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Machine learning models have been increasingly popular in landslide
susceptibility mapping based on the correlations among landslides and their
inducing factors. However, mislabeled data in model training sets would
deteriorate model accuracy. This study employed a Bayesian network to
analyze influencing factors on landslides in Fujian Province, China, prone to
typhoons and landslides. An inventory of 5,992 historical landslides informs
Bayesian network modeling, with ten geoenvironmental factors as predictors.
We introduced a progressive noise filtering method to mitigate the mislabeling
effects of non-landslide points. The results show that altitude, wind speed, and
lithology are the most important factors of landslides in the study area. The
accuracy of the resultant landslide susceptibility map was verified using the area
under the receiver operating characteristic curve (AUC) and Moran’s I index.
The AUC value was improved from 0.838 to 0.931 during the progressive noise
filtering. The correlation between historical landslide number density (LND) and
resultant landslide susceptibility index (LSI) was evaluated. The Local Indicators
of Spatial Association based on Moran’s I index shows consistent distribution
patterns for high LND and high LSI regions. This study provides a useful reference
for reliable landslide susceptibility mapping in the study area and similar areas.

KEYWORDS

landslide susceptibility mapping, GIS, tropical cyclone, Bayesian network model, noise
filtering

1 Introduction

Landslides are natural geological phenomena characterized by the gravity-
driven downhill movement of earth or rocky materials, with the potential to cause
substantial damage to communities, infrastructure, and ecosystems. As per the
United Nations, landslides are one of the most destructive and widespread natural
hazards on a global scale (United Nations, 2019). Due to the global climate change,
the occurrence of extreme weather events such as typhoons and extreme rainfall
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has become increasingly frequent. It has notably heightened the
potential for landslide incidents. This surge has resulted in a
substantial upswing in the rates of mortality associated with
landslides (Tian et al., 2020; Yang et al., 2020). In response to this
challenge, landslide susceptibility mapping has been positioned as
an indispensable instrument to identify landslide-prone areas and
mitigate landslide hazards.

In recent years, machine learning techniques have gained
increasing popularity in landslide susceptibility modelling (LSM)
(Pradhan, 2013). Numerous machine learning (ML) algorithms,
including random forest (RF) (Yuan and Chen, 2022), convolutional
neural networks (CNN) (Youssef et al., 2022), Bayesian network
(BN) (Mihaljevic et al., 2021; Huang, et al., 2022), etc., have been
developed and applied in mapping landslide susceptibility. By
depicting a collection of stochastic attributes and their conditional
dependencies, BN is a probabilistic model widely used in solving
problems related to complex systems. The notable features of
BN lie in its incremental learning properties (Huang et al.,
2022). While getting an acceptable performance, the trained
model was applied to predict landslide susceptibility over the
whole study area (Cengiz and Ercanoglu, 2022). However, in
practical engineering, as new landslides occur in the study area,
the landslide dataset undergoes continuous updates over time.
Consequently, the training dataset should be adjusted accordingly
to incorporate the new knowledge (Huang et al., 2022). Another
distinctive characteristic of BN is found in their interpretability
(Mihaljevic et al., 2021), as many ML techniques exhibited a black-
box nature that was non-transparent to humans. In this regard, BN
can furnish decision-makers with a prioritized list of input landslide
controlling factors, along with potential interactions among
these factors. Given the aforementioned, an increasing number
of scholars are employing BN in LSM studies (Cui et al., 2022;
Lan et al., 2021).

The establishment of sample sets and the selection of evaluation
factors are critical for LSM (Singh et al., 2023). The construction
of sample data for machine learning models is typically based
on known landslide data (Chakrabortty et al., 2022). To extract
more information from limited sample data, many researchers
have focused on expanding landslide samples and selecting high-
quality non-landslide samples (Sukristiyanti et al., 2020). Yang et al.
(2023) have identified landslides from satellite maps to augment the
landslide samples. Huang et al. (2022) incorporated the temporal
attributes of landslide samples in LSM to analyze the characteristics
of landslides over different periods. However, previous studies
often randomly chose non-landslide samples from the study area,
which can introduce mislabeled samples and uncertainties into the
LSM (Abraham et al., 2023; Huang et al., 2020). The inclusion of
mislabeled samples can indeed impact the performance of machine
learning models, potentially resulting in suboptimal outcomes. In
this study, noise is progressively filtered from subsequent training
sets using a trained BN model as prior knowledge to identify and
filter out mislabeled data.

The triggering effect of tropical cyclones (TCs) on landslides
is manifested in the combined action of strong winds and
heavy rainfall. On one hand, rainwater infiltration increases the
gravitational force on the soil and reduces its shear strength; on the
other hand, strongwinds increase the instability of slopes by exerting
an uplift force on the vegetation (Qi et al., 2023; Zhuang et al.,

2022). Therefore, when modeling landslide susceptibility in coastal
areas and other regions prone to typhoons, considering only the
impact of rainfall on landslide triggering is insufficient. Although
some researchers have analyzed landslide characteristics under
individual typical typhoon events, they have not proposed a
general quantitative assessment method for typhoon impacts to be
integrated into LSM (Wu, 2019; Cui et al., 2022).

This study aims to construct a noise filtering method based on a
Bayesian Network model to mitigate the mislabeling effects of non-
landslidepoints.Tengeoenvironmental predictors are selected to form
the LSM. Additionally, considering the study area is a typhoon-prone
region, we used the Rankine vortex model to quantify and assess the
impact of historical tropical cyclones and the extreme rainfall.

2 Study area and data sources

2.1 Study area

Fujian Province (115°50′-120°40′E, 23°33′-28°20′N) is situated
in the southeast of China (Figure 1). It covers an area of 121,400 km2

with over 90% of it characterized by hills and mountains with an
altitude ranging from −51 m to 2,148 m. Shaped by the new Huaxia
structure, the elevational trend ascends towards the northwest and
descends towards the southeast (Lin et al., 2021). The geological
foundation of Fujian Province is typified by dynamism, with high-
angle faults and jointed structures. In the study area, magmatic
rocks consist of intrusive rocks alongside Jurassic and Cretaceous
volcanic formations. Igneous rocks form a significant component of
the lithology, occupying a substantial portion of the province’s land
area. Metamorphic rocks primarily characterize the northwestern
region, while sedimentary rocks constitute a smaller fraction of the
landscape, concentrated mainly in the southwest.

Fujian Province is located near the Tropic of Cancer. The
prevailing climatic pattern corresponds to a warm and humid
subtropical monsoon climate.The region experiences higher levels of
precipitation. Facing the Pacific Ocean on the east, Fujian Province
is vulnerable to maritime tropical cyclones in the Pacific Ocean.
Rainfall distribution displays notable heterogeneity across the region
(Ma et al., 2023; Ye et al., 2022). For instance, the coastal plains and
mountainous zones of Fujian Province typically encounter an annual
average rainfall within the range of 900 mm–1,100 mm. In contrast,
the hilly mountain areas experience heightened precipitation levels,
with figures approximating 1,500 mm–1,700 mm.

A combination of factors, including heavy rainfall, typhoons,
steep terrain, fractured rock, soil formations, and human
engineering activities, collectively contribute to geotechnical
hazards in the region. Generally, the geohazard profile of Fujian
Province is characterized by its widespread occurrence, frequent
events, and sudden emergence.

2.2 Data sources

The dataset employed for this study, as outlined in Table 1,
encompasses a comprehensive array of variables encompassing the
landslide inventory, a spectrum of contributing factors, tropical
cyclone data, and the counts of landslides and associated rainfall.
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FIGURE 1
Location of the study area and paths of TCs.

The landslide inventory encapsulates historical records detailing
5,992 instances of landslides that have transpired within Fujian
Province. A subset of the Digital Elevation Model (DEM),
integral to the analysis of landslide susceptibility, was derived
via DEM with a spatial resolution of 30 m through ArcGIS 10.6
software. Concurrently, the tropical cyclone dataset encompasses
a wealth of information about the geographical location, intensity
level, and wind speed of tropical cyclones within the northwest
Pacific Ocean. The dataset is sourced primarily from government
disaster reports and authoritative websites maintained by scientific
institutions.

2.3 Inventory of TCs in the period of
2007–2020

Mature TCs often generate spiral rainbands, which can result
in local winds, heavy rainfall, and storm surges (Tang et al., 2018).
These convective phenomena can trigger various disasters such as
landslides, floods, and urban waterlogging, particularly before and
after TC landfall. Situated in the coastal region of southeastern
China, the study area is highly susceptible to geological disasters
influenced by precipitation patterns. Although annual rainfall offers

a general overview of precipitation levels over the year, it may need
to accurately reflect the impact of short-term heavy rainfall events
associated with TCs. Hence, it is essential to consider TCs when
assessing the influence of slope failures.

TCs and their consequent rainfall wield a substantial influence in
instigating landslides within Fujian Province (Xiao et al., 2011).The
national standard “Grade of tropical cyclones” (GB/T 19201–2006)
classifies tropical cyclones into six categories based on wind speed,
as shown in Table 2. This study used all TCs from 2007 to 2020,
which are within a 250 km buffer from Fujian Province recorded.
The 250 km buffer was created as it averages the outer scale of the
TCs we used (Qi et al., 2023). Within this buffer zone, TCs were
primarily characterized as TY and STY. Over the interval spanning
from 2007 to 2020, Fujian Province experienced the landfall of 67
TCs, including 19 instances of TYs and 13 cases of STYs (Lu et al.,
2021; Ying et al., 2014). Typically, TCs undergo rapidweakening and
gradual dissipation following landfall. As depicted in Figure 1, the
intensity of TCs decreases swiftly from TY and STY strength over
the sea to TS and TD strength upon landfall. This transition, known
as the “after-landfall phase,” would extend for several days following
landfall. Though the intensity of TCs decreases during this period,
heavy rainfall persists, leading to increased runoff and exacerbating
landslide risks. As TCs continue to dissipate, the probability of
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TABLE 1 Data sources.

Factors Indicators Data sources

Topographic and Geomorphic
DEM Source and Environment Science and Data Center https://www.resdc.cn/

Slope Extract from DEM

Land cover

Land-use Source and Environment Science and Data Center https://www.resdc.cn/

Vegetation Source and Environment Science and Data Center https://www.resdc.cn/

NDVI Source and Environment Science and Data Center https://www.resdc.cn/

Geological
Earthquake intensity Source and Environment Science and Data Center https://www.resdc.cn/

Lithology National Earth System Science Data Center http://www.geodata.cn/

Human engineering activities Road density Source and Environment Science and Data Center https://www.resdc.cn/

Climatic environment
Rainfall National Earth System Science Data Center http://www.geodata.cn/

Wind speed Typhoon online https://www.typhoon.org.cn/

Landslide inventory Source and Environment Science and Data Center https://www.resdc.cn/

Tropical cyclones Typhoon online https://www.typhoon.org.cn/

Number of landslides during 2007–2021 Department of Natural Resources of Fujian Province https://zrzyt.fujian.gov.cn/

Rainfall during 2007–2021 Copernicus Climate Change Service (C3S) https://climate.copernicus.eu/

TABLE 2 Tropical cyclone classification table.

Grade of tropical
cyclones

Maximum average wind
speed near the bottom
center (m/s)

Tropical depression (TD) 10.8 ∼ 17.1

Tropical storm (TS) 17.2 ∼ 24.4

Severe tropical storm (STS) 24.5 ∼ 32.6

Typhoon (TY) 32.7 ∼ 41.4

Severe typhoon (STY) 41.5 ∼ 50.9

Super typhoon (Super TY) ≥51.0

new landslides occurring may decrease, enabling affected areas to
commence recovery from the initial impacts.

2.4 Distribution pattern of landslides

2.4.1 Spatial distribution pattern
Atotalof5,992 landslides acrossFujianProvinceweredetailedand

documented.Thedistributionpatternof landslides in theregionshows
an apparent spatial characteristic. Most landslides concentrate in the
hilly terrainsof thecentral andwesternareas, extendingnortheastward
through the region. Conversely, landslides occur less frequently in the

relatively flat terrain of the southeastern coastal areas. In this study,
we employed landslide number density (LND) as a metric to quantify
the level of aggregation, providing deeper insights into the spatial
distribution of landslide activity. As depicted in Figure 2, landslides
in Fujian Province cluster near the mountain belts in central and
western Fujian. Significant clustering was observed in cities such as
Quanzhou and Sanming, which experienced an accumulation of over
1,000 geological incidents during the specified period. In contrast,
southeastern coastal municipalities like Xiamen and Zhangzhou were
relatively less affected, recording fewer than 500 geological events
within the same timeframe.

The impact of the physical geography on landslides can be
categorized into internal and external triggering factors. External
triggers such as typhoons and prolonged heavy rainfall are
the primary causes of slope failures. Internal factors such as
steep slopes and loose soils create a conducive environment for
landslide occurrences. These unfavorable conditions are especially
pronounced in the hilly areas of the western and central regions.

2.4.2 Temporal distribution characteristics
Since the landslide inventory lacks temporal attributes, this

study supplemented by collecting a historical landslide dataset from
the Department of Natural Resources of Fujian Province spanning
from 2007 to 2021.This additional dataset enabled us to examine the
relationship between the frequency of landslides and the prevailing
conditions over time.

As depicted in Figure 3C, a consistent correlation is observed
between the frequency of landslides and the magnitude of rainfall
across varying temporal scales, encompassing monthly and yearly
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FIGURE 2
(A) Terrian of Fujian province; (B) Spatial distribution of landslides and landslide number density.

periods (Figures 3A, B). Monthly data reveals noticeable seasonal
variations in both precipitation and landslide occurrences. The
incidence of landslides increased during the rainy season from
May to August. Over 70% of landslides throughout the entire
year occurred during this period. Moreover, monthly average
precipitation exceeding 200 mm correlates with a monthly landslide
count surpassing 30 instances on average. The incidence of extreme
rainfall tends to precipitate a surge in landslide occurrences.
Annual data analysis underscores a pronounced positive correlation
between rainfall and landslide frequencies. In most instances,
peak rainfall coincides closely with the highest landslide events
throughout the year. By tracing back to periods with abnormally
high numbers of landslides, such as June 2010, May 2015, and July
2016, we found that the study area was indeed affected by typhoons
or heavy rainfall during these periods (Figure 3B).

2.5 Thematic layers of landslide-inducing
factors

It is crucial to comprehensively consider various inducing
factors to achieve an accurate LSA. Therefore, the selection of a
wide range of inducing factors is essential. These factors should
encompass all relevant environmental variables that may influence
landslide occurrence. In this study, we identified ten inducing factors
of landslides based on both the natural geographical environment
and human engineering activities (Figure 4). These factors were
classified into 5 clusters: topography (altitude and slope), land
cover (vegetation, NDVI, and land-use), geological (lithology and
earthquake intensity), human engineering activities (road density),
and climate environment (rainfall and wind speed). Differences

in environmental attributes can lead to landslides with different
degrees of aggregation, and selecting the inducing factors as
comprehensively as possible is a prerequisite for an accurate LSA.

3 Materials and methods

3.1 Modelling of the wind fields

Wind speed is the foundational metric for assessing the intensity
of a TC. It encapsulates the broader repercussions of a TC and its
associated secondary calamities. Aiming to explore the complexities
of TC influence on landslide susceptibility within Fujian Province,
we compiled the wind speed of the TCs into an inducing factor and
incorporated it into the LSA framework. In this study, the classical
Rankine vortex model was used to compute the wind fields of the
TCs within the study area. The formula employed to calculate the
wind speed is presented in Equation 1:

v =
{{
{{
{

vm
r
rm
,0 ≤ r ≤ rm

vm
r
, rm ≤ r ≤∞

(1)

In the equation, vm is the maximum wind speed of a TC, rm
is the radial distance from a TC center which is the distance from
a TC center to the place of maximum wind speed, and r is the
distance to a TC center. The Rankine vortex model conceptualizes
a TC as a solid rotating entity, where the allocation of tangential
wind speed is governed by two primary parameters: the maximum
wind speed and the radial distance from the TC center. At the center
of the TC, the tangential wind speed begins at a value of 0 m per
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FIGURE 3
The temporal distribution of landslides in Fujian Province (A) Monthly rainfall during 2007∼2021; (B) Monthly landslides; (C) Annual rainfall and
landslides.

second and linearly increases until it reaches the maximum wind
speed at the radius of maximum wind speed. Beyond this radius,
the wind speed decreases inversely as the distance from the center
increases. Valuable insights from Wu and Lei (2012) provided a
compilation of statistics regarding the averagemaximumwind speed
radius of TCs.

The computation of the wind field of TCswithin Fujian Province
was conducted using ArcGIS 10.7 software. The systematic process
was as follows (Figure 5): 1) Selection of Path Collection Points:
In the initial phase, path collection points were identified for
each TC located within a 250 km radius of Fujian Province. 2)
Application of the Classical Rankine Vortex Model: The wind field
emanating from each path collection point associated with a specific
TC was computed using the classical Rankine Vortex model. 3)
Identification of maximum wind field: Within the context of each
TC, the maximum wind field magnitude was determined from the
array of wind fields generated by the various collection points.
This pivotal value represented the characteristic wind field of the
respective cyclone. 4) Calculation of AverageWind Speed:Themean
value of the maximum wind speed was calculated across all TCs
within the study area. This value served as an indicative measure of
the mean wind speed. This systematic approach not only facilitated
the determination of wind field distribution but also allowed for the
quantification of cumulative influences resulting frommultiple TCs.

Figure 6 illustrates the wind speed factor derived from the
TCs. Wind speed gradually decreases from the southeastern coastal
areas of Fujian Province to the northwestern regions. The rapid
deterioration and dissipation of the TCs are attributed to several
factors, including the gradual depletion of energy sourced from
the ocean, an elevation in surface roughness, and alterations in
circulation pattern (Ito et al., 2020; Houze, 2010). These factors
contribute to the diminished wind speed experienced by TCs as
they move away from the coast. In Fujian province, the typhoon
is uplifted by the terrain of the inland mountainous areas, so that
a typhoon rainstorm center is formed in the east of the mountain
belts in central Fujian, which often leads to landslides, debris flows,
collapses and other disasters.

3.2 Bayesian network model

A BN model integrates Bayesian theory and graph theory. The
inference is based on a priori knowledge and objective evidence
and belongs to classification models. Its framework comprises two
essential elements: the network structure and network parameters,
as represented by the equation: BN = ⟨G,θ⟩ (Nie et al., 2019;
Song et al., 2012). The network structure, symbolized as G, adopts
the form of a Directed Acyclic Graph (DAG), offering a qualitative
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FIGURE 4
Inducing factors map of landslides in Fujian Province: (A) Lithology; (B) Earthquake intensity; (C) Land-use; (D) Vegetation; (E) NDVI; (F) Road density;
(G) Altitude; (H) Rainfall; (I) Slope.

examination of the inherent topological relationships among
network components. Concurrently, the network parameters
encompass the Conditional Probability Table (CPT), quantitatively
depicting the joint distribution probability. The joint probability
distribution is obtained by multiplying the probability distributions
associated with each variable, as expressed in Equation 2:

P(X1,X2,…,Xn) =∏
n
i=1

P(Xi|π(Xi)) (2)

3.2.1 Structure learning
This study determines the structure and parameters of a BN

and conducts inference by learning from the available data. The
Hill Climbing (HC) search strategy, coupled with the Bayesian
Information Criterion (BIC) scoring function, was employed to
learn the network relationships among the inducing factors in
the process of LSA. The HC algorithm emerges as a strategic

choice within structural learning algorithms, particularly when
dealingwith extensive datasets. Its effectiveness is particularly salient
in circumventing the challenges associated with local optima, a
common issue encountered by conventional greedy algorithms
during structural optimization. It effectively avoids being ensnared
in local optima by prioritizing an optimization approach grounded
in singular solutions. Simultaneously, the BIC scoring technique is a
robust tool for identifying the network structure yielding the most
favorable score. Incorporating a complexity penalty term within
the BIC framework mitigates overfitting, thereby ensuring that the
network structure retains its capacity for generalization. The visual
representation of the network structure derived from the structural
learning process is depicted in Figure 4.

3.2.2 Parameter learning
Within the context of independent identical distribution,

parameter learning commonly employs two principal
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FIGURE 5
Illustration of wind field calculation for a TC in the study area (The illustration shows a TC named bilis that made landfall from Fujian in 2000).

FIGURE 6
Wind speed factor calculated from TCs.

methodologies: Maximum Likelihood Estimation (MLE)
and Bayesian Estimation (BE). BE, in particular, stands
out as it utilizes prior parameter distribution and selection
principles, effectively mitigating the overfitting risks inherent
in MLE. The integration of hyperparameters refines BE,
rendering it robust and stable even when handling small-
sample data.

3.2.3 Inference
Bayesian inference relies on the interaction of the network

structure and the Conditional Probability Table (CPT). Within this
context, the Variable Elimination (VE) algorithm is a preferred
choice, simplifying the calculation process by decomposing
the joint distribution. VE’s key characteristics of simplicity
and generality align well with its exact inference. Moreover,
the versatility of VE allows it to handle complex network
scenarios effectively. Expanding upon VE’s framework, a suite
of algorithms, such as the bucket elimination algorithm, further
enhances the inference ability by accommodating various optimal
elimination orders.

3.3 Noise filtering

We conducted a noise filtering method to filter out mislabeled
data and enhance the quality of the model-training dataset. Detailed
steps of the noise filtering process are as follows (Figure 7): 1)
Dataset partitioning: The dataset was randomly divided into equal
subsets, with one segment earmarked for testing and the remaining
segments designated for training; 2) Initial training set selection:
Initially, one subset was chosen to train a BN model and predict
the subsequent subset.; 3) Noise filtering: If the difference between
the predicted value and the actual value for an instance within the
subset exceeded the predefined threshold “t,” the instance would be
removed. Conversely, the instance would be included in the training
set if the difference fell within the threshold.The threshold value “t”
is calculated using the equation: |LS− Pre| ≤ t, where LS is the actual
value; and Pre is the predicted value of an instance.This process was
iteratively repeated, progressively introducing clean data samples
from each subset into the training data. To update the entire dataset,
the study conducted nine rounds of noise filtering, each involving
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FIGURE 7
Illustration of the noise filtering process.

a thorough evaluation of prediction outcomes. The accuracy of the
samples was assessed using the test set after each round of noise
filtering.

3.4 Moran’s I index

This study utilized Moran’s I to investigate the spatial
relationship between landslide density and susceptibility. Moran’s
I is a widely employed metric for assessing spatial autocorrelation,
encompassing global and local Moran’s I.The computation of global
Moran’s I yields results within the range of [−1, 1], where a value
greater than zero indicates a positive spatial autocorrelation. There
is a clustering phenomenon across the entire spatial domain. The
magnitude of the index indicates the degree of clustering, with larger
values indicating more pronounced clustering. Conversely, a value
less than zero suggests a spatial negative correlation, indicating a
dispersion pattern in the spatial distribution of the study object. A
zero value denotes no spatial autocorrelation or an absence of spatial
correlation. The equation of Moran’s I is as Equation 3:

I =
n∑n

i=1
∑n

j=1
(Yi −Y)(Yj −Y)

∑n
i=1
∑n

j=1
wij(Yi −Y)

2 (3)

In the equation,n represents the total number of samples,wij denotes
the distance weight between i and j, Y i and Y j represent the variable
values for the i th and jth samples respectively, Y representing the
mean value across all samples.

Compared to global Moran’s I, local Moran’s I emphasize
assessing local spatial clustering patterns. While global Moran’s I

indicates overall spatial clustering, it lacks specificity in identifying
the regions where clustering phenomena occur. Additionally, even
if global Moran’s I indicates no overall spatial autocorrelation, local
spatial clusteringmay still manifest in specific areas.The equation of
local Moran’s I is as Equation 4:

I =
Yi −Y
L2
∑n

j≠i
wij(Yj −Y) (4)

In the equation, L2 = 1
n
∑(Yi −Y)

2.

4 Results

4.1 Correlations between landslides and
influencing factors

To better analyze the relationships between landslides and
inducing factors, the frequency density of landslides and landscape
(non-landslide) areas was compared, as shown in Figure 5. A slope is
more likely to fail where the frequency density of landslides is higher
than the landscape. Regions with a history of frequent landslides are
more susceptible to future landslides due to persistent geological and
environmental conditions that favor such occurrences.

4.1.1 Topographic and geomorphic factors
Topography, particularly micro-topography, significantly

contributes to landslide occurrences within Fujian Province,
particularly regarding slope angle and height. Most landslides
tend to occur on convex slopes. This study selected altitude and
slope as topographic and geomorphic factors. For the analysis
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FIGURE 8
Landslide frequency density estimates of the influencing factors; (A) NDVI; (B) Road density; (C) Slope; (D) Wind speed; (E) Altitude; (F) Rainfall; (G)
Land-use; (H) Vegetation; (I) Lithology; (J) Earthquake intensity.

of altitude (Figure 8E), landslides are more likely to transpire in
areas between 200–400 m, as these regions typically feature loose
deposits. Concerning slope, landslides are prevalent when the
slope ranges between 3°–10° (Figure 8C). Regions within this slope
interval tend to possess more loose sediments on the surface. As the
slope steepens, although it provides greater energy for sliding, the
heightened slope also indicates that the soil or rock has increased
strength, which can hinder landslide occurrences (Wu et al., 2021).

4.1.2 Basic geology factors
Geological factors are vital in shaping geomorphic features.

Different lithologies exhibit varying degrees of hardness and
weathering. The occurrence of landslides is influenced by the
lithology and weathering degree of the underlying bedrock. Soft

rocks and fragmented rock-soil materials are more prone to
landslides. Landslide densities are generally higher onmetamorphic
rocks (Figure 8I). Earthquakes are usually accompanied by
varying collapse, landslides, and debris flow. Classification of
earthquake intensity also reflects the distribution of faults.
As shown in Figure 8J, landslides in Fujian tend to occur with
seismic intensity levels of VI degree or higher.

4.1.3 Land cover factors
In this study, we investigated the impact of land use practices

on shallow soil landslides, focusing on vegetation, NDVI, and land
use as land cover factors. For NDVI, higher values are commonly
associated with lower landslide susceptibility (Figure 8A). However,
the analysis results also reveal the complexity of landslide causation.
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FIGURE 9
Landslide susceptibility map of Fujian Province during the process of noise filtering; (A) 1st filtering; (B) 2nd filtering; (C) 3rd filtering; (D) 4th filtering; (E)
5th filtering; (F) 6th filtering; (G) 7th filtering; (H) 8th filtering; (I) 9th filtering.

Despite the perceived stability related to regions with high NDVI
and forests, landslides still occur in these areas. These regions
usually feature hilly and mountainous terrain, which are more

prone to landslides. Vegetation with well-developed roots stabilizes
the slopes, creating a complex network of fibers within the soil,
enhancing its shear strength. Thick roots can penetrate deep into
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FIGURE 10
Factor importance of wind speed factor.

the bedrock, serving as anchoring elements for the shallow soil.
These factors collectively contribute to the slope stability (Bordoloi
and Ng, 2020; Pandey et al., 2022). However, the stabilizing effect
of trees on slope stability may be limited under certain wind load
conditions (Zhuang et al., 2022). This observation may explain why
landslides are more prevalent in forested areas when considering
the vegetation factor (Figure 8H). Regarding the Land-use factor;
landslides are concentrated in cultivated land (Figure 8G). In Fujian
Province, where arable land is scarce, many farmers have reshaped
slopes for agricultural purposes, leading to numerous unstable cut
slopes and an increased risk of landslides.

4.1.4 Human engineering activities factors
As for road density, areas with higher road density generally

exhibit higher landslide densities (Figure 8B). The imbalanced
alteration of rock and soil mass resulting from construction projects
such as housing and road development, including excavation and
slope-cutting activities, can increase the susceptibility of mountain
slopes to instability and damage. Moreover, the high population
density and extensive engineering activities in these areas exacerbate
the occurrence of geological disasters. However, regions with the
highest road density are less susceptible to landslides due to their
high level of urbanization and superior infrastructuremanagement.

4.1.5 Climate environmental factors
Situated adjacent to the Pacific Ocean, Fujian Province and its

coastal areas are frequently affected by typhoon rainstorms. The
heavy rainfall accompanying typhoons decreases the mechanical
strength of the soil, serving as an important triggering factor
for landslides. Areas with annual rainfall ranging between
12,000–14,000 mm are more susceptible to landslides than those
with higher or lower rainfall levels (Figure 8D). These areas mainly
concentrate in central Fujian Province. The rapid uplift of the
terrain in the region creates a center of intense rainfall in its
vicinity. Additionally, areas with wind speeds in the range of
14–16 m/s also exhibit a higher density of landslides, which can

be attributed to the increased erosion and soil instability caused by
strong winds (Figure 8F).

4.2 Landslide susceptibility mapping

This study uses the landslide inventory consisting of 5,992
distinct points as a fundamental dataset.These pointswere identified
as positive samples and designated with a value 1. Additionally,
an equivalent number of points were randomly selected from the
study area, serving as negative samples designated with a value of
0. The dataset of this study consists of both landslide and non-
landslide points.The entirety of the modeling procedure proposed a
Bayesian Network model to analyze the distribution characteristics
of landslide disasters in Fujian Province. Within this method,
noise filtering was implemented after the inference of the Bayesian
Network model. This iterative process progressively filters noise
in the subsets, thereby reducing the impact of mislabeled data on
prediction accuracy (Figure 9).

This study incorporated a comprehensive array of factors as
inputs for the landslide susceptibility modeling. The variables
included altitude, slope, vegetation cover, land-use patterns, NDVI,
lithology, earthquake intensity, rainfall patterns, wind speed, and
road density. A noise filtering method was adopted to enhance
the accuracy of LSA, which served as a primary strategy in this
investigation. After the training process with noise filtering, the
landslide susceptibility index (LSI) was effectively forecasted. The
spatial distribution of landslide susceptibility predicted by noise-
filtered samples in Fujian Province is presented in Figure 9. It can
be seen fromFigure 9 that the high and extremely high susceptibility
areas in Fujian Province are mainly located near the mountain belts
in central and western Fujian which aligns with the actual spatial
distribution pattern of landslide occurrences.The relatively flat areas
in the East and southeast coast of the province are mostly low
and extremely low susceptibility. With the progress of the noise
filtering, the proportion of each susceptibility level changes, the
proportion of high and extremely high susceptibility areas increases,
and the identifiability of landslide susceptibility mapping gradually
increases.

4.3 Results analysis

4.3.1 Factor importance
Altitude, wind speed, and lithology respectively were identified

as the main controlling factors of landslides (Figure 10). Wind
speed stands out with a factor importance score of 0.23, ranking
as the second most influential factor in our landslide susceptibility
modelling. This highlights the significant impact of wind speed on
landslide occurrences in the study area, emphasizing the necessity of
incorporating this factor in landslide risk assessments.

4.3.2 Accuracy analysis
To assess the accuracy, the Area Under the Curve (AUC) metric

was adopted as the evaluation criterion for the performance of
the machine learning model. A higher AUC value signifies greater
accuracy in predictive results. The results of this evaluation are
depicted in Figure 11A, where the AUC value steadily increases
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FIGURE 11
Accuracy of each time noise filtering (A) AUC; (B) Accuracy; (C) Precision; (D) Recall; (E) F1-score.

from 0.838 to 0.931, while the standard deviation gradually
decreases. This trend indicates a consistent improvement in
model accuracy and reliability, as the model becomes more
consistent and dependable in its predictions. This trend highlights
the progressive efficacy of the noise filtering approach in
enhancing the precision and reliability of the machine learning
model for LSA.

Additionally, other key indicators including accuracy, precision,
recall, and the F1-score were also involved in the assessment
of model classification performance. Higher values of the
indicators indicate better classification performance of a model.
As shown in Figures 11B–E, these indicators collectively manifest
a demonstrably enhanced model performance as the noise filtering
times increase. A consistently increasing metric accompanied by a
gradually decreasing standard deviation suggests that the model is
enhancing and getting more stable throughout the noise filtering
process While precision is vital in minimizing false positives, a high
recall rate is essential for capturing all instances of landslides. In

the context of LSA, prioritizing recall is vital to correctly identify
potential landslide-prone areas. According to the results, although
both metrics showed improvement during the noise filtering
process, the precision reaches a maximum of 0.82 and the recall
reaches a maximum of 0.91.

4.3.3 Spatial correlation analysis
The LSI also possesses a high level of accuracy spatially. We

employed the GeoDa software to obtain Moran’s I and evaluate
the spatial correlation between LND and LSI. The calculated values
for Moran’s I, p-value, and Z-score were 0.335, 0.012, and 529,
respectively. At a 95% confidence level, both the p-value and z-
value passed the significance tests. These results indicate a positive
correlation between LNDandLSI, which indicates that the predicted
values closely align with actual values.

To further analysing local clustering patterns, we computed the
Local Indicators of Spatial Association (LISA) based on the local
Moran’s I index. Figure 12 depicts the LISA map for LND and LSI.
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FIGURE 12
Local Moran’s I index between LND and LSI.

Elevated high-high regions on themap indicate areaswith high LND
and LSI values, while low-low regions signify areas with low values
for both variables. The predominant distribution of high-high areas
closely aligns with regions characterized by high and very high LSI.
These regions are mainly in the central and western parts of Fujian
Province and run north-east through the province. Similarly, low-
low regions correspond to areas with low and very low LSI in the
southeastern coastal areas.These findings provide further validation
of the predictive accuracy of this study.

4.4 Landslide susceptibility assessment in
Fujian

Figure 13 presents the cumulative percentage of landslide
susceptibility levels for different cities and counties in Fujian
Province. In Figure 13A, the proportion of varying susceptibility
intervals within the cities. Correspondence between abbreviations
and full names is in Supplementary Table 1. Cities such as QZ and
ND have a higher percentage of high and very high susceptibility
areas, while cities like XM have a smaller percentage. Figure 13B
presents the percentage distribution of different susceptibility levels
across various cities. Most areas fall into the low susceptibility
category, followed by moderate and very low susceptibility. The
high and very high landslide susceptibility is the least prevalent,
accounting for less than 10%. Figure 13C displays the distribution
of susceptibility levels in subordinate counties and districts
across different cities. The susceptibility levels exhibit an uneven
distribution among the counties and districts of different cities.
Overall, the percentage of landslide susceptibility levels across
different cities is controlled by the mountainous regions of central

and western Fujian. The cities of SM, NP, and LY, traversed by the
mountain belt in western Fujian, have higher susceptibility levels.
The southeastern coastal cities of Xiamen and Putian with flatter
terrain thus have lower susceptibility levels. In cities such as QZ and
FZ, the western regions are characterized by the complex terrain
of the mountain belt in central Fujian, while the eastern regions
are coastal plains. The complex terrain results in highly uneven
susceptibility levels across districts and counties.

5 Discussion

The study of extremeweather and the disasters it brings has been
extended through various mathematical and physical methods. In
this research work, a wind speed factor was built based on Rankine
vortex model and history TCs. We have analyzed the landslide
distribution pattern and constructed a noise filtering method based
on the BN model to investigate how mislabeled samples impact the
model performance.

Mature TCs often produce spiral rainbands that can lead to
local winds, heavy rainfall, and storm surges (Tang et al., 2018).This
convective effect can cause a series of disasters, including landslides,
floods, and urban waterlogging, especially before and after a TC
makes landfall (Zhuang et al., 2022). While annual rainfall provides
an indication of the level of rainfall in a year, it may not accurately
reflect or measure the impact of short-term heavy rainfall brought
by TCs. The Rankine vortex model was used to quantify historical
tropical cyclone data and derive the wind speed factor (Figure 6).
Methods for quantifying the impact of typhoons include: 1) The
wind pressure model, which describes the relationship between
wind speed and distance from the typhoon center, enabling a more
accurate assessment of the damage caused by TCs and serving
as crucial tool for evaluating typhoon impacts; 2) Integration of
historical typhoons, which characterizes the impact of typhoons
by combining the intensity and frequency of historical events
(Batke et al., 2014; Qi et al., 2023). Qi et al. (2023) quantified the
destructiveness of TCs by this method.

The predictive performance of classification learning algorithms
is limited by data quality (Khoshgoftaar and Rebours, 2007;
Johnson and Khoshgoftaar, 2022). Non-landslide points in most
existing studies were just randomly selected from the entire
study area (Wu, 2019; Cui et al., 2022). There’s a possibility of
mislabeling some points with high landslide susceptibility as
non-landslide points, what is known as label noise. Huang et al.
(2020) highlighted the issue of selecting non-landslide samples and
chose non-landslide points from areas with very low susceptibility
under a semi-supervised algorithm. Our study proposes a noise
filtering method that gradually eliminates lower-quality samples,
which significantly improved the quality of non-landslide samples
(Figure 11). The threshold for the noise filtering method is set
to 0.7, effectively filtering out samples with large deviations
between predicted and actual values. Additionally, adjusting
the threshold allows for controlling the balance between the
acceptable sample deviation and the number of samples removed
(Khoshgoftaar and Rebours, 2007).

It’s worth acknowledging that certain limitations might be
associated with this study. Landslides are affected by terrain,
geology, hydrology, and other factors, leading it impossible to
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FIGURE 13
Percentage accumulation diagram of landslide susceptibility (A) Percentage accumulation diagram of each city; (B) Percentage accumulation diagram
of susceptibility level; (C) Percentage accumulation diagram of each county.

identify areas that will never experience landslides. Selecting
non-landslide points that are completely accurate and reliable is
challenging. Therefore, we can only work to improve this issue,
but we cannot entirely resolve it. The primary focus of our study
was to tackle sample noise and amplify the model’s classification
performance by addressing noise within the samples. The noise
instances that get filtered is contingent on the selected threshold
value. Although this study did not extensively delve into exploring
the optimal threshold value selection, this aspect doesn’t detract
from the performance enhancement achieved through the noise
filteringmethodology. Determining the optimal threshold value and
further enhancing the methodology may involve employing various
search algorithms, such as hill-climbing, simulated annealing, or
genetic algorithms.

6 Conclusion

We have analyzed the landslide distribution pattern and
constructed a noise filtering method based on the BN model to
investigate how mislabeled samples impact the model performance.
In the landslide-prone region, landslides are mainly located in the

central and western parts of Fujian Province and run north-east
through the province. Over 70% of landslides occurred during the
rainy season from May to August. In the landslide susceptibility
assessment process, 10 geoenvironmental factors have informed the
BNmodel as predictors. Moreover, we have calculated the historical
tropical cyclone dataset as a wind speed geoenvironmental factor to
consider the impact of tropical cyclones on landslides. And it was
proved to be the second most significant factor.

We have also progressively filtered the mislabeled data in non-
landslide sets with the noise filtering method in this study. As
expected, the AUC value has been improved from 0.838 to 0.931
during the process. Furthermore, the final landslide susceptibility
results have been made into a landslide susceptibility map. The
reliability was confirmed by Moran’s I index. The LISA shows
consistent distribution patterns for high LND and LSI regions,
further highlighting the reliability. The results demonstrate the
ability of the noise filtering method in the quality enhancement
of training sets and the performance of machine learning models.
The noise filtering method offers a viable approach for enhancing
the quality of the non-landslide dataset and a useful reference
for reliable landslide susceptibility mapping in the study area and
similar areas.
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