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Through the examination of calcite twins, this research outlines the tectonic
development and paleo stress patterns of the Paleozoic Routshon complex
situated in the southeastern segment of the Sanandaj–Sirjan zone, a hinterland
region of the Zagros orogeny in southeastern Iran. The study of orogenic
phase indicates that the deformation event affecting the southern sector of the
Sanandaj-SirjanzonealignswiththeCimmerianorogenicphaseoftheLateTriassic
period. A variety of structural features at both map and outcrop scales highlight
the importance of slip partitioning in the structural evolution of this region, driven
by inclined transpression. Observations suggest that the deformation related to
contractional components includes steeply to moderately plunging folds, dip-
slip domain deformation primarily involving thrusts, and ongoing deformation
by strike-slip component motion, which results in thrust-related ductile shear
zones. The analysis of calcite c-axis fabrics frommylonite samples obtained from
theseshearzones indicatesa low-temperaturemonoclinicpatternofnon-coaxial
deformation. This deformation type underscores the impact of the strike-slip
component in the development of progressive simple shearwithin thrust-related
shear zones in this segment of the Sanandaj-Sirjan zone. Dynamic analysis of c-
axis fabric data reveals a NE-SW orientation for the principal compressive axes
(σ1) in this area. This direction, corroborated by additional data such as fault
surface,GPS, andearthquake focalmechanismdata, confirms that theorientation
of the compressive axes (σ1) has remained consistent from the Late Triassic to
the present.
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1 Introduction

Mechanical e-twinning of calcite represents the primary mechanism of crystal-plastic
deformation in coarse-grained limestones and marbles subjected to temperatures below
approximately 400°C (Turner, 1953). Twins have been extensively utilized as markers
of deformation history, providing valuable insights into the stress regimes that shaped
geological formations (Turner and Weiss, 1963), who developed a dynamic technique to
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FIGURE 1
(A) Schematic of twin structures in a calcite grain caused by simple shear (Evans and Groshong, 1994) showing the f-axis aligned perpendicular to the
ge plane. Dashed lines represent the boundary of the original untwinned calcite grain, with shaded regions indicating the twinned lamellae and
unshaded regions showing the host calcite. The angle of rotation (α) from the host portion to the twinned lamellae is measured at 38°17 (Handin and
Griggs, 1951) H represents the total thickness of the host and twins combined, and t specifies the thickness of the twin (Jamison and Spang, 1976). (B)
Diagram illustrating the geometry of an e-twin in calcite, highlighting the orientations of compression and tension axes (Shelley, 1993).

deduce stress axes from a population of e-lamellae in deformed
calcite rocks (Figure 1). This technique has been subsequently
modified and refined to ascertain the principal direction and/or
magnitudes of paleo-stress and numerous studies have refined
techniques to deduce principal stress directions and magnitudes
from calcite twin data (Lacombe and Laurent, 1992; 1996; Burkhard,
1993; Parsons and Thompson, 1993; Shelley, 1993; Lacombe, 2001;
2007; Jaya and Nishikawa, 2013; Yamaji, 2015; Qiu et al., 2016; 2022;
Shan et al., 2019; Zheng and Shan, 2020).

The scientific issue in the study area revolves around the complex
tectonic evolution and paleo stress patterns within the Routshon
complex, part of the Sanandaj–Sirjan zone in southeastern Iran. This
region, a hinterland of the Zagros orogeny, exhibits a multifaceted
geological history influenced by the prolonged convergence between
Eurasia andGondwanaland fragments, as evidenced by ophiolite belts
and current GPS vectors (Agard et al., 2011). Despite its significance,
the tectonic processes and stress regimes that have shaped this area
remain poorly understood, particularly regarding the role of slip
partitioning and inclined transpression in its structural evolution.

To address these issues, our research focuses on a detailed
analysis of calcite twinning and c-axis fabrics frommylonite samples
within thrust-related shear zones in the Routshon complex. Previous
studies have identified key structural features and deformation
phases in the Zagros region (Berberian and King, 1981; Alavi, 2004),
but comprehensive paleo stress analyses integrating these findings
with modern techniques are lacking.

In this study,weperformedadynamic analysis of c-axis fabric data
tomap out the principal compressive axes (σ1) and their orientations.
By examining calcite twins and their deformation patterns, we aimed
to reconstruct the paleo stress fields and elucidate the tectonic
history of the region. Our approach combines field observations,
microstructural analysis, and stereographic projections to provide a
nuanced understanding of the stress regimes that have influenced the
geological evolution of the Routshon complex.

Our findings indicate that the deformation events in the
southern Sanandaj–Sirjan zone align with the Cimmerian orogenic
phase of the Late Triassic period, characterized by contractional
components and strike-slipmotions resulting in ductile shear zones.
The NE-SW orientation of the principal compressive axes (σ1),
corroborated by fault surface GPS and earthquake focal mechanism
data, highlights the consistency of the stress regime from the Late
Triassic to the present.

This paper aims to utilize the properties of calcite twins
to investigate the paleo-stress patterns and structural evolution
of the Paleozoic Routshon complex, which is exposed in
the Bazar area (Figure 2) within the Sanandaj-Sirjan Zone
(SSZ), southeastern Iran. The study seeks to provide insights
into the tectonic evolution of the Zagros orogenic belt’s
hinterland.

2 Geological setting

The Zagros orogeny is part of the Alpine–Himalayan belt
system, formed due to the prolonged convergence between Eurasia
and fragments derived from Gondwanaland, as evidenced by
ophiolite belts and current GPS vectors (Agard et al., 2011).
This orogenic belt comprises southwest-verging mountains, which
developed from the persistent subduction of the Neo-Tethyan
oceanic lithosphere from the Jurassic to the Cenozoic era, followed
by the collision of the Arabian plate with the Central Iranian
microplate in the Cenozoic (Berberian and King, 1981; Alavi,
2004; Kamali et al., 2023). This process is the primary cause of the
region’s activity, as evidenced by seismic events and morphotectonic
features (Derakhshani and Eslami, 2011; Kermani et al., 2017;
Rahbar et al., 2017). The formation of this orogeny is attributed to
the closure of the Neotethys, following the complete subduction
of oceanic crust at a northeast-dipping subduction zone beneath
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FIGURE 2
(A) Simplified tectonic map of Iran, showing the Sanandaj-Sirjan Zone (SSZ) between the Urumieh-Dokhtar Magmatic Assemblage (UDMA) and the
Zagros Fold-Thrust Belt. (B) Satellite image of the Bazar area, highlighting major geological features. (C) Key structures within the region in map view
and (D) in cross section view, providing a detailed view of fault lines and thrust systems critical to the area’s tectonic framework.

central Iran, and the subsequent Cretaceous continental collision
between the Afro-Arabian and Iranian continental fragments
(Shafieibafti et al., 2011). The orogenic structure includes: (1)
the Mesopotamian–Persian Gulf foreland basin, (2) the Zagros

Fold–Thrust belt extending from southwest to northeast (Falcon,
1961; Ghanbarian and Derakhshani, 2022b), (3) the SSZ (Stocklin,
1968), and (4) the Urumieh–Dokhtar Magmatic Assemblage,
(UDMA). In contrast to themore extensively studied active tectonics
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FIGURE 3
Outcrop view of rock units in the study area. Paleozoic units are identified as Dolomites (Pzd), Schists (Pzs), and White Marbles (Pzm). The transitional
paleozoic-Triassic unit (PTdm) is characterized by Dolomitic marbles, illustrating the lithological diversity and stratigraphic relationships crucial to
understanding the region’s geological history.

and foreland deformation, there is less knowledge about the
hinterland subduction-related arcs parallel to theZagros, specifically
SSZ and UDMA (Agard et al., 2011; Ghanbarian and Derakhshani,
2022a) (Figure 2A). The SSZ and UDMA, located northeast of the
Main Zagros Thrust, are believed to result from a northeast-dipping
subduction process of the Neo-Tethyan oceanic crust beneath
the Iranian continental active margin (Berberian and King, 1981;
Amirihanza et al., 2018).

The SSZ stretches approximately 1,500 km from the northwest
(Sanandaj) to the southeast (Sirjan) with a width of 150–200 km,
running parallel to the Zagros Fold Thrust belt. This zone contains
the most intensely deformed rocks, exhibiting a NW-SE structural
trend. The southern boundary of the SSZ is defined by the
Zagros Main Thrust, which separates it from the Zagros region.
Additionally, Central Iran is divided from the SSZ by a series
of steep and straight faults, including the Tabriz and Nain-Baft
Faults (Şengör and Kidd, 1979; MohammadiNia et al., 2024). The
SSZ is characterized by a scarcity of Tertiary volcanic rocks,
significant volumes of Mesozoic (and some Tertiary) intrusions,
a relatively high abundance of Paleozoic volcanic rocks (Silurian,
Devonian, and Permian), and metamorphism due to Cimmerian
movements (Aghanabati, 2004; Ghasemi and Talbot, 2006). These
features distinguish the SSZ from other geological and structural
subdivisions in Iran (Ghazi and Moazzen, 2015). The geodynamic
evolution of this zone was driven by the opening and subsequent
closure of the Neotethys Ocean along the northeastern margin
of Gondwana (Alavi, 1994).

The Sanandaj–Sirjan zone’s polyphase deformation structures
align with transpressional forces due to the angled collision between
the African–Arabian continent and the Iranian microcontinent
(Mohajjel and Fergusson, 2000; Sarkarinejad and Azizi, 2008;
Sarkarinejad et al., 2008; Shafieibafti and Mohajjel, 2015;

Ghanbarian et al., 2021; Mansouri et al., 2021). This transcurrent
component arises from an oblique factor in the subduction zone
(Shafieibafti, 2007; Sheikholeslami et al., 2008; Shafieibafti and
Mohajjel, 2015). This study aims to determine the structural
characteristics of the Zagros orogen’s backcountry by using calcite
twinning analyses to map out the ancient stress fields and the
depth of deformation within the Routshon complex, located in
the southeastern part of the SSZ.

In the southern part of the Sanandaj-Sirjan Zone (SSZ),
Paleozoic strata are divided into six syntectonic regional
metamorphic complexes, each with varying metamorphic grades
and ages. These complexes are overlain by non-metamorphosed
Early Jurassic basal conglomerates, which contain metamorphic
clasts, as well as volcanic-detrital rocks. The continuity of these
complexes has been traced from Hajiabad in the southeast to Neyriz
in the northwest (Berberian, 1976). Each complex is further divided
into three metamorphic units, listed from top to bottom: (1) the
upper complex (low grade), (2) themiddle complex (low tomedium
grade), and (3) the lower complex (high grade). A single sample of
Kyanite-Sillimanite schist from the Neyriz area has been dated using
the conventional K/Ar radiometric method, yielding an age of 404
± 8 Ma, corresponding to the Silurian-Devonian boundary (Watters
and Sabzehei, 1970). The middle complex contains poorly preserved
fragments of crinoid stems, several corals, and a single Bryozoan,
with Devonian pollen and spores reported from carbonaceous
black schist (Berberian, 1976). The stratigraphic units in the study
area, which extends from longitude 56°36′15″E to 56°40′30″E and
latitude 28°59′15″N to 29°0′45″N (Figures 2B, C), consist of the
Paleozoic-Mesozoic Routshon complex (GSI, 1997b; 1997a; 2007).

Some researchers have suggested that these metamorphic
complexes represent Precambrian basement rocks (Stocklin,
1968), while others attribute their syntectonic regional
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FIGURE 4
(A,B) View of an outcrop featuring an isoclinal fold, highlighting the characteristic features of the F1 folds in the calcite and dolomite marbles (PTd) and
white marble (Pm) units of the Routshon complex. The F1 folds are marked by their gently inclined to recumbent geometry with axial planes dipping at
angles of 10°–30° toward the NE and axes plunging gently to the W. These folds are indicative of flexural flow deformation. The symbols so and s1
correspond to bedding and schistosity, respectively. (C) Under the flexural flow folding mechanism some layers are thickened into axial zones (yellow
lines) and thinned into limbs (blue lines) (D) Type III interference pattern in folding identified as a Hook type pattern, resulting from the coaxial refolding
of F1 and F2 folds.

metamorphism to Early Cimmerian tectonics (Berberian, 1972;
1973; Hushmandzadeh et al., 1972;Majidi, 1972; 1974; Sabzehei and
Berberian, 1972; Berberian and Nogol, 1974; Sabzehei, 1974). The
Routshon complex includes a variety of rock types such as dolomitic
and marble formations, green schists, black schists, chert, mica
schists, calcite and dolomite marbles, and white marble (Figure 3).

TheBazar area in the southeastern SSZ exhibits evidence of three
distinct deformation events (D1,D2, andD3). Calcite twinning plays
a significant role in understanding the deformationmechanisms and
stress regimes associated with each phase.

2.1 D1 deformation

The D1 deformation phase is characterized by folding,
manifested in a range from gently inclined to recumbent and spans

mesoscopic to macroscopic scales, including axial planar schistosity
(Figure 4A). These formations are prominently observed in the
calcite and dolomite marbles (PTd) and white marble (Pm) units of
the Routshon complex, as evidenced by detailed field observations
and microstructural analysis. Specifically, axial planar schistosity is
consistently observed to run parallel to the bedding planes in these
units. This parallel alignment is indicative of intense compressive
deformation, which is further supported by the presence of well-
developed axial planar schistosity, confirmed through microscopic
examination of thin sections from multiple samples. These samples
exhibit clear evidence of recrystallization and deformation textures
consistent with low-grade metamorphic conditions, corroborating
the interpretation of the observed fabrics. Our analysis of the F1
folds in the Routshon complex reveals that their axial planes dip at
angles of 10°–30° toward the NE, while the fold axes plunge gently
to the W. These observations are consistent across multiple outcrops
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FIGURE 5
(A) Outcrop view of the T1 thrust, illustrating the truncation and duplication of Dolomites (Pzd). (B) Outcrop view of T2 thrust, where Dolomitic Marbles
(Ptdm) were truncated and thrusted over schists (Pzs). (C) Dolomites (Pzd) overlying the white Marbles (Pzm) and Schists (Pzs) by T3 thrust. (F)
Flexural-slip duplex structures in the Pzm (white Marbles) and Pzs (Schists) units associated with the T3 thrust, characterized by a sigmoidal
configuration and suggesting a southwest thrust direction. (D,E) slickenside and striation of T2 thrust with its stereographic projection (equal area),
indicating the direction of movement. (G,H) Typical outcrop of klippes, showing Dolomites (Pzd) over Schists (Pzs) by T4 thrust.

and are supported by detailed field measurements and structural
mapping. The gentle plunge of the fold axes and the moderate dip
of the axial planes suggest that these folds formed through a process
of flexural flow, (Twiss and Moores, 1992; Hatcher, 1995), reflecting
the compressive stress regime prevalent during the deformation.
In flexural-flow folds, rock material in incompetent layers flows
from fold limbs toward fold hinges, and therefore appreciable
thickness changes occur in the rock layer. Flexural-flow folds
are mostly similar-like folds, but may also include some parallel
folds. Some layers in single flexural-flow folds maintain constant
thickness; others are thickened into axial zones and thinned into
limbs as folding proceeds, indicating a higher contrast in internal
ductility. In this area flexural flow evidences are visible in schist in
an interbedded marble (Figures 4B, C). At the mesoscopic level,
an interference pattern is evident due to the coaxial refolding
of F1 folds. While Type I and Type II interference patterns are
typically more common, our detailed structural analysis indicates

that the overlapping of F1 and F2 folds in the Routshon complex
predominantly results in Type III interference patterns. This
observation, as outlined by Ramsay and Huber (Ramsay and Huber,
1987), is somewhat unexpected but is supported by consistent field
evidence and structural mapping (Figure 4D). The presence of Type
III patterns suggests complex deformational histories involving
multiple phases of folding and refolding, whichwe have documented
through extensive mesoscopic and microscopic analyses of the fold
structures.

2.2 D2 deformation

This deformation event led to the formation of thrust faults
(Figure 2). In the hinterlands of orogenic belts, thrusts typically
result from differential flow within a ductile mass, which creates F1-
folds. Subsequent shearing between the antiform and synform limbs
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FIGURE 6
(A) Outcrop view of mylonitic foliation within the T1 thrust shear zone. (B) C-type shear band featuring horizontal C-planes and S-planes trending from
upper right to lower left. (C) δ (delta)- type mantled porphyroclasts. (D) σ(Sigma)-type of asymmetric mantled porphyroclats with
backward rotation (Zhang and Fossen, 2020) in dolomite and calcite. Also, fractured porohyroclats with and antithetic microfaults
evident in these shear zones.

produces these thrusts (Hatcher and Hooper, 1992). In the study
area, five thrust sheets (T1–T4), known as the Bazar thrust system,
have been identified. These thrust faults influence the complex
outcrop patterns and generally trend NW–SE (T1-T4, dipping
northeast) or N–S (dipping east) (Figure 2C). Various geological
features arise from these faults. The T1 thrust developed along the
southern limbs of gently inclined to recumbent F1-folds (Figures 4A,
5A). The overlying of dolomitic marbles (PTdm) atop green schist,
black schist, and mica schist (PZs) indicates the influence of the
T2 thrust (Figures 5B–D). The T3 thrust involves the thrusting of
dolomites (Pzd) over Schists (Pzs) and White Marbles (Pzm), with
associated duplex structures in the shear zones (Figures 5E, F). T4
follows an NNE-SSW trend with an easterly dip. The interposition
and increasing thickness of the PTdm unit above the Pzd unit due to
T4 thrusting and associated shear zones are evident. In the northern
region of the T4 thrust, characteristic klippe outcrops are visible
(Figures 5G, H).

Shear zones, formed in the thrust sheets, are composed of calcite
mylonites. The foliation patterns exhibit east-west orientations and
dip northward.The elongation lineation within the calcite mylonites
is delineated by the elongated axes of the calcite grains, which are
ellipsoidal in shape. The mylonites present multiple shear sense
indicators across various scales, all suggesting a right-lateral shear
direction, as illustrated in Figures 6A–D.

2.3 D3 deformation

The last deformation phase was characterized by an extensional
regime, leading to the formation of normal faults. The bookshelf
or domino structures associated with a normal fault can be clearly
seen in competence units such as dolomites and marbles (Figure 7).
The normal faults show a NNE trend which has a high correlation
with dyke orientations. The study area reveals the presence of
diacritic dykes within the fault planes, as depicted in Figure 6. The
emergence of normal faults is hypothesized to be associated with
magmatic activity, a theory that requires more in-depth analysis for
verification.

Calcite twinning plays a crucial role in deciphering the
deformation history of the Routshon complex across the D1 to D3
phases. During the D1 deformation phase, calcite twins indicate
low-temperature compressive conditions, with consistent NE-SW
oriented stress axes corresponding to the flexural flow folds. In the
D2 phase, the twinning patterns within the mylonitic shear zones
of the thrust faults reveal progressive simple shear deformation,
providing kinematic indicators of dextral shear. Finally, in the D3
extensional phase, the reorientation of calcite twins reflects the
transition to an extensional stress regime, marking the shift from
compressional to extensional tectonics. These twinning patterns
serve as microstructural markers, offering valuable insights into the
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FIGURE 7
(A) Intrusion of dioritic dykes into Dolomites (Pzd unit), showing the interaction between magmatic activity and existing rock formations. (B) Intrusion
of a dioritic dyke into Dolomitic Marbles (PTdm unit) demonstrating the penetration of magmatic material into carbonate units. (C,D) Rose diagrams
illustrating a high correlation between the trends of normal faults and the orientation of dykes, highlighting the structural relationship between faulting
and magmatism.
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FIGURE 8
Microphotograph (plane-polarized light, PPL) of type I, II and III twins.
Type II twins are the predominant twin type observed in mylonitic
calcites from the Bazar area.

paleostress orientations and the dynamic tectonic evolution of the
study area.

3 Sampling strategy and measurement

To delineate the stress and kinematic chronology of the
Sanandaj–Sirjan zone, a sampling strategy was employed that
involved collecting 15 oriented samples of calcite mylonites from
thrust-related shear zones. These samples were aligned normal
to the mylonitic foliation and parallel to its strike. Utilizing a
U-stage, measurements were conducted to determine the c-axis
and orientation of twin lamellae. Approximately 50 grains were
examined per sample.Thepredominant formof calcite twin lamellae
observed was type II twins; however, other twin types were also
identified in these samples (as shown in Figure 8). The analysis
indicated that 70% of the calcite grains exhibited two sets of twins,
while the remaining 30% presented a single set of twins.

4 Discussion

4.1 Structural model of the bazar area

In the southern region of the SSZ, the Paleozoic rock
formations underwent deformation and metamorphism as a result
of the early Cimmerian orogenic events that occurred in the
Late Triassic period. An unconformity between the deformed
and metamorphosed Paleozoic complex and the Jurassic units
(conglomerate and sandstones) in the Khabr area (east of the study
area) and Faryab area (southeast of the study area) reveals the
end of the Cimmerian phase (Shafieibafti et al., 2011; Shafieibafti
and Mohajjel, 2015). The early Cimmerian deformation along the
southern margin of Iran indicates that this region functioned
as an active margin during that period (Berberian and King,
1981; Mohajjel et al., 2003; Sheikholeslami et al., 2008). Structures
indicative of the early Cimmerian orogenic phase, such as south-
southwest verging folds and type C thrusting, are evident (Hatcher

and Hooper, 1992), along with thrust-related shear zones under
low-grade green-schist metamorphic conditions (Shafieibafti et al.,
2011). In various locations within the Sanandaj-Sirjan zone,
structural developments consistent with the inclined transpression
model have been confirmed (Shafieibafti et al., 2011; Shafieibafti and
Mohajjel, 2015;Mansouri et al., 2021). Inclined transpression results
from concurrent contraction and oblique-slip shear, which can be
decomposed into strike-slip and dip-slip components (Jones, 2004).
Thismodel shows that structural evolution, whether through ductile
or brittle mechanisms, is closely linked to slip partitioning. The
subsequent section will analyze and interpret the structures of the
study area using the strain triangle model (Figure 9).

4.1.1 Contractional domain
Deformation related to the contractional component is observed

in the calcite and dolomite marbles (PTdm) and white marble (Pzm)
units, characterized by folds that range from steeply plunging to
moderately inclined (Figures 4A, 9).

4.1.2 Dip-slip domain
In the dip-slip domain, deformation is primarily governed by

thrusts dipping north with top-to-the-south movement and thrusts
dipping east with top-to-the-west movement. These thrust faults
are central to the complexity of the outcrop patterns, typically
trending NW–SE or N–S with dips ranging from northeast to east
(Figures 2D, 5).

4.1.3 Strike-slip domain
The ongoing deformation under strike-slip component motion

is evident in the form of thrust-related ductile shear zones. These
zones contain calcite mylonites and display multiple indicators of
dextral shear sense (Figures 2D, 5E–H, 9).

4.2 Kinematic interpretation of calcite
fabrics

Wenk et al. (1987) classified calcite c-axes fabrics into low-
temperature (LT) and high-temperature (HT) categories (Figure 10).
LT fabrics, demonstrated in experimental settings, predominantly
feature twinning with minor intracrystalline slip as the primary
deformation mechanism, whereas HT fabrics are dominated by
intracrystallineslip, as seen inexperiments.LTfabricsdisplayadistinct
peak orientationnearly parallel to the principal stress axes andoblique
to the shear plane. This orientation can serve as an indicator of shear
sense or as a measure of the degree of non-coaxial deformation.
LT fabrics are further differentiated into LT pure shear, where the
peak orientation is perpendicular to the shear plane, and LT simple
shear, which is similar to LT pure shear but rotated counter to the
shear direction. In LT fabrics, the c-axes orientations range from
sub-horizontal to gently plunging (Lafrance et al., 1994), presenting
a girdle that includes one or two asymmetrical maxima, indicative
of monoclinic symmetry.

Figure 11 presents plots of optic c-axis orientations from
samples 1 to 18. These samples exhibit concentrations of c-axes
with highly intense pointmaxima positioned anticlockwise from the
normal to the shear plane, indicative of LT simple shear fabrics.
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FIGURE 9
Structural relationships in the Bazar area, illustrating direct correlations with contractional, dip-slip, and strike-slip components as outlined by the strain
triangle in the inclined transpression model (Jones, 2004). A clearer structural strain model, similar to that proposed by Xiao et al. (2023), is used to
better depict the control of deformation partitioning in the region. This model provides a more comprehensive understanding of the structural
evolution and its implications for deformation processes.

4.3 Paleostress orientations from calcite
twins

Data were organized into distinct files for c-axes, e-twin
lamellae, compression directions, and tension directions, formatted
for immediate application in stereographic projection software.
In instances where a calcite grain features two or three e-
twin lamellae, the corresponding c-axis data for that grain is
recorded multiple times in the dataset (Shelley, 1989; Shelley,
1993). Figure 11 illustrates the orientations of c-axes alongside the
derived compression and tension directions. These orientations
of the principal stress axes were determined by analyzing twin
plane and c-axis measurements to deduce compression and tension
directions for each analyzed grain. The aggregated data from all
measured grains in the sample set were then contoured on an equal-
area stereographic projection to display the results (Turner, 1953;
Weiss, 1954; Pfiffner and Burkhard, 1987).

Figure 10 illustrates a monoclinic stress pattern derived from c-
axes and twin planes data, where σ3 aligns with the tension axis
maximum, and σ1 is close to the compression axis maximum.
The compression axes (σ1) exhibit a NE–SW trend with shallow
plunges ranging from 7°–19°, while the tension axes (σ3) display a
NW–SE trendwithmoderate plunges of 12°–54°. Both stress axes, σ1
and σ3, are nearly horizontal, whereas the σ2 axis is predominantly
vertical.Thesemean principal stress axes aremapped on a structural
diagram, revealing a geometric alignment between compressional
stress axes and thrusts, suggesting dextral movement in shear zones
(Figures 5E–H).

The compressional stress indicated by calcite twinning in
the Routshon complex is likely linked to the subduction of
the Neotethys beneath the southern Sanandaj-Sirjan zone in

central Iran during the Middle Triassic. Our findings suggest
that a dextral inclined transpression regime was dominant in
the metamorphic complexes within the hinterland of the Zagros
orogen from the Middle Triassic to the Jurassic, associated
with the oblique subduction of the Neotethys beneath central
Iran. Notably, the Triassic-Early Jurassic σ1 trends observed in
the Bazar area (this study) and the Faryab area (Shafieibafti,
2007) in the hinterland of the Zagros orogen align closely
with the σ1 trend in the Fars province (Lacombe, 2007) of
the Zagros Simply Folded Belt, located in the foreland of the
Zagros orogen (resulting from the Mio-Pliocene Arabia–Eurasia
collision). These consistent NE-SW orientations correlate with
the current compressional trend in eastern and central Iran
(Ebrahimi et al., 2021; Rashidi et al., 2021; 2023; Ezati et al.,
2022; Rashidi and Derakhshani, 2022; Abbaspour et al., 2023),
as shown in Figures 12A–E. Despite the significant time
gap and the complex geodynamic context, this similarity
in stress orientations may suggest that the stress regime in
the upper plate (Zagros Simply Folded Belt) has remained
relatively consistent from the onset of subduction in the
Middle Triassic to the Mio-Pliocene Arabia–Eurasia collision
(Shafieibafti, 2007).

4.4 Strengths and limitations of the data

Our study leverages a detailed analysis of calcite twinning and
c-axis fabrics to interpret the tectonic evolution and paleostress
patterns within the Routshon complex of the Sanandaj-Sirjan
zone. The following points highlight the strengths and limitations
of our data:
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FIGURE 10
Computer simulations of c-axis fabrics in calcite based on experimental data, classifying these fabrics into low-temperature (LT) and high-temperature
(HT) types. HT fabrics feature simple shear, evolving from rotated pure shear fabrics with added monoclinic distortion. LT fabrics, displayed in the lower
part of the figure, consist of both pure shear and simple shear components, as oriented with respect to the external frame (Wenk et al., 1987).

4.4.1 Strengths

• Comprehensive Sampling and Analysis: The study is based
on a dataset of 15 oriented samples of calcite mylonites from
thrust-related shear zones. Each sample has been meticulously
analyzed for c-axis orientations and twin lamellae using a U-
stage, ensuring high accuracy and reliability of the data.

• Consistency with Experimental Findings: The observed low-
temperature (LT) simple shear patterns in the c-axis fabrics
align well with experimental studies, providing confidence
in the interpretation of the shear sense and deformation
mechanisms.

• Structural and Microstructural Correlations: Our
interpretations are supported by detailed structural mapping
and microstructural analysis, which reveal consistent
geometries and kinematic indicators across multiple samples
and outcrops.

4.4.2 Limitations

• Potential Rigid Body Behavior of Porphyroclasts: Under low-
temperature conditions, porphyroclasts might behave as rigid
bodies, potentially complicating the interpretation of ductile
deformation.This aspect necessitates caution in interpreting the
shear sense purely from calcite fabrics.

• Absence of EBSD Analysis: While Electron Backscatter
Diffraction (EBSD) analysis could provide additional
insights into the deformation mechanisms and validate
our interpretations, it was not performed due to resource

constraints. Future studies incorporating EBSD would help
confirm our conclusions.

• Localized Data: The data and interpretations are derived from
specific locations within the Routshon complex. While these
findings provide valuable insights, they may not fully represent
the broader regional deformation patterns and tectonic history.

5 Conclusion

The structural evolution observed in the study area is closely tied
to slip partitioning, reflecting a comprehensive analysis within the
domains of strike-slip, dip-slip, and contraction, as framed by the
strain triangle model. The examination of optical c-axis orientations
reveals pronounced point maxima, positioned anticlockwise from
the normal to the shear plane, which indicates a low-temperature
(LT) simple shear fabric. This LT fabric aligns with experimental
findings, suggesting that twinning, is the predominant mechanism
of deformation within the region. Further analysis identifies a
dextral shear sense within mylonitic shear zones, characterized by
a monoclinic stress pattern. This pattern is discernible through the
orientation of c-axes and twin planes data, where σ3 aligns with
the tension axes’ maximum and σ1 is proximal to the compression
axes’ maximum. Notably, the compression axes (σ1) exhibit a
NE–SW orientation with shallow plunges ranging between 7°–19°,
while the tension axes (σ3) present a NW–SE trend with moderate
plunges of 12°–54°. The orientations of σ1 and σ3 are predominantly
sub-horizontal, while the σ2 axis being sub-vertical. The plotted
orientations of the mean principal stress axes on a structural map
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FIGURE 11
Presentation of calcite twinning data, showing orientations of c-axes, compression, and tension axes. Panels (A–C) illustrate c-axis fabrics displaying a
low-temperature (LT) simple shear pattern, indicative of dextral shear sense in mylonitic shear zones. The data are plotted on lower hemisphere,
equal-area stereographic projections with contour levels at 1%.

reveal a geometric relationship between compressional stress axes
and thrusts, indicating a dextral movement across shear zones.
Conclusively, the findings of this research confirm the prevalence of

a dextral inclined transpression regime during the Middle Triassic-
Jurassic period within the metamorphic complexes of the Zagros
orogen hinterland.
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FIGURE 12
(A) Topographic map of Iran using SRTM 30 data, showing the orientation of compressive stress (azimuth of σ1). Different arrow styles represent various
methodologies used to determine stress orientations. Key to methodologies: 1: this study; 2: (Shafieibafti and Mohajjel, 2015); 3: (Shafieibafti et al.,
2011); 4: (Ebrahimi et al., 2021); 5: (Lacombe, 2007); 6: (Jentzer et al., 2017); 7: (Zarifi et al., 2014); 8: (Karagianni et al., 2015); 9: (Fattahpour and
Moosavi, 2010); 10: (Zamani et al., 2008); 11: (Shabanian et al., 2010); 12: (Zanchi et al., 2006); 13: (Malekzade et al., 2016); 14: (Navabpour et al., 2008);
15: (Navabpour et al., 2007); 16: (Mobasher and Babaie, 2008); 17: (Authemayou et al., 2005); 18: (Javadi et al., 2013); 19: (Yazdi et al., 2012); 20:
(Farbod et al., 2011); 21: (Lacombe et al., 2011); 22: (Authemayou et al., 2006); 23: (Navabpour and Barrier, 2012); 24: (Javidfakhr et al., 2011b; 2011a); 25:
(Javadi et al., 2015); 26: (Kargaranbafghi et al., 2011); 27: (Lacombe et al., 2006); 28: (Dolati and Burg, 2013); 29: (Rashidi et al., 2022). (B–E) Schematic
models illustrating inclined transpression within the Bazar, Khabr, and Faryab areas of the Sanandaj-Sirjan zone in the Zagros orogen hinterland, and the
Bazargan area in the central Iran microcontinent, providing a comparative view of stress patterns and tectonic evolution across these regions.
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