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The turbulent international political and economic situation has presented
significant challenges to food andwater security. Agricultural water conservancy
infrastructure has garnered considerable attention due to its crucial role in
the allocation and efficient utilization of water resources. Traditional research
on the investment efficiency of agricultural water conservancy infrastructure
often treats the intermediate impact pathways as a “black box”, neglecting
the distinctions among various links. This article employs a two-stage DEA
model to partition the impact of agricultural water conservancy infrastructure
investment on agricultural output into two stages: water supply and water use.
Utilizing data of 31 provinces in China from 2008 to 2022, we measured the
efficiency of the two stages, as well as the spatiotemporal distribution and
evolution characteristics. The findings reveal a spatial misalignment between
water supply and water use efficiency: regions exhibiting higher water supply
efficiency in the first stage are primarily those with abundant water resource
endowments, whereas water use efficiency in the second stage is closely linked
to regional economic development levels. Additionally, the spatial distribution
and evolution characteristics of efficiency values indicate that the polarization
of water use efficiency is more pronounced, with a significant spatial correlation
observed between geographically adjacent areas and those within the same
watershed. Conversely, water supply efficiency shows a significant correlation
only within the context of watershed relationships. Based on the analysis of the
sources of efficiency loss, recommendations include increasing investment in
water-saving irrigation technologies, developing agricultural water conservancy
infrastructure suitable for large-scale mechanized production, and designing
investment compensation mechanisms. Future research is suggested to use
econometric models to further examine and identify factors affecting efficiency,
particularly the impacts of inter-basin water transfer projects.

KEYWORDS

investment efficiency, agricultural water conservancy infrastructure investment, two-
stage DEA model, spatiotemporal evolution, optimization analysis

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2024.1452535
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2024.1452535&domain=pdf&date_stamp=2024-11-19
mailto:sunli@sdufe.edu.cn
mailto:sunli@sdufe.edu.cn
https://doi.org/10.3389/feart.2024.1452535
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2024.1452535/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1452535/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1452535/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1452535/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1452535/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1452535/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Sun et al. 10.3389/feart.2024.1452535

1 Introduction

In the current global political and economic climate, the
frequency of risk events has increased significantly, prompting
nations to focus unprecedented attention on food and water
security. Water resources are a crucial component of agricultural
production; however, their distribution is often uneven. As an
essential tool for managing these disparate water resources,
agricultural water conservancy infrastructure plays a vital role
in agricultural productivity. By constructing reservoirs, irrigation
systems, and drainage facilities, societies can achieve a more
equitable distribution of water resources. Additionally, precise
irrigation techniques and effective management practices help
minimize water waste, ensure that crops receive adequate hydration
during their growth periods, and enhance the efficiency of water
resource utilization.

China boasts a vast territory and a large population; however, its
endowment of water resources is relatively limited and unevenly
distributed both temporally and spatially, leading to a lack of
coordination with land resource distribution (Liu and Wu, 2002).
Most grain production areas in the northern region are experiencing
significant water shortages. Currently, China’s grain production
growth model heavily relies on increasing input factors, particularly
water resources (Zhang et al., 2019). This ‘extensive’ production
model inevitably results in low scale efficiency, redundant
inputs, and resource waste (Yang et al., 2020). Consequently, the
effective utilization of water resources in agricultural production
presents considerable challenges. A thorough analysis focused on
optimizing water resource allocation and enhancing utilization
efficiency—particularly through improving the investment
efficiency of agricultural water conservancy infrastructure—is
crucial for advancing the efficiency of agricultural factor allocation
and promoting output growth in China.

Research on the investment efficiency of agricultural water
conservancy infrastructure is primarily conducted from three
perspectives. The first perspective involves input-output analysis
within the field of economics, focusing on the macro-level
relationship between the inputs and outputs of agricultural water
conservancy infrastructure in specific regions (Song et al., 2017;
Pan et al., 2022; Zhang et al., 2022).The secondperspective addresses
the decision-making, design, construction, andmanagement of such
infrastructure, which is studied from a micro-level using relevant
theories and tools, particularly from engineering management
(Liu et al., 2014; Hatamkhani et al., 2021). The third perspective
concerns the financing of agricultural water conservancy
infrastructure, with research primarily examining investment
sources and innovative methods, exploring diversified financing
systems and capital structures. This article predominantly focuses
on the first perspective (Lazurko andVenema, 2017; Du et al., 2019).

In the study of efficiency evaluation based on the input-
output relationship, the selection of input-output variables is a
crucial component. When examining the investment efficiency
of agricultural water conservancy infrastructure, it is essential to
clarify the logic and pathways through which such infrastructure
affects agricultural production. Agricultural water conservancy
infrastructure facilitates the supply of water resources essential
for agricultural production through processes such as water
storage, diversion, lifting, and transfer (Acevedo Guerrero, 2018;

Yan, 2019). By enhancing irrigation efficiency and promoting the
rational utilization of water resources, it improves agricultural
production conditions and fosters soil moisture stability, thereby
augmenting crop growth potential and yield (Guo and Zhang,
2024). Additionally, this infrastructure mitigates the risks associated
with drought and flood disasters, enhances land use efficiency, and
contributes to the sustainable development of agricultural.

The selection of efficiency evaluation methods represents
another critical issue.The existing methods for evaluating efficiency
primarily include Input–Output Analysis (IOA), Difference-in-
DifferencesAnalysis (DID), VectorAutoregressive (VAR), Stochastic
Frontier Analysis (SFA), and Data Envelopment Analysis (DEA)
models, among others (Yuan, 2020). The DEA model does not
require a priori setting of weights, and it has demonstrated unique
advantages in various efficiency measurements and performance
evaluations resulting from its objectivity and flexibility. An
increasing number of scholars are choosing the DEA model to
measure the agricultural production efficiency (Zhang et al., 2022)
and agricultural green ecological efficiency (Sun and Yu, 2023),
thereby reflecting the carrying capacity of agriculture for sustainable
development. Additionally, several studies concentrate on the
efficiency of specific input factors in the agricultural production
process, such as agricultural water conservancy infrastructures
efficiency (Yan, 2019; Liu et al., 2013; Wang et al., 2022), water
resource utilization efficiency (Xie et al., 2022) logistics efficiency
(Hao et al., 2022) and machinery efficiency (Xu, 2023).

Currently, several studies have utilized the DEAmodel to assess
the efficiency of investments in water conservancy infrastructure,
with most research frameworks employing the DEA-Tobit model
(Xu, 2023). In the framework, theDEAmodel is employed in the first
stage to assess the efficiency of each Decision-Making Unit (DMU),
while the Tobit regression model is applied in the second stage to
analyze the factors influencing efficiency. Furthermore Pan et al.
(2022) made a dynamic and static analysis on the agricultural
efficiency of the Yangtze River Economic Belt from 2010 to 2019
through a three-stage DEA Malmquist model. The three stages
primarily encompass the static efficiency of agricultural production,
the application of SFA to mitigate the influence of environmental
variables and statistical noise on the effectiveness of DMU, and the
utilization of the DEA-Malmquist model to assess the impact of
environmental variables on agricultural production efficiency.

Existing research indicates that the impact of agricultural water
conservancy infrastructure investment on agricultural production is
highly complex. However, the current measurement and evaluation
of its efficiency often treat the intermediate impact processes and
pathways as a “black box,” neglecting the specific role differences
among various links. In most studies, investment in agricultural
water conservancy infrastructure is merely considered an input
variable, while agricultural output is treated as the output variable.
This oversimplified perspective fails to fully capture the differential
roles of each link in overall efficiency. Even when examining
influencing factors, the results are frequently too general, making
it challenging to identify the specific sources of efficiency loss.
Therefore, further in-depth research and detailed analysis of
efficiency performance across different links are necessary to
elucidate the clearer sources of efficiency losses. The two-stage
DEA method serves as a powerful tool for evaluating the efficiency
of complex systems, as it decomposes overall efficiency into
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efficiencies across two distinct stages, where the output variables
of the first stage are utilized as input variables for the second
stage. Compared to traditional DEA models (Kim et al., 2015),
the two-stage DEA model unveils the “black box” of the input-
output relationship (Kord et al., 2022), allowing for a more precise
delineation of the intricate logical relationships between various
input variables and output variables. This technique is primarily
applied in areas such as supply chains (Zhao et al., 2022), the
financial sector (Tsai et al., 2020), and the technological innovation
processes of high-tech companies. In this study, the two-stage
DEA model is employed to decompose the relationship between
investment in agricultural water conservancy infrastructure and
agricultural output into two stages: the water supply stage and
the water utilization stage. The amount of irrigation water is used
as an intermediate variable for both stages to reflect the differing
efficiencies in the allocation of water resources and water-saving
irrigation practices.

Research on the investment efficiency of agricultural water
conservancy infrastructure has been well-documented, with a focus
on methodological and empirical aspects. Variations in existing
studies primarily stem from differences in input-output indicators,
evaluation methods, and evaluation objects. However, some studies
have overlooked the fact that water conservancy infrastructure
serves as a crucial input variable for water resources, land resources,
and the overall production environment, rather than a direct
input factor for agricultural production. As shown in Figure 1, this
study examines the contribution of agricultural water conservancy
infrastructure to agricultural production by dividing it into
two stages: water supply and water use. A two-stage system
for evaluating the investment efficiency of agricultural water
conservancy infrastructure is established, utilizing a two-stage DEA
model for evaluation. The efficiency of the water supply stage
mainly focuses on the provision of agricultural irrigation water and
the protection of water and soil resources through infrastructure.
On the other hand, the water use stage efficiency evaluates
the relationship between factor input and output in agricultural
production. Efficiency values at different stages are analyzed using
methods such as kernel density estimation and Moran’s I index
to illustrate their distribution and evolution characteristics in time
and space. By calculating input redundancy and output deficiency
in the input-output relationship between the two stages, the
study identifies the root causes of efficiency losses and proposes
optimization suggestions.

2 Methodology and data

2.1 Efficiency measurement
method—Two-stage DEA model

The DEAmodel is commonly used in analyzing the investment
efficiency of agricultural water conservancy infrastructure. The
types and definitions of related efficiencies are primarily based
on Farrell (1957) proposed categories. This model assesses the
relative effectiveness of DMUs by comparing their deviation from
the frontier while maintaining input or output constant. There
are two main DEA models: the CCR model (also known as the
CRS model) by Charnes et al. (1978), which assumes constant

returns to scale; and the BCC model, a modification of the
CCRmodel by Banker et al. (1984) that does not require the constant
returns to scale assumption.

Due to variations in regional water resources, fiscal levels,
and competitive conditions, it may not be feasible for regions
to internally operate at the optimal scale. Consequently, when
evaluating the impact of regional agricultural water conservancy
infrastructure investment on agricultural output, a variable return
is employed to scale the DEA model, specifically the DEA-
BCC model (Cheng and Jin, 2024).

Suppose there are n DMUs, with each DMU undergoing two
stages. Let Xj represent the inputs of the j-th DMU in the first stage,
which includes m inputs, expressed as X ji = (X j1, X j2, … , X jm)T for
the j-th DMU. Let Zj denote the outputs of the j-th DMU in the
first stage, encompassing n outputs, formulated as Zjd = (Zj1, Zj2,
… , Zjn)T for the j-th DMU. Furthermore, let Y j signify the final
outputs of the j-th DMU in the second stage, comprising p outputs,
articulated as Y jk = (Y j1, Y j2, … , Y jp) for the j-th DMU.

To ensure alignment between the outputs of the first stage and
the inputs of the second stage, an input-oriented DEA-BCC model
is utilized in the first stage, whereas an output-oriented DEA-BCC
model is applied in the second stage.

min E1 =

m

∑
i=1

ωixji + β1
n

∑
d=1

gdzjd

s.t.

{{{{{{{{
{{{{{{{{
{

n

∑
d=1

gdzjd

m

∑
i=1

ωixji + β1

≤ 1 (j = 1,2,⋯, r)

ωi ≥ 1,gd ≥ 1,β1 ∈ R

(1)

t = 1
n

∑
d=1

gdzjd

; twi = ωi; tgd = λd; tβ1 = η1

Applying theCharnes et al. (1978) transformation to Equation 1,
we can derive the final linear model Expression Equation 2 for the
first stage:

min E1 =
m

∑
i=1

ωixji + η1

s.t.

{{{{
{{{{
{

n

∑
d=1

λdzjd −
m

∑
i=1

ωixji + η1 ≤ 0 (j = 1,2,⋯, r)

n

∑
d=1

λdzjd = 1

(2)

where ωi represents the weight coefficient of the input indicator
for the first stage; λd represents the weight coefficient of the output
indicator for the first stage; η1 is an unrestricted slack variable,
reflecting the returns to scale characteristics of the j-th DMU in
Expression Equation 3. η1 = 0 indicates that the DMU is at the
optimal production scale; that is, there are constant returns to scale;
η1≠ 0 indicates that the DMU is in a state of increasing or decreasing
returns to scale.

In the second phase, the DEA-BCC model (output-oriented) is
used, aiming for maximum output and minimum input, with the
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FIGURE 1
Research framework.

evaluation index being the output/input ratio, and the optimal value
being the maximum of this index.

max E2 =

p

∑
k=1

ukyjk − β2
n

∑
d=1

gdzjd

s.t.

{{{{{{{{
{{{{{{{{
{

p

∑
k=1

ukyjk − β2
n

∑
d=1

gdzjd

≤ 1(j = 1,2,⋯, r)

ui ≥ 1,gd ≥ 1,β2 ∈ R

(3)

t = 1
n

∑
d=1

gdzjd

; tuk = μk; tgd = λd; tβ2 = η2

Applying theCharnes et al. (1978) transformation to Equation 3,
we can derive the final linear model of Expression Equation 4 for the
second stage:

max E2 =
p

∑
k=1

μkyjk − η2

s.t.

{{{{{
{{{{{
{

p

∑
k=1

μkyjk −
n

∑
d=1

λdzjd + η2 ≤ 0(j = 1,2,⋯, r)

n

∑
d=1

λdzjd = 1

(4)

where λd is the weight coefficient of the input variables in
the second phase; μk is the weight coefficient of the output
variables in the second phase; η2 is an unconstrained real variable,

reflecting the scale return characteristics of the jth DMU state in
Expression Equation 4. η2 = 0 indicates that the DMU is at the
optimal production scale state; that is, constant returns to scale; η2
≠ 0 indicates that the DMU is in a state of increasing or decreasing
returns to scale.

2.2 Kernel nuclear density and the dynamic
evolution

In the existing literature, the traditional Gini coefficient and
Theil index are frequently utilized to examine regional disparities.
However, the precision of the Gini coefficient is often questioned,
and the magnitude of the Theil index is highly sensitive to the base
of the logarithm and the data distribution. Kernel density estimation
offers a means to depict the distribution of random variables as a
continuous density function, capturing not only the location but also
shape and flexibility of the distribution. Assuming that the variables
“R1, R2, … , Rn” represent sample points from an independent
F-distribution with a probability density function denoted as
fℎ(R), the corresponding kernel density estimation formula is
presented in Equation 5:

̂fh(R) =
1
nh

n

∑
i=1

K(
Ri −R
h
) (5)

Allowing Ri=WI i, where WI i represents the water conservancy
infrastructure investment efficiency for a given sample province in
China, we can compute the kernel density of the water conservancy
infrastructure investment efficiency.The kernel function, denoted as
K, is a non-negative function that integrates to 1, aligning with the
properties of a probability density function, and it has a mean of 0.
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The term “h” (which is greater than zero) refers to the bandwidth,
serving as a smoothing parameter.

f (x) = 1
Nh

N

∑
i=1

K(
Xi − x
h
) (6)

In this context, as shown in Equation 6. N denotes the total
count of observations, with each Xi representing an independently
and identically distributed observation across the dataset. The
symbol x signifies the mean of these observations. The term
K embodies the kernel density function, which is a type of
estimator used for the probability density function of a random
variable. Meanwhile, h stands for the bandwidth, a parameter
that controls the smoothness of the estimation. As a function
that serves both as a smoothing and weighting mechanism, the
kernel density estimation typically meets the criteria shown in
Equation 7:

{{{{{{
{{{{{{
{

lim
x→∞

K(x) · x= 0

K(x)≥ 0∫
+∞

−∞
K(x)dx = 1

sup K(x)< +∞∫
+∞

−∞
K2(x)dx < +∞

(7)

2.3 Spatial autocorrelation
measure—Moran’s I

Moran’s I is an index that can be utilized to assess the spatial
correlation among variables. The formula for calculating Moran’s I
is presented in Equation 8:

Moran′sI =

n
n

∑
i=1

n

∑
j=1

Wij(AWIi −AWI)(AWIj −AWI)

n

∑
i=1

n

∑
j=1

Wij

n

∑
i=1
(AWIi −AWI)2

=

n

∑
i=1

n

∑
j=1

Wij(AWIi −AWI)(AWIj −AWI)

S2
n

∑
i=1

n

∑
j=1

Wij

(8)

S2 = 1
n

n
∑
i=1
(AWIi −AWI), AWI = 1

n

n
∑
i=1

AWIi, where n represents the
total number of spatial units; W ij is the spatial relationship value
between spatial unit i and spatial unit j within the spatial weight
matrix; AWI i and AWI j are the degrees of agricultural water
conservancy infrastructure for provinces i and j, respectively; and
the bar above a variable indicates the average value across the
entire country. The value of Moran’s I index is in the range of
[−1, 1]. A value greater than 0 signifies positive spatial correlation,
while a value less than 0 indicates negative spatial correlation
between the variables of the two provinces. The greater the absolute
value, the stronger the correlation. During the measurement
process, it is essential to define the spatial weight matrix and
to apply different spatial weight matrices to measure variable
correlation under specific spatial relationships. A scatter plot of
Moran’s I can be employed to visualize the spatial correlation
characteristics of the observations.

The spatial matrix defines the fundamental spatial relationships
that are integral to the measurement of Moran’s I index and
serves as the foundation for constructing a spatial model.
Commonly utilized matrices include the adjacency matrix (W1),
the geographical distance matrix (W2), the economic matrix
(W3). The principles for calculating these matrices are outlined
in Table 1. Furthermore, this paper innovatively proposes a
watershed matrix to improve the construction of agricultural
water conservancy infrastructure, which relies on rivers and other
water sources. According to the classification standards outlined
in the China Water Conservancy Yearbook, China is divided
into ten river basins: Songhua River Basin, Liao River Basin, Hai
River Basin, Yellow River Basin, Huai River Basin, Yangtze River
Basin, Southeast River Basins, Pearl River Basin, Southwest Rivers,
and northwest rivers. The provinces included in each river basin
are then determined. The watershed matrix is defined in detail
(refer toW4 in Table 1).

2.4 Variable selection and data

To systematically and comprehensively assess the efficiency of
investment in water conservancy infrastructure, it is essential to
establish a scientific and practical input–output indicator system
that aligns with the mechanisms of how water conservancy
infrastructure impacts agricultural production, utilizing a two-
stage DEA model. Agricultural water conservancy infrastructure
is primarily designed to prevent and address disasters such as
drought, flood, waterlogging, and salinization in farmlands, thereby
improving the conditions for agricultural production through
irrigation, drainage, and other related projects. Consequently, within
the realm of agricultural production, these infrastructure types
predominantly influence the provision of water resources and high-
quality arable land, which are key input elements for farming
activities.

Based on this analysis, an input–output variable system for the
two-stageDEAmodel has been constructed, as depicted in Figure 2.
In the first stage, the input variables include the stock of
investment in agricultural water conservancy infrastructure and
the workforce employed within the water conservancy sector. The
outputs for this stage are the volume of water used in agriculture
and the area of effective sowing. These output variables are
the inputs for the second stage. Additionally, the second stage
encompasses input variables such as the number of individuals
engaged in agricultural work, the total power of agricultural
machinery, the quantity of fertilizer used, and the volume of
applied pesticide.

By consulting the water conservancy databases from the
China Water Conservancy Yearbook spanning from 2009 to
2023, as well as utilizing the EPS platform, the data for the
aforementioned input–output indicators have been compiled and
adjusted for the period from 2008 to 2022. Owing to the lack
of data regarding effective irrigation areas, the final sample
for analysis encompasses 31 provinces (including municipalities
and autonomous regions), with the exclusion of Hong Kong,
Macao, and Taiwan. Descriptive statistics for each variable are
shown in Table 2.
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TABLE 1 Calculation principles for designing spatial matrices.

Space matrix Adjacency matrix
W1

Geographic matrix
W2

Economic matrix
W3

River basin matrix
W4

Calculation principle The corresponding value of
adjacent provinces is 1, and

that of non-adjacent provinces
is 0

Reciprocal of the square of
spherical distance between

provincial capitals

Difference of real GDP per
capita between provinces dij =

1
|RGDPi−RGDPj|

The corresponding value is
taken as 1 for provinces

located in the same basin and 0
for provinces not in the same

basin

FIGURE 2
The input-output variable in two-stage DEA model.

3 Results

3.1 Basic situation and spatial
characteristics

In this study, MAXDEA 8 software is employed to input the
two-stage input–output panel data into the DEA model, wherein a
multi-stage algorithm is used to evaluate the impact of investment in
agricultural water conservancy infrastructure on agricultural output
in a phased manner. This approach yields comprehensive efficiency
information on both the water supply and the land protection
and water use phases, including the efficiency of each individual
phase. The results are presented in Table 3, where Score represents
the overall efficiency. Stage1 reflects the first stage efficiency,
which includes water supply and soil-water conservation efficiency.
Stage2 represents the second stage efficiency, specifically water use
efficiency. The relationship between the various efficiency values is
as follows: Score = Stage1× Stage2.

Looking at the average efficiency of input–output for agricultural
water conservancy infrastructure investments from 2008 to 2022, there
is a significant disparity among provinces.Only a fewprovinces achieve

an efficiency of one in the Stage1. Since the overall efficiency is the
product of the efficiencies from both stages, and there is a considerable
difference in the efficiencies of the two stages across many provinces, it
is rare that a province has high efficiency in both stages. Consequently,
theoverall efficiencyvalues tend tobeon the lower side.Wenowanalyze
the situation for each of the three efficiency values.

Firstly, regarding the overall efficiency, in addition to the
generally low figures mentioned, there are also clear differences
between provinces. Provinces with higher efficiency includeHainan,
Shanghai, Henan, and Beijing. However, the results for Shanghai
and Beijing are not statistically significant due to their smaller
agricultural sectors. Henan and Hainan, being major agricultural
provinces in China, not only benefit from economies of scale
but also possess advanced agricultural production technologies,
which contributes to their higher efficiency in water conservancy
infrastructure investment.

Secondly, when examining Stage1, the differences between
provinces are even more pronounced, with provinces such as
Heilongjiang, Tibet, Qinghai, NingxiaHuiAutonomousRegion, and
XinjiangUygur Autonomous Region reaching a level of 1.Moreover,
the Stage1 efficiency exceeds 0.85 in the case of Inner Mongolia
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TABLE 2 Statistical description of variables.

Variable Description Obs Mean Std. Dev Min Max

GDP1 GDP of the primary industry 465 865.088 663.116 31.227 3,736.563

AWI Investment of Agricultural Water Conservancy
Infrastructure

465 314.425 298.175 13.593 1,719.754

EI Employees in the water conservancy industry 465 2.815 1.752 0.214 9.396

water Agricultural water consumption 465 121.051 104.390 2.610 561.750

land Total sowing area of crops 465 5,284.114 3,898.830 88.550 15,209.410

labor Agricultural workforce 465 1,901.728 1,342.805 203 6,031.730

mechanical Total power of agricultural machinery 465 3,246.449 2,894.996 94 13,353.000

fertilizer Fertilizer usage 465 180.863 143.768 2.8 716.100

pesticide Pesticide usage 465 51,950.695 41,565.259 480 173,461.000

TABLE 3 Average efficiency of each province from 2008 to 2022.

Province Score Stage1 Stage2 Province Score Stage1 Stage2

Beijing 0.390 0.393 0.993 Henan 0.405 0.574 0.737

Tianjin 0.268 0.463 0.590 Hubei 0.195 0.559 0.368

Hebei 0.367 0.624 0.561 Hunan 0.202 0.615 0.333

Shanxi 0.147 0.611 0.315 Guangdong 0.325 0.669 0.492

Neimenggu 0.187 0.918 0.206 Guangxi 0.215 0.753 0.286

Liaoning 0.309 0.610 0.515 Hainan 0.438 0.547 0.803

Jilin 0.258 0.676 0.395 Chongqing 0.246 0.854 0.299

Heilongjiang 0.198 1 0.198 Sichuan 0.282 0.630 0.475

Shanghai 0.428 0.998 0.428 Guizhou 0.268 0.936 0.294

Jiangsu 0.219 0.640 0.341 Yunan 0.194 0.743 0.272

Zhejiang 0.282 0.507 0.560 Xizang 0.249 1 0.249

Anhui 0.167 0.616 0.270 Shanxi 0.264 0.722 0.369

Fujian 0.380 0.596 0.653 Gansu 0.213 0.729 0.293

Jiangxi 0.201 0.887 0.229 Qinghai 0.159 1 0.159

Shandong 0.345 0.492 0.716 Ningxia 0.171 1 0.171

Xinjiang 0.256 1 0.256

Autonomous Region, Shanghai, Jiangxi, Chongqing, and Guizhou.
A review of the geographical distribution of these provinces reveals
that most are located in the southwest and northeast regions,
which are relatively well endowed with water resources. In contrast,
provinces in the water-scarce North China region and parts of

the East China region have lower efficiency values for this stage.
For instance, Shandong Province, which suffers from severe water
scarcity, has an efficiency value of only about 0.49 for this stage.

Thirdly, from the perspective of the Stage2, which is the water
use efficiency, the characteristics are entirely different from those
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TABLE 4 Pearson correlation test.

Stage1 Stage2 GDP R-water AWI

Stage1 1.000 — — — —

Stage2 −0.707
∗∗∗

1.000 — — —

GDP −0.303
∗∗∗

0.208
∗∗∗

1.000 — —

R-water 0.207
∗∗∗

−0.262
∗∗∗

−0.031 1.000 —

AWI −0.043 −0.165
∗∗∗

0.702
∗∗∗

0.077
∗

1.000

Notes: ∗∗∗, ∗∗, and∗represent significance levels of 1%, 5%, and 10%, respectively.

of the Stage1. Provinces with efficiency values greater than 0.7
include Beijing, Shandong, Henan, and Hainan.The three provinces
other than Beijing are major producers of grain, vegetables, and
fruits in China. Shandong and Henan have relatively scarce water
resources, and Hainan, despite its abundant rainfall, is often affected
by typhoons. The higher water use efficiency indicates that the
water conservancy infrastructure in these three regions is effective
in water-saving irrigation and disaster prevention. Provinces in
the lower efficiency bracket for this stage, with efficiency values
below 0.2, mainly include Heilongjiang, Qinghai, and Ningxia Hui
Autonomous Region.

In order to verify the correlation mentioned above, a test was
conducted on the efficiency of two stages (Stage1 and Stage2) in
the sample provinces, along with the actual GDP (GDP), annual
water resources (R-water), and the cumulative stock of agricultural
water infrastructure investment (AWI). The Pearson correlation test
results, as depicted in Table 4, confirmed a significant correlation
between stage1 and water resources, as well as between stage2 and
the level of economic development.

In order to investigate the evolving characteristics of agricultural
water conservancy infrastructure investment efficiency, a visual
comparative static analysis was conducted on the efficiency values
in 2008 and 2022. The efficiency distribution maps for these years
are depicted in Figures 3–5.

Overall, there has been a notable improvement in efficiency in
certain areas of the central and eastern regions, such as Henan and
Shandong provinces. Furthermore, the Stage1 analysis in Figure 4
reveals a significant enhancement in relative efficiency for the central
and eastern regions, narrowing the gap with high-efficiency regions
like the west and northeast. The increase in water supply efficiency
in the central and eastern regionsmay be attributed to the expansion
of agricultural irrigation infrastructure, the optimization of water
resource allocation, and the more efficient utilization of water
supply equipment by farmers andmanagers. Additionally, given that
these areas are predominantly water-scarce, the agricultural water
supply process is significantly influenced by the availability of water
resources. In recent years, China’s inter-basinwater transfer projects,
such as the South-to-NorthWater Diversion Project, have improved
regional water resource allocation to some extent, thereby alleviating
the water scarcity challenges faced by these regions. Consequently,
this is likely to have contributed to the enhancement of water
supply efficiency. These considerations will be further validated in
subsequent research. Examining Stage2 in Figure 5, a decline in

efficiency is observed in the Inner Mongolia Autonomous Region,
Shanxi in the northern region, Heilongjiang in the northeastern
region, and Jiangxi in the central and southern regions, while
other regions show minimal change. To more clearly delineate the
distribution and evolution of the output efficiency of agricultural
water conservancy infrastructure investment over the sample
period, further clarification can be provided through the use of
kernel density estimation methods.

The distribution and evolution of the output efficiency for
agricultural water conservancy infrastructure investment over the
sample period can be more clearly delineated on the basis of
further clarification provided through the use of kernel density
estimation methods.

3.2 Kernel density estimation

Kernel density estimation is performed on the overall and
stage-wise efficiency results of water conservancy infrastructure
investment from 2008 to 2022 asmeasured using the two-stageDEA,
where kernel density estimation of the overall efficiency is shown
in Figure 6, while Figures 7, 8 respectively illustrate the distribution
and evolution of kernel density estimation for the efficiency of the
first and second stages.

Firstly, examining the temporal evolution of the kernel density
distribution curves for overall efficiency reveals that the curves
for the sampled years are predominantly unimodal, with the peak
predominantly in the range of 0.2–0.3 characterized by a noticeably
shorter left tail compared to the right. Considering the overall
efficiency values, it is important to note that theDEAmodel assesses
relative efficiency, and since the total efficiency is the product of the
kernel densities from both stages, it is expected that the values for
total efficiency would be on the lower side.

Looking at the peak elevations, there is a clear upward trajectory
over time. As the peaks rise, they also become narrower, indicating
a convergence toward 0.2 regarding the total efficiency for most
provinces. This convergence is also marked by a reduction in the
length of the right tail, with a decreasing number of provinces
exceeding a value of 0.5, which suggests a reduction in disparities
between provinces. However, it is worth noting there is a concurrent
decline in overall efficiency values.

Given that total efficiency is the multiplicative result of the
efficiencies of both stages, it is likely that different provinces and
regions will exhibit distinct characteristics at each stage. Therefore,
it is imperative that kernel density estimation of efficiencies is also
conducted for each stage. The outcomes of these estimations are
depicted in Figures 6, 7.

The Stage1 kernel density estimation in Figure 7 and the
distribution of overall efficiency exhibit considerable divergence,
with the kernel density estimation curve demonstrating a markedly
bimodal pattern for nearly all years. This pattern is characterized by
two distinct peaks: one situated around 0.5 and the other around
0.9. Analyzing the movement of these peaks over time reveals a
tendency for the left peak to drift toward the right, while the right
peak remains stationary. This stability on the right is attributable
to its nearness to 1, the upper limit of efficiency measurable by
the DEA model, which implies a more confined space for further
increase.The trajectory of the left peak’s shift underscores an upward
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FIGURE 3
Distribution of Score of overall efficiency, (A) Distribution map for the year 2008. (B) Distribution map for the year 2022.

trend in the initial efficiency of agricultural water conservancy
infrastructure investments in provinces where lower efficiency levels
were previously exhibited. This Stage1 predominantly pertains to
the provisioning process of agricultural water and prime arable
land, thereby indicating an enhancement in the aggregate supply
efficiency of agricultural water conservancy infrastructure and a rise
in the direct operational efficiency of these infrastructures.

Also noteworthy is the pronounced elevation of the nadir
between the two peaks, which suggests a narrowing of disparities
between provinces and a reduction in the degree of polarization as
overall efficiency is enhanced. It should be acknowledged, however,
that the input–output indicators designed for this study, for the
Stage1, encompass only data on the region’s agricultural water supply
and the extent of irrigation and do not account for the externalities
affecting adjacent areas. Consequently, the observed rise in Stage1
efficiency signifies that with the diminishing proportion of central
investments, there is a progressive rise in production efficiency
concerning the natural resources essential for local agricultural
production. The impact on external regions necessitates additional
validation through assessments on further spatial spillover effects.

The rightward shift of the left tail also corroborates the
aforementioned conclusions, indicating there is a collective
improvement in the Stage1 efficiency of those provinces that were
initially less efficient. This shift further substantiates the observed
reduction in regional disparities.

As shown in Figure 8, the kernel density distribution of the
Stage2 efficiency is found to be quite similar to those of the overall
efficiency, exhibiting a distinct unimodal distribution.This, to some
extent, indicates that the efficiency of the second stage contributes
significantly to the total efficiency. Upon further observation of

the temporal evolution of the Stage2 efficiency kernel density, it
is noted that the peak has risen and slightly shifted to the left-
over time. During the period from 2008 to 2010, the peak was
broader and ranged between 0.3 and 0.6. From 2010 to 2017,
the peak gradually consolidated between 0.3 and 0.4, with the
unimodal feature becoming more pronounced. Post 2018, the
unimodal characteristic has become even more evident, with the
peak narrowing and the right tail extending closer to the horizontal
axis, suggesting an overall decrease in efficiency and a pronounced
polarization in the input–output relationship of the second stage.
The efficiency characteristics of the second stage reflect, to a certain
degree, the changes in the input–output efficiency of resources
such as water and land. This indicates there is improved efficiency
of water conservancy infrastructure in terms of water supply and
irrigation area. However, no corresponding improvements are seen
in the effectiveness of irrigation and the utilization efficiency
of water resources. Therefore, the current policy direction in
China, namely, to strengthen the construction of high-quality
farmland and increase investment in infrastructure that enhances
the utilization efficiency of water resources, appears to be the
correct approach.

3.3 Moran’s I spatial autocorrelation test
results

The Moran’s I test for spatial correlation is the basis of spatial
analysis and is used to analyze the correlation of different location
unit variables based on different spatial relations. It can test for
similar, different, or independent relationships among regions under
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FIGURE 4
Distribution of Stage1 efficiency, (A) Distribution map for the year 2008. (B) Distribution map for the year 2022.

different spatial relationships. Based on the four spaces defined
in Table 1, the agricultural output efficiency of China’s water
conservancy infrastructure investment (including total efficiency
and the efficiency of two stages) is tested based on the index
Mollweide’s I, and the results are shown in Table 5.

Firstly, from the perspective of overall spatial correlation,
with the exception of the economic matrix, the agricultural
output efficiency of water conservancy infrastructure investment
in each province shows a significant positive spatial correlation.
However, under the economic matrix, most coefficients are
negative and do not pass the significance test, indicating that
the three types of efficiency scores are not significantly related
to the relative economic levels between regions. Thus, it is more
likely that there is autocorrelation based on geographical spatial
relationships.

Secondly, regarding the differences in spatial correlation of the
three types of efficiency, it is evident that second-stage efficiency
has higher geographical spatial correlation than the first-stage and
overall efficiency. Specifically, of these three types of efficiency, the
spatial autocorrelation is weakest for overall efficiency.This ismainly
due to the significant differences in the distribution characteristics
of the Stage1 and Stage2 efficiencies. After multiplication, the
spatial correlation of overall efficiency is weakened. The spatial
autocorrelation coefficients of the Stage2 efficiency based on the
three major spatial matrices of adjacency, geography, and river
basin are all positive and highly significant, indicating that there
is a positive demonstration effect and a mutually reinforcing
relationship between the water use efficiency of each province
in neighboring areas and within the same river basin. There is
relatively strong spatial autocorrelation of the Stage1 efficiency based

on the river basin matrix, all passing the significance test, and
the results are positive. Based on the adjacency and geographical
matrices, the significance of Stage1 efficiency is not high for half of
the sample years. This confirms and illustrates that the efficiency
of the water supply stage is greatly related to spatial location
and water resource endowment, also indirectly demonstrating that
economic development and technological improvement also depend
on natural conditions. Thus, the protection and sustainable use of
natural conditions is crucial.

Lastly, in terms of the trend of efficiency over time, the
significance of the Stage1 efficiency gradually strengthens, and
there is a trend of increasing coefficients. The spatial correlation
coefficients of the second-stage efficiency show a slight downward
trend under the adjacency, geographical, and river basin matrices.
The above results indicate that the spatial relationships of efficiency
are gradually weakening. Combined with the results from the
analysis of kernel density estimation mentioned earlier, the main
reason for this result appears to be intensification in the polarization
of the second-stage efficiency level, the enhancement of regional
differences, and the relative decrease in water use efficiency in
additional areas.

4 Optimization analysis

In the two-stage DEA model, output slack and input slack are
two important indicators for measuring the efficiency of DMUs.
output slack refers to the gap between the actual output and the
maximum possible output of a DMU under a given level of input. A
positive output slack indicates that the DMU has not fully utilized

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2024.1452535
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Sun et al. 10.3389/feart.2024.1452535

FIGURE 5
Distribution of Stage2 efficiency, (A) Distribution map for the year 2008. (B) Distribution map for the year 2022.

FIGURE 6
Kernel density estimation of the overall efficiency.

its input resources toward producing more output. In terms of
efficiency evaluation, output slack is considered unfavorable because
it implies the potential to improve efficiency and output. On the
other hand, input slack refers to the excess of input resources
used by a DMU over the minimum input required to achieve the
current level of output. A positive input slack means that the input
resources of the DMU exceed the optimal level, which could lead to
resource wastage.

4.1 Optimization analysis on Stage1

We will delve into the factors that contribute to the disparities
in agricultural output efficiency resulting from investments in water
conservancy infrastructure across different regions. By conducting
calculations on the slack variables within a two-stage DEA model
of 2022 (as detailed in Tables 5, 6), we aim to provide a deeper
analysis into the reasons behind the observed inefficiencies.
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FIGURE 7
Kernel density estimation of Stage1 efficiency.

FIGURE 8
Kernel density estimation of Stage2 efficiency.

This will enable us to pinpoint the root causes of efficiency
losses more precisely, all in the pursuit of enhancing overall
efficiency.

From Table 6, it can be observed that in the Stage1 most
provinces are experiencing a shortfall in output and redundancy in
input. Firstly, from the input perspective, Investment redundancy
is most prevalent in water infrastructure investment, indicating
that current investment levels in these areas are already adequate.
Instead of simply increasing investment in new projects, efforts
should focus on enhancing efficiency through better utilization
and management of existing infrastructures. The analysis shows
that all provinces in China face shortages in water and land
supply, with the exception of Shanghai and Xinjiang, where
the shortages are limited to the sown area. This highlights the
ongoing challenge of distributing water resources and preserving
soil and water resources across all provinces in the country.

In terms of spatial distribution, provinces with redundancy in
the two input factors are spread out in all directions, without
any obvious locational characteristics. The agricultural water
supply deficiencies are particularly significant in Beijing, Tianjin,
Qinghai, and Ningxia. A comparison of water endowment data
shows that most of these regions face extreme water resource
scarcity, indicating that the challenge of inter-basin water transfers
remains daunting.

4.2 Optimization analysis on Stage2

Entering the optimization analysis of the Stage2
efficiency (Table 7), we find that there is still an overall deficiency
in output, and this deficiency exists in all provinces, indicating that
there is significant room for improvement in the efficiency of the
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TABLE 5 Moran’s I index values of two-stage DEA scores for the 31 provinces.

Year Score Stage1 Stage2

W1
I/(z)

W2
I/(z)

W3
I/(z)

W4
I/(z)

W1
I/(z)

W2
I/(z)

W3
I/(z)

W4
I/(z)

W1
I/(z)

W2
I/(z)

W3
I/(z)

W4
I/(z)

2008 0.045
(0.724)

0.047
(0.947)

0.074
(1.105)

−0.07
(−0.541)

0.193
∗∗

(−1.933)
0.08

(1.236)
−0.166
(−1.261)

0.157
∗∗∗

(2.623)
0.283

∗∗∗

(2.749)
0.226

∗∗∗

(2.886)
0.002
(0.345)

0.174
∗∗∗

(2.909)

2009 0.063
(0.861)

−0.002
(0.364)

0.366
∗∗∗

(3.99)
−0.002
(0.449)

−0.041
(−0.067)

−0.072
(−0.418)

−0.028
(0.054)

0.044
(1.06)

0.273
∗∗∗

(2.673)
0.21

∗∗∗

(2.724)
−0.033
(0.008)

0.16
∗∗∗

(2.717)

2010 0.036
(0.621)

−0.004
(0.335)

0.086
(1.191)

−0.058
(−0.352)

0.209
∗∗

(−2.079)
0.065
(1.076)

−0.076
(−0.411)

0.156
∗∗∗

(2.618)
0.299

∗∗∗

(2.898)
0.219

∗∗∗

(2.821)
−0.047
(−0.131)

0.177
∗∗∗

(2.962)

2011 0.057
(0.801)

−0.034
(−0.005)

0.246
(2.77)

−0.032
(0.015)

0.133
∗

(−1.426)
0.027
(0.663)

−0.026
(0.069)

0.139
∗∗∗

(2.385)
0.303

∗∗∗

(2.93)
0.214

∗∗∗

(2.764)
−0.031
(0.021)

0.185
∗∗∗

(3.073)

2012 0.044
(0.691)

−0.038
(−0.049)

0.268
(3.02)

−0.029
(0.056)

0.045
(0.668)

0.021
(0.595)

0.035
(0.654)

0.119
∗∗

(2.089)
0.311

∗∗∗

(2.979)
0.204

∗∗∗

(2.624)
−0.025
(0.085)

0.178
∗∗∗

(2.941)

2013 0.095
(1.135)

−0.005
(0.318)

0.244
(2.748)

0.006
(0.565)

0.034
(0.572)

0.005
(0.422)

−0.038
(−0.046)

0.132
∗∗

(2.278)
0.309

∗∗∗

(2.959)
0.205

∗∗∗

(2.635)
−0.036
(−0.028)

0.216
∗∗∗

(3.472)

2014 0.090
(1.070)

0.025
(0.648)

0.176
(2.037)

0.007
(0.568)

0.057
(0.772)

0.018
(0.557)

−0.057
(−0.226)

0.153
∗∗∗

(2.563)
0.291

∗∗∗

(2.814)
0.184

∗∗∗

(2.411)
−0.037
(−0.037)

0.210
∗∗∗

(3.396)

2015 0.039
(0.638)

0.009
(0.476)

0.047
(0.79)

0.007
(0.576)

0.227
∗∗

(2.23)
0.124

∗∗

(1.728)
−0.106
(−0.695)

0.19
∗∗∗

(3.083)
0.294

∗∗∗

(2.942)
0.176

∗∗∗

(2.41)
−0.065
(−0.317)

0.168
∗∗∗

(2.911)

2016 0.085
(1.042)

0.020
(0.603)

0.023
(0.556)

0.042
(1.074)

0.180
∗∗

(1.814)
0.096

∗

(1.418)
−0.110
(−0.732)

0.183
∗∗∗

(2.981)
0.279

∗∗∗

(2.801)
0.141

∗∗

(2.008)
−0.070
(−0.363)

0.173
∗∗∗

(2.979)

2017 0.073
(0.934)

0.050
(0.944)

0.028
(0.6)

0.039
(1.032)

0.164
∗∗

(1.693)
0.095

∗

(1.409)
−0.034
(−0.011)

0.114
∗∗

(2.034)
0.233

∗∗∗

(2.414)
0.125

∗∗

(1.845)
−0.091
(−0.582)

0.143
∗∗∗

(2.574)

2018 0.056
(0.774)

0.074
(1.197)

0.027
(0.588)

0.028
(0.864)

0.272
∗∗∗

(2.603)
0.102

∗

(1.481)
−0.103
(−0.66)

0.161
∗∗∗

(2.671)
0.258

∗∗∗

(2.585)
0.136

∗∗

(1.919)
−0.076
(−0.426)

0.156
∗∗∗

(2.700)

2019 0.011
(0.383)

0.063
(1.073)

−0.024
(0.093)

0.014
(0.661)

0.252
∗∗∗

(2.437)
0.128

∗∗

(1.768)
−0.088
(−0.517)

0.149
∗∗∗

(2.512)
0.233

∗∗∗

(2.402)
0.135

∗∗

(1.944)
−0.095
(−0.622)

0.143
∗∗∗

(2.564)

2020 0.370
∗∗∗

(3.448)
0.127

∗∗

(1.764)
−0.09

(−0.537)
0.196

∗∗∗

(3.164)
0.370

∗∗∗

(3.448)
0.127

∗∗

(1.764)
−0.09

(−0.537)
0.196

∗∗∗

(3.164)
0.239

∗∗∗

(2.472)
0.124

∗∗

(1.828)
−0.089
(−0.56)

0.134
∗∗∗

(2.446)

2021 0.389
(3.609)

0.149
∗∗

(2.000)
−0.076
(−0.404)

0.172
∗∗∗

(2.836)
0.389

∗∗∗

(3.609)
0.149

∗∗

(2.000)
−0.076
(−0.404)

0.172
∗∗∗

(2.836)
0.214

∗∗

(2.283)
0.113

∗∗

(1.729)
−0.105
(−0.737)

0.085
∗∗

(1.752)

2022 0.346
(3.225)

0.105
∗

(1.509)
−0.05

(−0.159)
0.170

∗∗∗

(2.798)
0.346

∗∗∗

(3.225)
0.105

∗

(1.509)
−0.050
(−0.159)

0.170
∗∗∗

(2.798)
0.218

∗∗

(2.32)
0.100

∗∗

(1.576)
−0.110
(−0.788)

0.097
∗∗

(1.937)

∗,∗∗, and ∗∗∗ denote the 10%, 5%, and 1% significance levels, respectively.

agricultural production phase. Looking at the redundancy of other
input factors, there is less redundancy in the input of agricultural
labor and pesticides. Input redundancies are mainly concentrated in
totalmachinery power and fertilizer usage, while these redundancies
are also more geographically specific.

From a spatial distribution perspective, there is minimal input
redundancy in Northeast and South China. In other regions, input
redundancy is primarily seen in chemical fertilizers, particularly
in the western region. South China shows input redundancy in
total mechanical power. Taking into account the terrain, landform,
and climate characteristics of different regions, the following
observations can be made: firstly, there is generally no redundancy

of agricultural labor in most areas of China; secondly, organic and
natural growth of agricultural products is more suitable than heavy
reliance on chemical fertilizers in western plateau areas and eastern
megacity areas; thirdly, the mountainous and fragmented nature
of South China makes mechanized planting impractical; finally,
the northeast, central, and eastern regions, being key agricultural
areas in China, have minimal investment redundancy, with a
focus on chemical fertilizers, indicating the positive impact of
ongoing land transfer and mechanized planting. Moving forward,
the promotion of contiguous and large-scale planting should
be continued, with increased emphasis on the efficient use of
chemical fertilizers.
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TABLE 6 Optimization analysis on Stage1.

Province Output slack Input slack

Total sowing area of
crops

Agricultural water
consumption

Agricultural water
conservancy
infrastructure
investment

Employees in the
water conservancy

industry

Beijing 26.95228 211.93332 0.00033 0

Tianjin 8.95294 128.09774 0.00011 0

Hebei 0.46589 6.66595 0.00001 0.01986

Shanxi 2.50512 4.77781 0.00032 0

Neimenggu 0.82296 19.51556 0.00162 0

Liaoning 1.22414 17.51488 0.00134 0

Jilin 0.47744 35.20270 0.00274 0

Heilongjiang 0.24093 23.13926 0 0.63947

Shanghai 37.15124 0 0.00011 0

Jiangsu 0.54948 7.86196 0.000004 0

Zhejiang 1.83644 26.27556 0.00002 0

Anhui 0.47666 6.81999 0 0.03488

Fujian 2.86627 10.511577 0 0.04716

Jiangxi 1.17461 16.80625 0.00002 0

Shandong 0.33337 4.76979 0.00002 0

Henan 0.33635 4.81247 0.00037 0

Hubei 0.59160 8.46451 0.00006 0

Hunan 0.56089 8.02515 0.00003 0

Guangdong 1.52785 3.91739 0.00001 0

Guangxi 0.77157 11.03957 0.00085 0

Hainan 6.1788 23.18549 0.00006 0

Chongqing 1.89915 27.17277 0 0.73922

Sichuan 0.67251 9.62218 0.00001 0

Guizhou 1.41174 38.57132 0.00081 0

Yunnan 1.32467 4.97074 0.00001 0

Tibet 32.76977 33.76048 0 0

Shanxi 1.72442 6.23675 0 0

Gansu 1.53904 22.02042 0.00009 0

Qinghai 12.03580 172.20682 0.00016 0

Ningxia 5.10995 73.11264 0 0.06574

Xinjiang 1.54009 0 0 0
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TABLE 7 Optimization analysis on Stage2.

Province Output slack Input slack

GDP of the
Primary industry

Agricultural
workforce

Total power of
agricultural
machinery

Fertilizer usage Pesticide usage

Beijing 42.92348 0 46.69398 565.1825 0

Tianjin 17.52432 0 10.74625 355.0539 0.175751

Hebei 0.91193 0 0.28183 17.17018 0.044151

Shanxi 3.14498 0 5.277651 0 0

Neimenggu 1.82915 0 0 0 0.14341

Liaoning 2.39611 0 2.13370 0 0

Jilin 1.73465 0 0 0 0

Heilongjiang 1.0269 0 0 0 0

Shanghai 42.6296 0 66.9922 374.5916 0

Jiangsu 1.07555 0.15270 0.75286 20.91132 0

Zhejiang 3.59461 0 2.14918 87.21214 0

Anhui 0.93301 0 0.69365 15.31607 0

Fujian 3.88396 0 5.68605 22.70689 0

Jiangxi 2.29917 0 1.4044 49.3731 0.01159

Shandong 0.65253 0 0.33315 16.31783 0

Henan 0.65837 0 0.58627 0 0

Hubei 1.15798 0 0.82774 21.37406 0

Hunan 1.09788 0 0.56052 27.4547 0

Guangdong 1.97489 0 3.84906 0 0

Guangxi 1.51026 0 1.34486 0 0

Hainan 8.40238 0 12.1256 58.54249 0

Chongqing 3.71735 0 3.49248 0 0

Sichuan 1.31636 0 0.85887 26.46937 0.00729

Guizhou 3.28144 0 0 82.05158 0.13551

Yunnan 1.80139 0 2.59961 12.55093 0

Tibet 39.51311 0 0 923.5746 15.44581

Shanxi 2.33174 0 2.65701 0 0.31153

Gansu 3.01249 0 1.53802 75.33363 0

Qinghai 23.5586 0 14.39032 505.9062 0.11875

Ningxia 10.0021 1.66995 2.88689 113.8716 1.54607

Xinjiang 1.76719 0.36639 2.46077 0 0.10166
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5 Conclusions and implications

In this study,wemeasured theagriculturaloutputefficiencyofwater
conservancy infrastructure investment in 31 provinces in China from
2008 to 2022 by analyzing the impact pathways of water conservancy
infrastructure on agricultural production, combined with a two-stage
DEAmodel. An index system for the two stages ofwater supply and soil
conservation and water use has been established in the measurement
of efficiency, with agricultural water use and sown area of arable
land selected as intermediate variables. Based on measurements of the
production efficiency of water conservancy infrastructure investment
and the corresponding spatial visualization analysis, we also conducted
kernel density estimation and spatial autocorrelation tests based on
four types of spatial matrices: adjacency, geography, economy, and
river basin. In this analysis, the distribution and evolution of total
efficiency and the efficiency of the two stages are examined over space
and time. Finally, based on the weights of output shortage and input
redundancy of different stages and provinces measured in the two-
stage DEA model, we have analyzed the causes of low efficiency and
directions for optimization.

The study results demonstrate that there are significant regional
differences in the overall output efficiency of China’s water conservancy
infrastructure investment, and there is also large variation in the
spatiotemporal characteristics of the two stages. Firstly, from the
perspective of overall efficiency, the overall efficiency level is relatively
low, and spatial correlation is not strong, with regional characteristics
not being very pronounced. The main reason for the above results is
that the first and second stages of efficiency exhibit completely different
regional characteristics. Regions with high water supply efficiency in
the Stage1 often do not have an advantage in water use efficiency,
and regions with high water use efficiency often have lower efficiency
in the Stage1. Coupled with the fact that total efficiency equals the
product of the two partial efficiencies, the characteristics are not very
distinct. Secondly, regarding the efficiency of the Stage1, provinces
with higher efficiency are mainly distributed in areas rich in water
resources and have a more pronounced spatial correlation, with no
obvious polarization and a trend of decreasing regional disparities over
time. Again, looking at the water use efficiency in the second stage, the
kernel density distribution shows a significant unimodal pattern. The
results of temporal evolution analysis indicate that the peak has risen
and shifted slightly to the left-over time, suggesting a trend of declining
efficiency and polarization in recent years. The above results indicate
thatChinaneeds to further strengthen investment inwater conservancy
infrastructureswith highwater resource utilization rates, increasing the
efficiencyofwater resourceusewhileensuringagriculturalwater supply.
The current high-standard farmland construction being implemented
inChina is indeed the appropriate strategic choice to address thedecline
andpolarization ofwater use efficiency.Agriculturalwater conservancy
facilitiesdonot serveasdirect inputs inagriculturalproduction; instead,
they enhance yields by facilitating efficient irrigation, optimizing soil
conditions, and protecting soil and water resources, thereby mitigating
disaster-related losses.Unlike existing research,which typically analyzes
the overall efficiency of these infrastructure investments, this paper
distinguishes between the water supply and use stages, calculating
efficiencies separately. This approach effectively opens the ‘black box’
of their influence on agricultural production. It clarifies efficiency
and regional differences across various stages and analyzes spatial
distribution and correlation. Using analytical software to identify

efficiency loss sources through input redundancy andoutput deficiency
provides valuable insights for formulating more targeted and practical
countermeasures and recommendations.

After measuring the efficiency of water conservancy
infrastructure investment and analyzing its influencing factors
and spatial effects, we propose several policy recommendations
to address the issues identified in this study: (1)We should continue
to advance the construction of high-standard farmland, focusing
on and increasing investment in infrastructure that improves
the efficiency of water resource utilization, such as water-saving
irrigation, to enhance the effective use of terminal water resources.
(2) We should promote development and investment related to
the construction of water conservancy infrastructure suitable for
large-scale mechanized production. As the scale of investment
continues to expand, the impact of management and technical
factors of water conservancy infrastructure on the investment
efficiency becomes increasingly significant. In the future, we
should strengthen the control and promotion of investment
project management and technology, placing more emphasis on
improving their overall comprehensive benefits. (3) Due to the
characteristics of water conservancy infrastructure that extend
across regions and basins, together with the existence of certain
externalities, various types of water conservancy infrastructures
affect the efficiency of not only the local area but also related
regions. We should therefore continue to advance research in
this area and recommend that an interprovincial compensation
mechanism be established for water conservancy infrastructure
investment toward facilitating benefit compensation within river
basins or economic cooperation frameworks, thereby mitigating the
inefficiencies caused bymarket failures. Additionally,more attention
should be paid to cross-regional “enclave” cooperation projects
between adjacent provinces in the future to break the restrictions
of administrative boundaries. (4) We should employ more market-
oriented operational methods to attract more private capital into
the construction of water conservancy infrastructure in addition to
innovating investment, financing, and returnmethods toward better
reflecting the social and cross-regional benefits of water conservancy
infrastructure.

6 Implications and outlook

This study categorizes the contributions of agricultural irrigation
infrastructure to agricultural production into two distinct phases:
supply and utilization. A two-stage DEA model has been utilized
to evaluate both overall efficiency and the efficiency of each
phase. Furthermore, the spatial distribution characteristics have
been described and assessed from the perspectives of visualization,
evolutionary distribution traits, and spatial correlation. Finally, we
examine the sources of efficiency loss across different regions and
phases, drawing on input redundancy and output insufficiency
data from both phases. It is well established that large-scale
agricultural irrigation infrastructure exhibits cross-regional and
watershed-based characteristics, along with possessing attributes of
public goods (Anomaly, 2015). Investment in agricultural irrigation
infrastructure is anticipated to generate spatial spillover effects
concerning efficiency in both the supply and utilization phases,
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with notable distinctions between the spillover effects in each phase.
Unfortunately, due to space limitations, a comprehensive discussion
and verification of the existence and pathways of these spillover
effects cannot be provided in this paper; this will be the focus of our
future research.

Agricultural water infrastructure often involves large-scale
projects that are capital-intensive and have extended payback
periods, exhibiting characteristics of a quasi-public product.
Particularly when it comes to major infrastructures, these projects
cover broad areas and necessitate construction that transcends both
river basins and regional boundaries. As a result, financing for
agricultural water infrastructure cannot be addressed by market
mechanisms alone and is typically supported by government public
finance. Assessing and analyzing the efficiency of investment in
such infrastructure as well as pinpointing the key determinants that
affect it are essential for refining the investment structure of water
conservancy projects, improving the utilization efficiency of water
agricultural production.
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