithm (Oda et al., 1993; Lang and Guo,
2013) is employed to calculate the effective fracture porosity and
permeability. The fracture porosity is “equivalence” determined by
the fracture length and aperture, while the fracture permeability is
“equivalence” determined by the fracture network and aperture.
The simulation results are shown in Figure 15. Well A, known

as a high-yield well, is located in an area with high porosity and
good permeability, validating the rationality of characterization
results. Overall, the western part of the study area exhibits favorable
reservoir properties and can be considered a potential target for
future exploration.

6 Conclusion

This study successfully proposes a multi-scale fracture
prediction and characterization technology system that combines
traditional and intelligent methods. This provides an effective
solution to the challenges faced in identifying buried-hill multi-
scale fractures from post-stack seismic data in the early stages
of exploration. By introducing the pre-trained U-SegNet model
and transfer learning strategy, we significantly improve the
detection accuracy and continuity of large-scale fractures within
the buried hill. Moreover, the proposed weighted hybrid binary
dice loss (WHBD loss) effectively resolve the oscillation issue
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FIGURE 14
Discrete fracture network model and frequency histograms of fracture parameters. (A) DFN model; (B) Fracture dip angle; (C) Fracture length; (D)
Fracture aperture.

FIGURE 15
Fracture property models. (A) Fracture porosity model; (B) Fracture permeability model.

of traditional loss functions on the validation set, enhancing the
accuracy of transfer training. For medium-to-small-scale fractures
prediction, we adopt a “double-optimization” strategy combining
high-precision frequency division processing, advantageous
frequency band analysis, and sensitive attribute preferences. By
calculating the high-resolution ant-tracking, we achieve a fine
depiction of medium-to-small-scale fracture zones within the
buried hill A. Based on this, we construct fracture segment

models and fracture property models of various scales through
a discrete fracture network model, realizing a comprehensive
characterization of the buried hill A fracture reservoir from
geometric morphology to percolation characteristics. It provides
a scientific basis for the subsequent evaluation and selection
of exploration targets. At the same time, it offers valuable
references for identifying and characterizing multi-scale fractures
under similar geological conditions.
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