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Introduction: The thickness of ground substrate in shallow mountainous areas
is a crucial indicator for substrate investigations and a key factor in evaluating
substrate quality and function. Reliable data acquisition methods are essential
for effective investigation.

Methods: This study utilizes six machine learning algorithms—Gradient Boosting
Machine (GB), Random Forest (RF), AdaBoost Regressor (AB), Neural Network
(NN), Support VectorMachine (SVM), and k-Nearest Neighbors (kNN)—to predict
ground substrate thickness. Grid search optimization was employed to fine-
tune model parameters. The models’ performances were evaluated using four
metrics: mean squared error (MSE), root mean squared error (RMSE), mean
absolute error (MAE), and the coefficient of determination (R2). The optimal
parameter combinations for each model were then used to calculate the spatial
distribution of ground substrate thickness in the study area.

Results: The results indicate that after parameter optimization, all models
showed significant reductions in the MSE, RMSE, and MAE, while R2 values
increased substantially. Under optimal parameters, the RF model achieved an
MSE of 1,589, RMSE of 39.8, MAE of 26.5, and an R2 of 0.63, with a Pearson
correlation coefficient of 0.80, outperforming the other models. Therefore,
parameter tuning is a necessary step in usingmachine learningmodels to predict
ground substrate thickness, and the performance of all six models improved
significantly after tuning. Overall, ensemble learning models provided better
predictive performance than other machine learning models, with the RF model
demonstrating the best accuracy and robustness.

Discussion: Moreover, further attention is required on the characteristics of
sample data and environmental variables inmachine learning-based predictions.
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1 Introduction

The ground substrate layer serves as the fundamental material
that nurtures and supports various natural resources at the Earth’s
surface. Investigations focusing on this layer have been carried
out in many parts of China (Hou et al., 2021; Jia et al., 2022).
However, the content and methods of these surveys are still in
the exploratory stage, and classifications and technical procedures
have yet to be standardized (Dong et al., 2023; Li et al., 2023). In
shallow mountain areas, the thickness of the ground substrate
is an important indicator in ground substrate surveys and is a
key factor in assessing the quality and function of the ground
substrate (Yuan et al., 2023). It is widely applied in hydrology,
ecology, and geological disaster prevention (Catani et al., 2010;
Liu et al., 2019). The thickness of the ground substrate overlaps
conceptually with soil thickness, weathered layer thickness, and
the depth of the Earth’s critical zone, but there are differences.
The depth of the ground substrate should consider the range that
nurtures natural re-sources, with a focus in shallow mountain
on the lower limit depth reached by super-gene geological
processes dominated by weathering (Yin et al., 2020; Yao et al.,
2022). Therefore, it is appropriate to define the thickness of
the ground substrate as the depth from the surface to the
interface of weakly weathered bedrock. Traditional survey methods
primarily involve excavation and actual measurement, but these can
cause ecological and environmental damage and are excessively
costly. Using geophysical methods for exploration allows for
the depiction of underground structures with relatively high
precision, such as ground-penetrating radar, electrical resistivity
tomography, seismic waves, and electromagnetic induction
inversion (St. Clair et al., 2015; Tao et al., 2022). St. Clair et al.
(2015) contend that terrestrial geophysical observations are typically
limited to transects that extend hundreds of meters to a few
kilometers in length and allow for investigation of local phenomena
but do not have the broad view needed to characterize regional
features that have length scales of several kilometers or more
observations.

With the development of computer technology, modeling
methods have been widely used in surveys of thickness for
soil, sediments, and other substrates. These modeling methods
can be divided into physically based models and stochastic
statis-tical models. Dietrich et al. (1995) based on the law of
mass balance between soil production from underlying bedrock
and the divergence of diffusive soil transport, established a
numerical model based on DEM (Digital Elevation Model)
to predict soil depth. Fur-ther developed physical models
of soil transport include soil diffusion models and fluvial
sediment erosion transport models. Soil linear and nonlinear
diffusion models relate soil diffusion to slope, curvature,
and morphology (Culling, 1963; Roering, 2008; Pelletier and
Rasmussen, 2009), while the flux of flu-vial sediment erosion
transport can be proportionally related to watershed area and
slope (Willgoose et al., 1991). However, there is still a lack
of widely adopted soil thickness prediction models based on
the theory of geomorphic evolution dynamics (Liu et al.,
2024; Pelletier and Rasmussen, 2009). Building quantitative
models of the ground substrate and landscape environmental
factors for representative regions to predict the spatial

distribution of ground substrate attributes is of great significance
(Zhang et al., 2020).

Stochastic statistical models are based on a fundamental
assumption that the relationship between soil properties of the
samples and environmental variables can be extended to infer
the soil properties of another location (Liu et al., 2019), which
mainly includes regression algorithms, geostatistical methods,
and machine learning models. Due to the nonlinear relationship
between the thickness of the ground substrate and the relevant
covariates (Roering, 2008), traditional regression algorithms
and geostatistical methods seem to be inadequate for such
complex calculations, leading to the widespread application of
machine learning models (Liu et al., 2024). Machine Learning
models, which do not require consideration of the complex
mechanisms of ground substrate evolution, have the advantages
of simple structure and fewer parameters (Wadoux et al., 2020),
and have been widely applied in recent years to predict the
thickness of soil and slope sediments (Shary et al., 2017; Jia et al.,
2023). Machine learning, a subfield of artificial intelligence that
emerged in the 1990s, is widely used in data mining and pattern
recognition (Padarian et al., 2019a;Wadoux et al., 2020). At present,
researchers widely adopt supervised learning methods for the
prediction of ground substrate thickness, and commonly used
algorithms include decision trees, support vector machines, k-
nearest neighbor algorithms, neural networks, etc. For instance,
Shen et al. (2022) successfully predicted the spatial distribution
of soil texture in southern Ningxia using the random forest
algorithm, and Shai et al., 2022 effectively predicted the thickness
of aeolian sand in the Bashang area of Hebei using artificial
neural network interpolation methods. Some researchers have
also used other machine learning methods to construct models
and achieve their research objectives (Qiu et al., 2020; Jin and Lv,
2022). In terms of application effectiveness, ensemble learning
algorithms based on decision trees (such as random forests) are
not sensitive to sample size and have good stability (Wadoux
et al., 2020), neural networks have strong non-linear fitting
capabilities, support vector machines are suitable for high-
dimensional data (Huang et al., 2020), and k-nearest neighbor
algorithms are simple and easy to implement. However, machine
learning models have been less applied in the research on the
prediction of ground substrate thickness, and there is a lack of
necessary validation for the necessity of parameter optimization in
related studies, which has not achieved the optimal performance of
the models.

This study takes into account the technical characteristics
of different machine learning models and selects six machine
learning algorithms: Gradient Boosting (GB), Random Forest
(RF), AdaBoost Regressor (AB), Neural Networks (NN), Support
Vector Machine (SVM), and k-Nearest Neighbors (kNN)
for the spatial prediction of ground substrate thickness in
Ninghai County. Through grid search techniques, the parameters
of each model were optimized to achieve the best model
performance. Furthermore, the performance of the six models
under optimal parameter combinationswas compared and analyzed.
The study also discusses the distribution patterns of ground
substrate thickness in Ninghai county, providing a reference for
exploring methods suitable for investigating ground substrate
thickness.
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FIGURE 1
Topography of Ninghai County and sampling locations.

2 Materials and methods

2.1 Study site

Ninghai county is located in the southern coastal area of
Ningbo city in the eastern part of Zhejiang Province, China. It is
geographically positionedwas 29°06′∼ 29°32′N, 121°09′∼ 121°49′E.
The elevation ranges from 0 to 926 m above sea level, covering
a total area of 1,843 square kilometers. The county experiences
a subtropical monsoon humid climate with an annual average
temperature between 15.3°C and 17°C and annual rainfall ranging
from 1,000 to 1,600 mm. The vegetation in Ninghai is predom-
inantly composed of artificial coniferous forests, bamboo plantation,
economic forests, and a small amount of secondary broadleaf forests.
Remnants of the zonal subtropical evergreen broadleaf forests are
preserved in the remote mountainous areas (Lan and Cheng, 2017).
Lo-cated between the Tiantai and Siming mountain ranges, Ninghai
features a coastal hilly terrain that is high in the west and low
in the east, with the eastern part mainly con-sisting of low hills
and alluvial plains. The region has been geologically active since
the Late Mesozoic Cretaceous period, experiencing intense volcanic
activity and under-going two major tectonic and magmatic phases
during the Yanshanian and Himalayan periods. The geological
makeup is predominantly mid-acidic Mesozoic volcanic rocks,
followed by Neogene basic volcanic rocks (Yu et al., 2021). The
surface substrate in the shallow mountain areas primarily consists

of soils formed from the weathering and erosion of mid-acidic
and basic volcanic rocks. The main ground substrate structure
is soil and weathered bedrock, with thicknesses ranging from
several centimeters to several me-ters. The substrate tends to be
thinner in the upper slopes and thicker near the lower slopes and
foothills.

2.2 Data sources and processing

2.2.1 Data sources
Ground substrate thickness data was obtained fromfield surveys

by setting up a 30 m×30 m grid. To ensure the representativeness of
the data, sampling grids are chosen to include continuous profiles
and representative points, such as different landform types and
geological backgrounds. The thickness data were collected using
profile surveys and backpack drilling. The average thickness value
for each grid area was then calculated, yielding a total of 290 survey
points, including 267 outcrop survey points and 23 backpack drill
sites. The locations of the survey points are shown in Figure 1.
The topographic data were sourced from the National Geographic
Information Center’s DEM data (https://ngcc.cn/ngcc/), with a
resolution of 30 m×30 m in a raster format, encompassing a total
of 1,905,951 grids. Geological environment variables were derived
from a 1:250,000 geological map that was updated and compiled,
primarily considering the rock types of geological units.These vector
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FIGURE 2
Grid and vector diagrams of major environmental variables in Ninghai county.

graphics were converted into raster files using ArcGIS 10.8 software
to obtain geological data.

2.2.2 Data processing
Using DEM data, environmental variables such as slope, aspect,

plan curvature, and profile curvature can be calculated. Terrain
Wetness Index (TWI) and Topographic Position Index (TPI) are
important indicators in studies related to soil evolution and slope
sedimentation (Ziadat, 2010; Shary et al., 2017; Sharififar et al.,
2019). In this study, TWI and TPI were calculated using DEM data
and utilized as significant environmental variables. By transforming
the data formats, different layers in ArcGIS were uniformly
created, and the spatial distribution characteristics of the main
environmental variables are shown in Figure 2. Discrete data
types in the environmental variables include geological rock
classification (Geo) and slope, with seven categories for geological
classification and division of aspect into eight directions based
on 45° intervals, and these data are all represented in text
format. Continuous variables mainly include DEM, slope, plane
curvature (Pla-cur), profile curvature (Pro-cur), TWI, and TPI,
as described in Table 1. In the environmental variable data, there
is a phenomenon of missing values for TWI, mainly occurring
in ridge and steep slope areas, possibly due to anomalies in
calculating slope direction and gradient from the DEM data. Since
TWI is a continuous numerical variable, its impact on calculating
the importance of TWI in ridge and steep slope areas is also
minimal. For the missing values, the main approach is to fill
them with “0”.

The sample data consists of 290 points of target variables and
environmental variables. The environmental variable TWI also has
missing values, which have been treated by filling them with “0”.
The target variable (ground substrate thickness) has a range of
5–400 cm, with a mean value of 92.79 cm. Thickness is primarily
distributed between 0 and 150 cm, ac-counting for 87.3% of the total
data. The distribution of data across different thickness intervals
is shown in Figure 3. The sample data is divided into a training set

and a test set, using random sampling to select 80% as the training
set and 20% as the test set. To ensure the reliability of the results,
cross-validation is used for training and testing, with 10-fold cross-
validation, thereby ensuring a sufficient amount of data to obtain
more result data.

2.3 Research methods

2.3.1 Machine learning models
2.3.1.1 Ensemble learning algorithms

Ensemble learning aims to improve overall prediction
performance by combining the predictions of multiple base models.
Common ensemble learning methods include Gradient Boosting
Machine, Random Forest, and AdaBoost Regressor algorithms.

Gradient Boosting Machine (GB) is an ensemble
learning method based on decision trees. It iteratively trains
decision tree models to gradually improve the overall model
performance (Friedman, 2002). It utilizes the loss function
to compute the negative gradient of a randomly sampled
subset for training a decision tree, known as the “pseudo-
residual”. The pseudo-residual v(π(i) at the tth iteration can be
represented as:

vπ(i) = ‐[

[

∂Φ(yπ(i),F(xπ(i)))

∂F(xπ(i))
]

]F(x)=Ft‐1(x)

(1)

In Equation 1, the loss function ∂Φ(y,F(x)) is differentiable;
F(x) represents the current base learner; π(i) denotes a random
sequence.

Random Forest (RF) is an ensemble learning method used
for tasks such as classification and regression (Breiman, 2001).
When developing an individual tree, a random subset of attributes
is drawn, from which the best attribute for splitting is selected.
The final model is based on a majority vote of the trees
independently grown in the forest, and the final prediction result

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2024.1455124
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhu et al. 10.3389/feart.2024.1455124

TABLE 1 Characteristics of continuous environment variables.

Environment variables Mean Median Deviation Minimum Maximum Missing data (rate)

TWI 5.216 5.009 0.246 3.470 14.914 90 (31%)

TPI 0.575 0.550 0.479 0.005 1.226 0 (0%)

slope 12.172 11.310 0.610 0.000 39.074 0 (0%)

profile curvature −0.003 0.000 −88.984 −0.668 0.997 0 (0%)

plane curvature 0.096 0.071 2.918 −1.114 1.477 0 (0%)

DEM 199.976 124.500 0.915 2.0 753.000 0 (0%)

FIGURE 3
Statistical map of ground substrate thickness data.

is obtained by averaging the results of all the trees, which can be
expressed as:

F(x) = 1
n

n

∑
t=1

ht(x) (2)

In Equation 2, F(x) represents the final prediction result of the
Random Forest (RF), and ht(x) denotes the regression prediction
result of the tth decision tree.

AdaBoost Regressor (AB) algorithm is a method of iteratively
trainingmultiple weak regressionmodels (Solomatine and Shrestha,
2004). It weights each model, and in each iteration, sample
weights are adjusted to make the current model pay more
attention to samples incorrectly predicted in the previous iteration.
The final prediction result is the weighted average of all weak
regression models.

2.3.1.2 Neural network algorithm
Neural Network (NN) utilizes the multilayer perceptron

algorithm from sklearn, which can learn both nonlinear and linear
models. Its structure consists of an input layer, one or more
hidden layers, and an output layer (Wolpert, 1992). A single-layer

perceptron has only input and output layers, so it can only learn
linear functions, while a multi-layer perceptron has one or more
hidden layers, allowing it to learn nonlinear func-tions as well.

2.3.1.3 Support vector machine (SVM) algorithm
Support Vector Machine (SVM) separates the attribute space

using a hyperplane to maximize the margin between instances of
different classes or different class values (Smola and Schölkopf,
2004). We utilize Support Vector Regression to minimize the total
deviation of all sample points from the hyperplane.

{
{
{

min1
2
‖w‖2

s.t.|yi‐(wxi + b)| ≤ ε,∀i
(3)

In Equation 3,w represents the normal vector of the hyperplane,
b is the bias term, yi is the target value of the ith sample, and xi is the
feature value of the ith sample.

2.3.1.4 K-Nearest Neighbors (kNN) algorithm
k-Nearest Neighbors (kNN) searches for the k nearest training

samples in the feature space and uses their average as the
prediction (Peterson, 2009).The kNNalgorithm is based on distance
metrics, determining the most similar k samples by computing
distances between samples. In classification problems, the class
of the sample is determined by a voting mechanism, while in
regression problems, the output value of the sample is determined by
averaging.

The primary parameters influencing model performance
encompass the number of iterations (n_estimators) and learning
rate (learning_rate) for GB, as well as the maximum depth of trees
(max_depth); for RF, the count of decision trees (n_estimators)
and the maximum tree depth (max_depth); for AB, the learning
rate (learning_rate); for NN, the sizes and quantity of hidden
layers (hidden_layer_sizes), along with the activation function
(activation); for SVM, the choice of kernel function (kernel) and the
regularization parameter (C); and for kNN, the number of neighbors
(n_neighbors) and the exponent for distance calculation (p). These
key parameters often directly affect the model’s complexity and
generalization ability, potentially enhancing model performance
but also possibly increasing model complexity and computational
costs. The aforementioned algorithms are primarily implemented
using the sklearn library on the Python platform.
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TABLE 2 Lists of key parameters of each model.

Models Key parameter Parameter space

GB

n_estimators 100, 200, 300

learning_rate 0.01, 0.1, 1.0

max_depth 3, 5, 7

RF

n_estimators 100, 200, 300

max_depth 3, 5, 7

min_samples_split 2, 5, 10

AB

n_estimators 50, 100, 200

learning_rate 0.01, 0.1, 1.0

min_samples_leaf 1, 2, 4

NN

hidden_layer_sizes (50), (100), (50, 50), (100, 100), (200,
200)

activation identity, logistic, tanh, relu

alpha 0.0001, 0.001, 0.01, 0

SVM

kernel linear, rbf

C 0.1, 1, 10

gamma 0.1, 0.01, 0.001

kNN

n_neighbors 3, 5, 7, 9, 11

weights uniform, distance

p 1, 2

2.3.2 Key parameter spaces
To optimize for the best model performance, methods such

as grid search, random search, and Bayesian optimization are
commonly used to fine-tune parameters. Random search has a
relatively low cost but involves random selection, while Bayesian
search is costly. This paper employs the grid search method
to find the optimal parameter combination (Ottoy et al., 2017;
Padarian et al., 2019a). Considering the impact of parameters on
the model comprehensively,we set the parameter space for each
machine learning model and use the grid search method to traverse
the model performance under different parameters of each model.
Table 2 lists the key parameters of different models, with values
mainly considering common parameter ranges and computational
efficiency (Padarian et al., 2019a). There are 27, 27, 27, 60, 18, and
20 parameter combinations for the six models respectively.

2.3.3 Evaluation metrics
The prediction accuracy is primarily evaluated using

four metrics: Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and
Coefficient of Determination (R2) (Minasny et al., 2018;

Hamzehpour et al., 2019; Zeraatpisheh et al., 2019). RMSE is the
square root of MSE, measuring the average error between the
predicted values and the true values. MAE is the average of the
absolute differences between the predicted values and the true
values. R2 is a metric used to measure the goodness of fit of the
model to the data, indicating the proportion of variance explained
by the model. The closer R2 is to 1, the better the model fits the data.
The formulas for evaluation metrics are as follows:

MSE = 1
m

m

∑
i=1
(yi‐ŷi)

2 (4)

RMSE = √MSE = √ 1
m

m

∑
i=1
(yi‐ŷi)

2 (5)

MAE = 1
m
|yi‐ŷi| (6)

R2 = 1−
∑

i
(ŷi‐yi)

2

∑
i
(y‐yi)

2
(7)

In the formulas (Equations 4–7), yi represents the true value, ŷi
represents the predicted value, and y represents the sample mean.

3 Results

3.1 Parameter optimization

From the perspective of model evaluation metrics, before
parameter optimization, using default parameters, the performance
of ensemble learning models was moderate, while NN, SVM, and
kNN models showed relatively poor performance. After param-eter
optimization, the performance of all models improved significantly.
MSE, RMSE, and MAE decreased noticeably, with reductions
ranging from 262 to 725, 3.0 to 7.1, and 1.2 to 5.2, respectively.
R2 increased significantly, with increments ranging from 0.09 to
0.17. The models with the most significant decreases in MSE were
mainly RF, NN, and SVM, with reductions of 600, 725, and 477,
respectively. RF and NN showed the most substantial reductions
in RMSE, decreasing by 6.9 and 7.1, respectively. RF exhibited the
most substantial decrease in MAE, with a decrease of 5.2. The
models with the most significant increases in R2 were RF, SVM,
and kNN, with improvements of 0.16, 0.17, and 0.17, respectively.
Comparatively, RF showed the most significant improvement in
performance, characterized by a significant decrease in various types
of errors and an enhancement in linear fitting (Figure 4).

Using the grid search method, the optimal parameter
combinations for each model were selected, and the performance
of each model varied significantly with different parameter
selections (Table 3). With the optimal parameter combinations, the
RF model exhibited the best performance, with the smallest errors
and the highest co-efficient of determination. Specifically, MSE,
RMSE, MAE, and R2 were 1,589, 39.8, 26.5, and 0.63, respectively.
The optimal parameters for the RF model were as follows: the
number of decision trees was set to 100, the maximum depth of
the decision trees was 5, the minimum number of samples required
to split a node was 5, and the minimum number of samples required
to be at a leaf node was 4.
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FIGURE 4
Changes of evaluation indexes after parameter optimization of each model.

TABLE 3 Optimal parameter combination table of different models.

Models Optimal parameter combinatio

GB learning_rate: 0.01, max_depth: 3, n_estimators: 300

RF max_depth: 5, min_samples_leaf: 4, min_samples_split: 5,
n_estimators: 100

AB learning_rate: 1.0, n_estimators: 50

NN activation: identity, alpha: 0.001, hidden_layer_sizes: (200, 200)

SVM C: 1, gamma: 0.1, kernel: linear

kNN n_neighbors: 7, p: 1, weights: uniform

3.2 Model validation

From the scatter plot in Figure 5, it can be observed that
ensemble learning models (GB, RF, AB) exhibit relatively good
fitting. Among them, RF demonstrates the best overall predictive
fitting, with the highest pearson correlation coefficient of 0.80 and
R2 of 0.63. Both GB and AB show high dispersion in mid-range
predictions. Conversely, NN and SVM predictions yield negative
values, indicating an overall underestimation of thickness, while
kNN predictions display higher dispersion and larger errors, with
the lowest Pearson correlation coefficient of 0.68.

3.3 Result mapping

The predicted values of each model range from −116.4–400 cm.
Among them, four models—GB, SVM, NN, and kNN—yield
negative values. kNN and SVM gener-ally produce smaller
predictions, while the AB model exhibits multiple peaks (Figure 6).
The predictions of the RF and GB models are similar, closely
resembling the distribu-tion of sample data. Both models peak
around 50 and 200 cm, with an overall dis-tribution between 30
and 90 cm, and a median of approximately 84 cm. The pre-dictions
of the AB model fluctuate significantly, showing multiple peaks.
NN and SVM models produce notably negative values, resulting
in overall underestimation of thickness, with distribution relatively
even between 0 and 200 cm.The kNNpre-dictions exhibit two peaks
overall, but the overall predicted values are lower.

Based on the model predictions, grid values were assigned to
generate a spatial map of ground substrate thickness (Figure 7).
Overall, the spatial distribution of ground substrate thickness reveals
that the 0–30 cm range is primarily located in steepmountain ridges
and slopes. The 30–60 cm range predominates in the transitional
areas from ridge to gentle slope. Areas with thickness ranging
from 60 to 150 cm are mainly found on gentle hilltops and
downhill slopes.Thicknesses ranging from 150 to 400 cm aremainly
situated at the foot of slopes or on gently rolling hills. The pre-
dicted thickness distribution aligns with field survey observations.
Generally, thickness in mountainous regions ranges from 0 to
150 cm, while thickness is higher in low-gradient slope areas.
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FIGURE 5
Scatter plot of test set prediction results.

FIGURE 6
Statistical map of ground substrate thickness prediction.
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FIGURE 7
Predicted distribution of ground substrate thickness in Ninghai county.

FIGURE 8
RF model test verification scatter plot.

4 Discussion

4.1 Parameter tuning method selection

The performance of a machine learning model is affected by
its parameter values, and tuning the parameters can significantly
improve model performance (Padarian et al., 2019b). Re-searchers
generally optimize parameters for one or two models (Wu et al.,

2016; Sergeev et al., 2019; Wadoux et al., 2019), Wadoux et al.
(2020) found that nearly half of the literature in their sample
statistics did not perform parameter tuning, and when comparing
multiple models, default parameters are often used (Vermeulen
and Van Niekerk, 2017; Minasny et al., 2018; Keskin et al., 2019).
Through our study, it is evident that parameter tuning is necessary.
We select the grid search method to traverse the parameter space,
which still has certain limitations. When computational costs are
permissible, Bayesian methods, genetic algorithms, particle swarm
optimization, and other algorithms can be used for parameter
optimization (Wu et al., 2016; Wadoux et al., 2019).

4.2 Comparative analysis of models

Wang Sheng. (2015) assessed the estimation of soil layer
thickness using different methods, with R2 values ranging from
0.39 to 0.66; whereas Kempen et al. (2011), when predicting organic
carbon at different depths, had R2 values from 0.09 to 0.75. Liu et al.
(2013), within a small area, made high-precision spatial predictions
of soil thickness based on geomorphology, with an R value of 0.74.
Combining other relevant studies, we believe that R2 values between
0.6 and 0.8 are considered to be relatively reliable (Ottoy et al., 2017;
Minasny et al., 2018). By comparing the model training results,
the RF model has good accuracy. From the perspective of various
indicators, MSE, RMSE, and MAE are relatively small, re-flecting
that the prediction results of the RF model have small errors, while
R2 is rela-tively large, indicating that the RFmodel has good stability
and is generally consistent with the verification data. As shown
in Figure 5, the prediction results of the RF model did not show
negative values, and no excessive parameter adjustment is required.
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FIGURE 9
Importance scores of environmental variables at different thicknesses based on RF model.

Secondly, from themodel verification effect (Figure 8), the RFmodel
showed good re-liability in the case of 0–100 and 100–200 cm
thickness and more sample data; even if the thickness is greater than
200 cm and the sample data is less, it can maintain good ac-curacy
and relatively low discreteness, indicating that the RF model has
good robust-ness and wider applicability.

4.3 The impact of other factors on the
prediction results

In addition to the model, the quality of sample data and the
selection of envi-ronmental variables are also important factors
affecting the prediction of surface ma-trix thickness. Generally
speaking, the larger the data volume and the higher the data quality,
the more accurate the prediction results. During the field survey, due
to the relatively thick coverage of the low and gentle slope areas, fewer
field outcrops, and reduced sample size, the accuracy of each model
decreased significantly.When the ground substrate thickness is small,
allmodelsperformwell, butwhen the thickness is greater than150 cm,
the discreteness of the prediction increases significantly.

Because most ML models are complex in structure,. How to
increase the interpretability of machine learning model predic-
tions has always been an unresolved problem. Based on the data
distribution charac-teristics, this paper divides the sample data

into three groups according to thickness, namely, [0, 60] cm, [60,
100] cm, and [100, 300] cm, and then analyzes the importance
of environmental variables at different thicknesses. The calculation
results show (Figure 9) that there are obvious differences in the
importance of each group of environmental variables, indicating
that different variables have different effects on the evolution of
the ground substrate. Therefore, future research should focus on
the geological and ge-omorphological characteristics of the ground
substrate and their mutual influence on the spatial distribution of
the ground substrate thickness.

5 Conclusion

In this study, surface material thickness data from 290 points
were collected and used to construct models through different
machine learning algorithms. By employing the grid searchmethod,
various parameter combinations were explored to find the optimal
set.The performance of six models was compared and analyzed, and
a spatial distribution map of surface material thickness in Ninghai
County was generated. The discussion highlighted the necessity of
parameter tuning and the strengths and weak-nesses of the models.
It was also noted that the quality of sample data and the selection
of covariates significantly affect the prediction results, warranting
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further attention in future research. The following conclusions were
drawn from the study.

(1) Parameter tuning is essential for predicting surface material
thickness using machine learning models. The performance of
all six models improved significantly after parameter tuning.
Using the grid search method for parameter tuning, the pre-
diction errors of each model generally decreased, and the R2

value significantly in-creased. Among the models, RF, NN,
and SVM showed the most reduction in error, while RF,
SVM, and kNN exhibited the most improvement in linear fit.
This optimiza-tion provides the best parameter combinations,
serving as a reference for subsequent practical predictions.

(2) Overall, ensemble learning models outperform other machine
learning models in prediction accuracy. Among the ensemble
models, RF demonstrated the highest accuracy and robustness.
The ensemble models GB, AB, and RF all had relatively low
prediction errors and high fitting degrees, with RF showing
the best predictive per-formance: MSE, RMSE, MAE, and R2

were 1,589, 39.8, 26.5, and 0.63, respectively, and the Pearson
correlation coefficient was the highest at 0.80.

(3) Machine learning models can effectively predict surface
material thickness in shallow mountainous areas, but further
attention to sample data and environmental variables is
necessary. The prediction results indicate that areas such as
steep ridges generally have thinner surface materials, typically
only a few dozen centimeters. In contrast, transitional zones
such as gentle slopes tend to have thicker surface materials,
reaching up to several hundred centimeters at the foot of
slopes or in hilly areas, aligning with field survey observations.
The predicted results for the entire Ninghai County also
closely matched the distribution of sample data. Due to the
study’s limi-tations, further research and analysis on sample
data and environmental variables are needed through more
investigative practices.

Data availability statement

The datasets presented in this article are not readily available
because the data that support the findings of this study are
not publicly available due to confidentiality agreements with
participants and privacy concerns. However, the data can be
made available by the corresponding authors upon reasonable
request. Requests to access the datasets should be directed to
zhuxiaosong@mail.cgs.gov.cn.

Author contributions

XZ: Conceptualization, Formal Analysis, Methodology,
Project administration, Software, Validation, Visualization,

Writing–original draft, Writing–review and editing. XP:
Conceptualization, Writing–review and editing. SY:
Conceptualization, Methodology, Software, Writing–review and
editing. WW: Conceptualization, Methodology, Writing–review
and editing. YD: Formal Analysis, Writing–review and editing. MF:
Project administration, Writing–review and editing. WL: Project
administration, Writing–review and editing. LJ: Methodology,
Project administration, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article.This research
was funded by Science and Technology Innovation Foundation of
Command Center of Integrated Natural Resources Survey Center,
grant number KC20220010; Science and Tech-nology Innovation
Foundation of Command Center of Integrated Natural Resources
SurveyCenter, grant numberKC20230018;ChinaGeological Survey
project, grant number ZD20220118; China Geological Survey
project, grant numbers DD20242562 and DD20242768.

Acknowledgments

We thank the China Geological Survey for providing technical
and financial support.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/feart.2024.
1455124/full#supplementary-material

References

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.
doi:10.1023/A:1010933404324

Catani, F., Segoni, S., and Falorni, G. (2010). An empirical geomorphology‐based
approach to the spatial prediction of soil thickness at catchment scale. Water Resour.
Res. 46 (5), W05508. doi:10.1029/2008WR007450

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2024.1455124
mailto:zhuxiaosong@mail.cgs.gov.cn
https://www.frontiersin.org/articles/10.3389/feart.2024.1455124/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2024.1455124/full#supplementary-material
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1029/2008WR007450
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhu et al. 10.3389/feart.2024.1455124

Culling, W. (1963). Soil creep and the development of hillside slopes. J. Geol. 71 (2),
127–161. doi:10.1086/626891

Dietrich,W. E., Reiss, R., Hsu,M. L., andMontgomery, D. R. (1995). A process‐based
model for colluvial soil depth and shallow landsliding using digital elevation data.
Hydrol. Process. 9 (3‐4), 383–400. doi:10.1002/HYP.3360090311

Dong, T., Liu, X., Chang, M., Liyuan, X., and Ran, W. (2023). Analysis on the
essential connotation and research direction of surface substrate. Northwest. Geol. 56
(4), 213–217. doi:10.12401/j.nwg.2023040

Friedman, J. H. (2002). Stochastic gradient boosting. Comput. statistics and data
analysis 38 (4), 367–378. doi:10.1016/S0167-9473(01)00065-2

Hamzehpour, N., Shafizadeh-Moghadam, H., and Valavi, R. (2019). Exploring the
driving forces and digital mapping of soil organic carbon using remote sensing and soil
texture. Catena 182, 104141. doi:10.1016/j.catena.2019.104141

Hou, H. X., Zhang, S. J., Lu, M., Zhang, Z. Y., Sun, X., and Qin, T. (2021). Technology
and method of the ground substrate layer survey of natural resources: taking
Baoding area as an example. Northwest. Geol. 54 (3), 277–288. doi:10.19751/j.cnki.61-
1149/p.2021.03.026

Huang, J. C., Ko, K. M., Shu, M. H., and Hsu, B. M. (2020). Application and
comparison of several machine learning algorithms and their integration models in
regression problems. Neural Comput. Appl. 32 (10), 5461–5469. doi:10.1007/s00521-
019-04644-5

Jia, L., Liu, H., OuYang, Y., Zhang, W., Dou, L., Liu, Z. N., et al. (2022).
Division scheme of surface substrate mapping units of mountainous-hilly area in
south China based on geological formations research: example from Xinhui-Taishan
area in Pearl River Delta. Northwest. Geol. 55 (4), 140–157. doi:10.19751/j.cnki.61-
1149/p.2022.04.013

Jia, J., Mao, Y.M.,Meng, X. J., Gao, B., Gao,M. X., andWu,W. X. (2023). Comparison
of landslide susceptibility evaluation by deep random forest and random forest model:
a case study of Lueyang County, Hanzhong City. Northwest. Geol. 56 (3), 239–249.
doi:10.12401/j.nwg.2023084

Jin, Z., and Lv, J. S. (2022). Comparison of the accuracy of spatial prediction for
heavy metals in regional soils based on machine learning models. Geogr. Res. 41 (6),
1731–1747. doi:10.11821/dlyj020210528

Kempen, B., Brus, D. J., and Stoorvogel, J. J. (2011). Three-dimensional mapping
of soil organic matter content using soil type–specific depth functions. Geoderma 162
(1-2), 107–123. doi:10.1016/j.geoderma.2011.01.010

Keskin, H., Grunwald, S., and Harris, W. G. (2019). Digital mapping
of soil carbon fractions with machine learning. Geoderma 339, 40–58.
doi:10.1016/j.geoderma.2018.12.037

Lan, X. C., and Cheng, L. (2017). Study on the regionalization of soil and water
conservation in Ningbo City. SSWC 15 (1), 141–147. doi:10.16843/j.sswc.2017.01.018

Li, X., Zhou, X., Xiang, Z., Ren, J., Bing, T., Dai, Z., et al. (2023). Simply discussion
on the work of ground substrate survey: taking Hainan Island as an example.Geol. Bull.
China 42 (1), 68–75. doi:10.12097/j.issn.1671-2552.2023.01.006

Liu, J., Chen, X., Lin, H., Liu, H., and Song, H. (2013). A simple geomorphic‐based
analytical model for predicting the spatial distribution of soil thickness in
headwater hillslopes and catchments. Water Resour. Res. 49 (11), 7733–7746.
doi:10.1002/2013wr013834

Liu, J., Han, X., Liu, J., Liang, Z., and He, R. (2019). Understanding of critical zone
structures and hydrological connectivity: a review. Adv. Water Sci. 30 (1), 112–122.
doi:10.14042/j.cnki.32.1309.2019.01.012

Liu, J., Zhao,W., and Liu, Y. (2024).Modelling soil thickness evolution: advancements
and challenges. Acta Pedol. Sin. 61 (2), 319–330. doi:10.11766/trxb202207070374

Minasny, B., Setiawan, B. I., Saptomo, S. K., andMcBratney, A. B. (2018). Open digital
mapping as a cost-effectivemethod formapping peat thickness and assessing the carbon
stock of tropical peatlands. Geoderma 313, 25–40. doi:10.1016/j.geoderma.2017.10.018

Ottoy, S., De Vos, B., Sindayihebura, A., Hermy, M., and Van Orshoven, J.
(2017). Assessing soil organic carbon stocks under current and potential forest
cover using digital soil mapping and spatial generalisation. Ecol. Indic. 77, 139–150.
doi:10.1016/j.ecolind.2017.02.010

Padarian, J., Minasny, B., and McBratney, A. B. (2019a). Machine learning and soil
sciences: a review aided by machine learning tools. Soil 6 (1), 35–52. doi:10.5194/soil-
6-35-2020

Padarian, J., Minasny, B., and McBratney, A. B. (2019b). Using deep learning for
digital soil mapping. Soil 5 (1), 79–89. doi:10.5194/soil-5-79-2019

Pelletier, J. D., and Rasmussen, C. (2009). Geomorphically based predictive
mapping of soil thickness in upland watersheds. Water Resour. Res. 45 (9), W09417.
doi:10.1029/2008WR007319

Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia 4 (2), 1883.
doi:10.4249/scholarpedia.1883

Qiu, W., Wu, B., Pan, X., and Tang, Y. (2020). Application of several
cluster-optimization-based machine learning methods in evaluation of
landslide susceptibility in Lingtai County. Northwest. Geol. 53 (1), 222–233.
doi:10.19751/j.cnki.61-1149/p.2020.01.021

Roering, J. J. (2008). How well can hillslope evolution models “explain” topography?
Simulating soil transport and production with high-resolution topographic data. Geol.
Soc. Am. Bull. 120 (9-10), 1248–1262. doi:10.1130/B26283.1

Sergeev, A. P., Buevich, A. G., Baglaeva, E. M., and Shichkin, A. V. (2019).
Combining spatial autocorrelation with machine learning increases prediction
accuracy of soil heavy metals. CATENA 174, 425–435. doi:10.1016/j.catena.
2018.11.037

Shai, H., Yin, Z., Wang, Y., Xing, B., Peng, L., and Wang, R. (2022). Prediction
methods of spatial distribution of aeolian sand in ruyi river basin of Bashang
plateau,Hebei Province.Geol. Bull. China 41 (12), 2138–2145. doi:10.12097/j.issn.1671-
2552.2022.12.006

Sharififar, A., Sarmadian, F., Malone, B. P., and Minasny, B. (2019). Addressing the
issue of digital mapping of soil classes with imbalanced class observations. Geoderma
350, 84–92. doi:10.1016/j.geoderma.2019.05.016

Shary, P. A., Sharaya, L. S., and Mitusov, A. V. (2017). Predictive modeling of slope
deposits and comparisons of two small areas in Northern Germany. Geomorphology
290, 222–235. doi:10.1016/j.geomorph.2017.04.018

Shen, Z., Zhang, R.-L., Long, H.-Y., and Xu, A.-G. (2022). Research on spatial
distribution of soil texture in southern Ningxia based on machine learning. Sci. Agric.
Sin. 55, 2961–2972. doi:10.3864/j.issn.0578-1752.2022.15.008

Smola, A. J., and Schölkopf, B. (2004). A tutorial on support vector regression.
Statistics Comput. 14, 199–222. doi:10.1023/B:STCO.0000035301.49549.88

Solomatine, D. P., and Shrestha, D. L. (2004). “AdaBoost. RT: a boosting algorithm
for regression problems,” in 2004 IEEE international joint conference on neural networks
(IEEE Cat. No. 04CH37541) (IEEE), 1163–1168.

St. Clair, J., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S., Martel, S. J., et al.
(2015). Geophysical imaging reveals topographic stress control of bedrock weathering.
Science 350 (6260), 534–538. doi:10.1126/science.aab2210

Tao, M., Chen, X., Cheng, Q., and Binley, A. (2022). Evaluating the joint use of GPR
and ERT on mapping shallow subsurface features of karst critical zone in southwest
China. Vadose Zone J. 21 (1), e20172. doi:10.1002/vzj2.20172

Vermeulen, D., and Van Niekerk, A. (2017). Machine learning performance for
predicting soil salinity using different combinations of geomorphometric covariates.
Geoderma 299, 1–12. doi:10.1016/j.geoderma.2017.03.013

Wadoux, A.M.-C., Minasny, B., and McBratney, A. B. (2020). Machine learning for
digital soil mapping: applications, challenges and suggested solutions. Earth-Science
Rev. 210, 103359. doi:10.1016/j.earscirev.2020.103359

Wadoux, A. M. J. C., Padarian, J., and Minasny, B. (2019). Multi-source data
integration for soil mapping using deep learning. SOIL 5 (1), 107–119. doi:10.5194/soil-
5-107-2019

Wang, S., Chen, H. S., Fu, Z. Y., Nie, Y. P., and Wang, W. K. (2015). Estimation of
thickness of soil layer on typical karst hillslopes using a ground penetrating radar.

Willgoose, G., Bras, R., and Rodriguez-Iturbe, I. (1991). A coupled channel
network growth and hillslope evolution model. Water Resour. Res. 27 (7), 1685–1696.
doi:10.1029/91WR00935

Wolpert, D. H. (1992). Stacked generalization. Neural Netw. 5 (2), 241–259.
doi:10.1016/S0893-6080(05)80023-1

Wu, J., Teng, Y., Chen, H., and Li, J. (2016). Machine-learning models for on-site
estimation of background concentrations of arsenic in soils using soil formation factors.
J. Soils Sediments 16 (6), 1787–1797. doi:10.1007/s11368-016-1374-9

Yao, X. F., Yang, J. F., Zuo, L. Y., Zhang, T. T., Chen, J., and Zhang, C.
G. (2022). Discussion on connotation and survey strategy of the ground
substrate. Geol. Bull. China 41 (12), 2097–2105. doi:10.12097/j.issn.1671-2552.
2022.12.002

Yin, Z. Q., Qin, X. G., Zhang, S. J., Wei, X. F., Hou, H. X., He, Z. X.,
et al. (2020). Preliminary study on classification and investigation of surface
substrate.Hydrogeology and Eng. Geol. 47 (6), 8–14. doi:10.16030/j.cnki.issn.1000-3665.
202010065

Yu, M. G., Hong, W. T., Yang, Z. L., Duang, Z., Chu, P. L., Chen, R., et al. (2021).
Classification of Yanshanian volcanic cycle and the related mineralization in the coast
area of southeastern China.Geol. Bull. China 40 (6), 845–863. doi:10.12097/j.issn.1671-
2552.2021.06.003

Yuan, G., Hou, H., Liu, J., Wang, Q., Guo, X., and Jia, Y. (2023). Introduction
to the methods of ecology− geological survey for servicing ecological civilization:
example from ecology− supporting sphere survey. Northwest. Geol. 56 (3), 30–38.
doi:10.12401/j.nwg.2023065

Zeraatpisheh,M., Ayoubi, S., Jafari, A., Tajik, S., and Finke, P. (2019). Digital mapping
of soil properties using multiple machine learning in a semi-arid region, central Iran.
Geoderma 338, 445–452. doi:10.1016/j.geoderma.2018.09.006

Zhang, G., Shi, Z., Zhu, A., Wang, Q., Wu, K., Shi, Z., et al. (2020). Progress and
perspective of studies on soils in space and time. Acta Pedol. Sin. 57 (5), 1060–1070.
doi:10.11766/trxb202004270199

Ziadat, F. M. (2010). Prediction of soil depth from digital terrain data by integrating
statistical and visual approaches. Pedosphere 20 (3), 361–367. doi:10.1016/S1002-
0160(10)60025-2

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2024.1455124
https://doi.org/10.1086/626891
https://doi.org/10.1002/HYP.3360090311
https://doi.org/10.12401/j.nwg.2023040
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1016/j.catena.2019.104141
https://doi.org/10.19751/j.cnki.61-1149/p.2021.03.026
https://doi.org/10.19751/j.cnki.61-1149/p.2021.03.026
https://doi.org/10.1007/s00521-019-04644-5
https://doi.org/10.1007/s00521-019-04644-5
https://doi.org/10.19751/j.cnki.61-1149/p.2022.04.013
https://doi.org/10.19751/j.cnki.61-1149/p.2022.04.013
https://doi.org/10.12401/j.nwg.2023084
https://doi.org/10.11821/dlyj020210528
https://doi.org/10.1016/j.geoderma.2011.01.010
https://doi.org/10.1016/j.geoderma.2018.12.037
https://doi.org/10.16843/j.sswc.2017.01.018
https://doi.org/10.12097/j.issn.1671-2552.2023.01.006
https://doi.org/10.1002/2013wr013834
https://doi.org/10.14042/j.cnki.32.1309.2019.01.012
https://doi.org/10.11766/trxb202207070374
https://doi.org/10.1016/j.geoderma.2017.10.018
https://doi.org/10.1016/j.ecolind.2017.02.010
https://doi.org/10.5194/soil-6-35-2020
https://doi.org/10.5194/soil-6-35-2020
https://doi.org/10.5194/soil-5-79-2019
https://doi.org/10.1029/2008WR007319
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.19751/j.cnki.61-1149/p.2020.01.021
https://doi.org/10.1130/B26283.1
https://doi.org/10.1016/j.catena.2018.11.037
https://doi.org/10.1016/j.catena.2018.11.037
https://doi.org/10.12097/j.issn.1671-2552.2022.12.006
https://doi.org/10.12097/j.issn.1671-2552.2022.12.006
https://doi.org/10.1016/j.geoderma.2019.05.016
https://doi.org/10.1016/j.geomorph.2017.04.018
https://doi.org/10.3864/j.issn.0578-1752.2022.15.008
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1126/science.aab2210
https://doi.org/10.1002/vzj2.20172
https://doi.org/10.1016/j.geoderma.2017.03.013
https://doi.org/10.1016/j.earscirev.2020.103359
https://doi.org/10.5194/soil-5-107-2019
https://doi.org/10.5194/soil-5-107-2019
https://doi.org/10.1029/91WR00935
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1007/s11368-016-1374-9
https://doi.org/10.12097/j.issn.1671-2552.2022.12.002
https://doi.org/10.12097/j.issn.1671-2552.2022.12.002
https://doi.org/10.16030/j.cnki.issn.1000-3665.202010065
https://doi.org/10.16030/j.cnki.issn.1000-3665.202010065
https://doi.org/10.12097/j.issn.1671-2552.2021.06.003
https://doi.org/10.12097/j.issn.1671-2552.2021.06.003
https://doi.org/10.12401/j.nwg.2023065
https://doi.org/10.1016/j.geoderma.2018.09.006
https://doi.org/10.11766/trxb202004270199
https://doi.org/10.1016/S1002-0160(10)60025-2
https://doi.org/10.1016/S1002-0160(10)60025-2
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Study site
	2.2 Data sources and processing
	2.2.1 Data sources
	2.2.2 Data processing

	2.3 Research methods
	2.3.1 Machine learning models
	2.3.1.1 Ensemble learning algorithms
	2.3.1.2 Neural network algorithm
	2.3.1.3 Support vector machine (SVM) algorithm
	2.3.1.4 K-Nearest Neighbors (kNN) algorithm

	2.3.2 Key parameter spaces
	2.3.3 Evaluation metrics


	3 Results
	3.1 Parameter optimization
	3.2 Model validation
	3.3 Result mapping

	4 Discussion
	4.1 Parameter tuning method selection
	4.2 Comparative analysis of models
	4.3 The impact of other factors on the prediction results

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

