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The Triassic tectonic evolution and affinity among the Yangtze Block, Qinling
Orogenic Belt and Songpan-Ganzi Terrane remain subjects of ongoing scientific
debate. In this context, the sedimentary rocks of Xujiahe Formation (second
segment) (T3x2) represent an ideal case for addressing this issue. In this
study, new stratigraphic, geochemical and detrital zircon analyses have been
conducted on two sections of the T3x2. The stratigraphic assemblage and
features suggests a braided delta as the depositional setting. Whole-rock
geochemical results indicate that the sandstones from the T3x2 exhibit
moderate palaeo-weathering and primarily originate from upper crustal felsic
rocks, mostly S-type granites. The detrital zircons within these sandstones
display distinctive age peaks at intervals of 200–300 Ma, 700–900 Ma, and
1800–2000 Ma, similar to those from the Qinling Orogenic Belt. Both the
clastic particle composition and whole-rock geochemistry indicates that the
T3x2 sections were deposited in a tectonic environment transitioning from a
passive to an active continental margin, highlighted by a braided delta influenced
by rivers flowing from the northeast to the southwest.
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Xujiahe formation, braided delta facies, palaeo-weathering degree, detrital zircon,
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1 Introduction

The Xujiahe Formation, a late Triassic stratum, is widely
distributed in the Sichuan Basin (Li et al., 2017; Jiang et al., 2023;
Gou et al., 2024). As a stratum mainly composed of clastic rocks,
the Xujiahe Formation is an ideal research object to constrain
the provenance and tectonic evolution of the Sichuan Basin.
Previous studies mainly located at the northwestern Sichuan
Basin and considered that the Songpan-Ganzi Terrane and
Longmenshan strike-slip fault zone provided the dominate detrital
materials to the Xujiahe Formation (Yang et al., 2013; Li et al.,
2014; Deng et al., 2019; Zhang et al., 2023b). However, many
recent studies have proposed that the Qinling Orogenic Belt is
the main origin of the detrital materials of the Xujiahe Formation
(Luo et al., 2013; Mu et al., 2019; Jiang et al., 2023; Gou et al., 2024).
Detrital materials transferred by a long ancient river from the
Yangtze and Cathysia Blocks are also a viewpoint that provides
a much more extensive detrital provenance (She, 2007; Yu and
Liang, 2017). As a widespread stratum in the Sichuan Basin,
the Xujiahe Formation has extensive detrital sources, which is
reasonable. But the lack of systematic research on the Xujiahe
Formation of the Northeastern Sichuan Basin led to an unclear
understanding of the evolution of the Sichuan Basin and its
affinity to the Northeastern Qinling Orogenic Belt. Furthermore,
the controversy over the detrital provenance of the Xujiahe
Formation caused different viewpoints on the tectonic evolution
and affinity among the Yangtze Block, Qinling Orogenic Belt
and Songpan-Ganzi Terrane (Li et al., 2014; Zhang et al., 2020;
Gou et al., 2024).

As a super thick oil-gas reservoir layer, the T3x2 occupy the
most percentage of thewholeXujiehe Formation (Huang et al., 2020;
Liu et al., 2020; Yang et al., 2021; Liu et al., 2023; Cai et al., 2024).
This segment is predominantly composed of clastic sediments,
and it is an ideal representative of the whole Xujiahe Formation’s
provenance (Liao et al., 2010). In contrast, the other segments,
primarily consisting of mudstone or shale, present challenges in
provenance determination through geochemical methods due to
their high loss on ignition and scarcity of detrital zircons (Deng
et al., 2019; Zhou et al., 2019). This study focuses on samples from
the second segment of the Xujiahe Formation. Comprehensive
analyses, including whole-rock geochemistry of the sandstones, U-
Pb isotopes and trace elements of detrital zircons, were conducted.
These analyses aim to precisely determine the formation age
of the Xujiahe Formation sedimentary rocks and identify their
potential source rocks. This study provides new information
for the Xujiahe Formation and the tectonic evolution of the
Sichuan Basin.

2 Geological setting

The Sichuan Basin, located at the Northwestern corner of the
Yangtze Block, is bordered by the Songpan-Ganzi Terrane to the
Northwest and the Qinling Orogenic Belt to the North (Figure 1A).
This region witnessed significant tectonic activity from the early
to late Triassic, particularly the anticlockwise closure of the Paleo-
Qinling Ocean along the eastern boundary of the Paleo-Tethys
Ocean (Pullen et al., 2008; Gong et al., 2021), which led to the

amalgamation of the Yangtze Block with the North China Craton.
During this period, a substantial continental collision led first to
the formation of the eastern Sulu-Dabie Orogenic Belt, followed by
the formation of the western Qinling Orogenic Belt (Mu et al., 2019;
Yuan et al., 2022; Li et al., 2023a). Subsequently, in the late Triassic,
as the Paleo-Tethys Ocean continued to close, the Qiangtang
Block began merging with the Yangtze Block and the Kunlun
Orogenic Belt.This tectonicmovement resulted in the creation of the
Songpan-Ganzi Terrane and the Longmenshan strike-slip fault zone
(Zhang et al., 2014).

The study area is situated in the Northeastern side of the
Sichuan Basin, adjacent to the Songpan-Ganzi Terrane and Qinling
Orogenic Belt (Figure 1B). The sedimentary strata of the study area
extend continuously from Sinian to Quaternary. From Sinian to
early Triassic, the sedimentary strata consist of passive continental
margin basin sediments, featuring a mix of continental and
shallow-sea facies rocks. While, from late Triassic to Tertiary, the
sedimentary strata are predominantly foreland basin sediments,
mainly comprising terrigenous clastic rocks. The study area is
characterized by extremely thick sedimentary rock layers and
a scarcity of exposed igneous rocks. Furthermore, the deep
fractures in the study area exhibit two primary orientations: near
the Longmenshan strike-slip fault zone on the west, the deep
faults predominantly follow a NE-SW-direction, while near the
Qinling Orogenic Belt on the east, the deep faults are mainly
NW-SE-trending.

2.1 Songpan-Ganzi Terrane and
Longmenshan strike-slip fault zone

The Songpan-Ganzi Terrane, as a flysch zone, represents the
accretionary wedge associated with the subduction of the Paleo-
Tethys Ocean (Gong et al., 2021). This terrane is predominantly
covered by thick Triassic flysch sediments. During the late Triassic
to Jurassic, the Songpan-Ganzi terrane experienced continuous
deformation and uplift, accompanied by large-scale magmatic
events led to the formation of felsic plutons of calc-alkaline,
alkaline, peralkaline and peraluminous series granitic rocks
(Yan et al., 2018b; Chen et al., 2023).

The NE-striking Longmenshan strike-slip fault zone extends
∼500 km from southwest to the Northeast, which is composed
of a Precambrian basement overlaid with Paleozoic (Cambrian
to Permian) strata (Yan et al., 2018a). Since the late Triassic,
the Longmenshan strike-slip fault zone has experienced three
distinct tectonic deformation stages: a late Triassic compressional
deformation, a Jurassic extensional deformation and a Quaternary
stage marked by thrust, strike-slip fault zone and uplift
tectonics (Yan et al., 2018b).

2.2 Qinling Orogenic Belt

The Qinling Oogenic Belt is divided into two distinct terranes:
the North Qinling and South Qinling Blocks. These blocks were
formed through the subduction of the Paleo-Qinling Ocean, a part
of the Paleo-Tethys Ocean, and later ultimately amalgamated along
the Shangdan suture zone, joining with the Yangtze Block and the
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FIGURE 1
(A) Tectonic location of the Sichuan Basin; (B) Geological map showing the study area. Abbreviations: NCC-North China Craton; SCB-South China
Block; CB-Cathaysia Block; YB-Yangtze Block; Ql-Qinling orogenic belt.

North China Craton (Han et al., 2024). The South Qinling Block,
which is adjacent to the study area, is composed of a Precambrian
basement covered by Sinian to Triassic sedimentary strata. Since
the late Triassic, this block experienced intense magmatic events,
evidenced by the discovery of large-scale syn-collisional Triassic
S-type granites and post-collisional Jurassic I- and A-type granites
(Tang et al., 2023; Xu, 2023). The North Qinling Block is composed
of a Proterozoic basement overlaid with Paleozoic sedimentary
strata, extensively intruded by Paleozoic magmatic rocks
(Hao et al., 2024).

2.3 Yangtze Block

The Yangtze Block is regarded as an independent craton
due to the discovery of its Archean basement (Qiu et al.,
2018). This Block constitutes the Northwestern part of the
South China Block and amalgamated with the Cathaysia Block
along the Jiangnan orogenic belt during the Neoproterozic
(Zhang and Zheng, 2013). Its geological features comprise
an Archean basement overlain by Neoproterozic to Cenozoic
sedimentary strata. The Neoproterozic to Triassic strata are mainly
marine facies sediments, interlayered with middle-late Permian
Emeishan lava. The Triassic to Cenozoic strata consists mainly of
terrigenous clastic rocks. The igneous rocks within the Yangtze
Block are notable for their isotopic ages, which predominantly
fall within the Archean, Neoproterozoic, and Permian
(Charvest, 2013).

3 Stratigraphy and sampling

3.1 Xujiahe formation

The Xujiahe Formation, known as a coal measure formation, is
a late Triassic stratum composed of conglomerate, sandstone and
mudstone, and is rich in plants and shellfish fossils. This formation
was divided into six segments due to different sedimentary
environment.The first segment is composed of fine sandstones, silty
mudstones and carbon mudstones with thin interlayers of coal. The
second segment, the primary focus of this study, is characterized
by thick layers of medium to coarse sandstones underline with
conglomerates. The third segment comprises shale and silty
mudstones with coal interlayers. The fourth segment composed
mainly of boulder conglomerates, pebbly coarse sandstones and
coarse sandstones. The fifth segment is composed of siltstones,
silty mudstones and carbon mudstones. The sixth segment is
mainly made up of medium to coarse sandstones. Notably, the
second and fourth segments are the main oil-gas reservoirs among
the whole Xujiahe Formation, with the second segment being
the thickest. This study involved petrographic and geochemical
analysis of samples from the second segment of the Xujiahe
Formation, collected from two sections in the Northeastern Sichuan
Basin: the Wanyuan Shiguansi section (WSS) and the Tongjiang
Nuoshuihetang Erpingcun section (TNES). These samples were
collected for detailed petrographic and geochemical studies,
including whole-rock geochemical analysis and zircon U-Pb dating
(Table 1; Figure 2).
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TABLE 1 Collected samples fromWSS and TNES of Xujiahe formation.

Section Sample for
microscopic
observation

Sample for clastic
particle composition

statistics

Sample for
whole-rock

geochemical study

Sample for zircon
U-Pb dating

WSS

Wyb1 Wyb1 WYH1 WYG1

Wyb2 WYH2

Wyb3 Wyb3 WYH3 WYG3

Wyb4 WYH4

TNES

Tjb1 TJH1 TJG1

Tjb2 Tjb2 TJH2

Tjb3 Tjb3 TJH3 TJG3

TJH3c

3.2 Wanyuan Shiguansi section

TheWanyuan Shiguansi section (WSS; 108°01′36.84″E−32°02′

24.31″N), is lies on the flank of an anticline. The core of the
anticline is composed of the underlying Leikoupo group strata
which exposed as pelitic strip dolomites. Notably, the first segment
of the Xujiahe Formation is absent in this section. However, the
upper Xujiahe Formation, specifically the second segment, displays
a parallel unconformity with the underlying Leikoupo group
(Figure 2).

In this section, the T3x2 exhibits a thickness of approximately
80 m. The lithological composition includes, from bottom to
top, conglomerate-bearing coarse sandstone, medium-grained
lithic quartz sandstone and fine-grained lithic quartz sandstone
(Figures 3A,B). Four samples are collected from different layers.
Samples are medium and fine-grained lithic quartz sandstones,
with poor to medium sorting and roundness, and with grain sizes
ranging from of 0.1–0.5 mm. Under the microscope, samples are
composed of quartz (65–70%), feldspar (∼5%), lithic fragment
(∼20%) and interstitial material (5–10%).The quartz predominantly
appears as single-crystal quartz, the feldspar is mainly K-feldspar
with minor microcline, and the lithic fragments are mainly
siltstone and slate. The interstitial materials are primarily silty and
argillaceous, supplemented by a small amount of carbonateminerals
(Figures 3E,F).

3.3 Tongjiang Nuoshuihetang Erpingcun
section

The Tongjiang Nuoshuihetang Erpingcun section (TNES;
107°10′44.79″E−32°22′09.3″N), comprises strata from the
underlying Leikoupo group and overlying first and second
segments of the Xujiahe Formation. The Leikoupo group
is a middle Triassic strata and exposed mainly as pelitic
strip dolomites and calcite dolomites. The first segment

of the Xujiahe Formation, forming the upper layer, is
exposed as mudstones with interlayers of fine sandstones
and silty mudstones. However, due to extensive coverage,
the boundary between the Leikoupo group and the first
segment of the Xujiahe Formation cannot be observed
(Figure 2).

The T3x2 exhibits a clear boundary with the first segment.
It has a total thickness of 170 m, and can be divided into
two parts. The middle-lower part (0–110 m) features, from
bottom to top, a lithological sequence of mudstone, siltstone,
conglomerate and sandstone. The upper part (110–170 m)
comprises silty mudstone, argillaceous siltstone and medium-
coarse sandstone. Three samples are collected from different
layers of the middle and lower part (Figure 2). These samples
are medium-grained lithic quartz sandstones, characterized by
poor sorting, medium roundness, and grain sizes of 0.1–0.5 mm
(Figures 3C, D). Microscopic examination reveals a composition
of quartz (∼70%), feldspar (∼5%), lithic fragment (15–20%) and
interstitial material (5–10%). The quartz is predominantly single-
crystal, the feldspar is chiefly K-feldspar with some microcline,
and the lithic fragments mainly comprise siltstone, andesite,
schist, and phyllite. Interstitial materials are largely silty and
argillaceous, accompanied by a small amount of carbonate minerals
(Figures 3G, H).

4 Analytical methods

4.1 Whole-rock major and trace element
analysis

The analysis of the major and trace elements in the whole-
rock samples was conducted at ALS Chemex in Guangzhou, China.
The preparation of these samples involved pulverizing them in a
crusher until they were fine enough to pass through a 200 mesh.
The major element content was determined using a Panalytical
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FIGURE 2
Stratigraphic column of the WSS and TNES of Xujiahe Formation.

Axios Max X-ray fluorescence (XRF) instrument, achieving an
analytical accuracy ranging from 1% to 5%. For trace element
analysis, an ICP-MS instrument (Perkin Elmer Elan 9,000) was

employed, offering an analytical accuracy of better than 5%. More
details about the analytical methods are provided by Qiu et al.
(2017) and Zhang et al. (2018).
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FIGURE 3
(A–D) Hand specimen and (E–H) microscopic photos of sandstone samples from the WSS and TNES. Abbreviations: Qm-monocrystalline quartz;
Qp-polycrystalline quartz; Pl-plagioclase; Kfs-K-feldspar; Ls-lithic fragments of sedimentary rocks; Lm-lithic fragments of metamorphic rocks; Lv-lithic
fragments of volcanic rocks.
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4.2 Detrital zircon geochronology and
trace elements composition

The separation of zircon grains was carried out using
standard magnetic and heavy liquid methods at Langfang
Integrity Geological Services Co., Ltd. These grains were
then meticulously selected under a binocular microscope. To
minimize any risk of contamination, the mineral separation
laboratory maintains a clean environment, rigorously excluding
dust. After each use, the pulverizer and ore beneficiation
equipment were thoroughly washed with water and then air-
dried for 15–30 min to eliminate any residual particles. The
zircon grains were subsequently embedded in epoxy resin
blocks and polished to achieve flat surfaces. For visualizing the
internal structure of the zircon grains, Cathodoluminescence
(CL) imaging was performed using a scanning electron
microscope (SEM) at Chongqing Yujing Science and Technology
Services Co. Ltd.

U-Pb geochronology and trace element analyses of zircon were
conducted using laser ablation inductively coupled plasma-mass
spectrometry (LA-ICP-MS) at Nanjing FocuMS Technology Co.,
Ltd. The setup included a Teledyne Cetac Technologies Analyte
Excite LA system from Bozeman, Montana, USA, and an Agilent
Technologies 7,700× quadrupole ICP-MS from Hachioji, Tokyo,
Japan. The 193-nm ArF excimer laser, which was homogenized
by a set of beam delivery systems, was focused on the zircon
surface with a fluence of 6.0 J cm−2. The ablation process involved
a 35 μm spot diameter, at an 8 Hz repetition rate for 40 s, totaling
320 pulses. Helium was employed as the carrier gas to transport
the aerosol efficiently to the ICP-MS. Zircon 91,500 served as the
external standard for correcting instrumental mass discrimination
and elemental fractionation, while Zircon GJ-1 was used for quality
control in geochronology. The calibration of lead and other trace
elements in zircon was externally performed against NIST SRM
610, with Si as the internal standard, following the methodologies
of Liu Y. et al. (2010) and Hu et al. (2011). Raw data reductions
were performed offline using ICPMSDataCal software (Liu et al.,
2010a; b), quantitative calibration for Pb isotope dating was
performed by ComPbcorr#3_18 (Andersen, 2002), and Concordia
diagrams and weighted mean calculations were performed using
ISOPLOT 4.15 (Ludwig, 2003).

4.3 Clastic particle composition statistics

The composition of clastic particles in the collected samples was
analyzed using the Gazzi-Dickinson method (Ingersoll et al., 1984).
This method involves drawing three straight lines across the thin
section of the rock and counting the number of quartz, feldspar,
and lithic fragments with a particle size between 0.2 and 2 mm
that intersect these lines from left to right. To ensure accuracy and
statistical significance, about 500 particles were counted per sample.
Samples with a high concentration of carbonate or those comprising
more than a quarter of impurities and cements were excluded
from the count. However, particles affected by metasomatism
were included in the count, based on their remaining clastic
components.

5 Results

5.1 Whole-rock major and trace elements

Eight samples, four each from the WSS and TNES, were
chosen for comprehensive whole-rock geochemical analysis, the
results are present in Supplementary Table S1. The WSS samples
exhibit high concentration of SiO2 (66.95–80.63 wt%) and Al2O3
(9.51–10.40 wt%), with low content of MgO (0.97–2.49 wt%)
and Fe2O3 (2.54–3.30 wt%). Their CaO (0.20–5.35 wt%), Na2O
(0.30–1.73 wt%) and K2O (1.79–2.62 wt%) contents are moderate.
Similarly, the TNES samples show high SiO2 (66.95–80.63 wt%) and
Al2O3 (9.51–10.40 wt%) contents, but lower MgO (0.41–0.51 wt%)
and Fe2O3 (1.38–3.32 wt%) concentrations, and moderate CaO
(0.05–0.17 wt%), Na2O (0.03–0.09 wt%) and K2O (1.69–2.20 wt%)
composition. On the log(SiO2/Al2O3)–log (Na2O/K2O) diagram,
the WSS samples predominantly fall within the litharenite and
subarkose fields, whereas the TNES samples are chiefly in the
arkose field. The log(SiO2/Al2O3)–log (Fe2O3/K2O) diagram
further illustrates that the WSS samples mainly align with
the litharenite field, while the TNES samples align with the
arkose field (Figures 4A,B).

Samples from the WSS and TNES have similar trace
element distribution patterns both in primitive mantle and
upper crust normalized diagrams, they show enrichment in P
and depletion in Ba, Sr and Ti (Figures 4D,F). Additionally,
they are characterized by a high concentration of rare earth
elements (REEs), with a particular enrichment in light REEs
compared to heavy REEs when normalized to C1 chondrite.
The REE distribution patterns typically show a right-dipping
shape in chondrite normalized diagram, coupled with slight
negative Eu anomalies (Figure 4C). However, they show a relatively
flat shape in upper crust normalized diagram, without Eu
anomalies (Figure 4E).

5.2 Zircon U-Pb ages

A pair of samples from both the WSS and the TNES were
selected for zircon U-Pb dating. The dating results are present in
Supplementary Table S2 and their CL images and age distributions
are shown in Figure 5.

In the analysis of sample WYG2 from the WSS, 70
zircons were randomly chosen for U-Pb isotopic analyses.
Among these, 69 yielded consistent and concordant data. The
determined ages of these zircons vary widely, ranging between
210 and 2,672 Ma. Notably, five distinct age peaks are evident
at 200–300 Ma, 400–600 Ma, 700–900 Ma, 1800–2000 Ma,
and 2,500 Ma (Figures 6A, B).

From sample WYG3 of the WSS, a set of 70
zircons were randomly chosen for U-Pb isotopic analysis.
Among these, 66 zircons provided concordant results.
The age range of these zircons extends from 276 to
3,290 Ma, with prominent age peaks primarily occurring
at 200–300 Ma, 700–900 Ma, 1800–2000 Ma, and 2,500 Ma
(Figures 6C,D).

In the case of sample TJG1 from the TNES, a total of 70
zircons were selected at random to undergo U-Pb isotopic analyses.
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FIGURE 4
(A) log(Na2O/K2O)–log(SiO2/Al2O3) diagram (after Pettijohn et al., 1972); (B) log(Fe2O3/K2O)–log(SiO2/Al2O3) diagram (after Herron, 1988); (C)
Chondrite-normalized rare earth element distribution pattern diagrams of sandstone samples; (D) Primitive mantle-normalized trace element spider
diagrams; (E) Upper crust-normalized rare earth element distribution pattern diagrams of sandstone samples; (F) Upper crust -normalized trace
element spider diagrams. Normalizations are taken after Taylor and McLennan (1985) and Sun and McDonough (1989).

From this selection, 61 zircons yielded consistent and reliable data.
The age range for these zircons spans from 219 to 2,599 Ma, with
the most pronounced age peaks occurring at 200–300 Ma and
1800–2000 Ma (Figures 6E,F).

For sample TJG3 of the TNES, 70 zircons were randomly
selected for U-Pb isotopic analyses. Of this group, 59 zircons
yielded concordant data. These zircons exhibit a wide age range,
spanning from 223 to 2,611 Ma, and are primarily characterized
by two significant age peaks at the intervals of 200–300 Ma and
1800–2000 Ma (Figures 6G,H).

5.3 Zircon trace elements

Detailed analytical data for zircon trace elements are provided
in Supplementary Table S3. In samples WYG2, WYG3, TJG1
and TJG3, most zircons exhibit low LREEs and high HREEs
concentrations.They also exhibit significant positiveCe andnegative
Eu anomalies. This REEs pattern closely mirrors that found in
magmatic zircons, although a small subset exhibit shows La
concentrations below the detection limit. Some zircons show high
LREE contents with slight positive Ce anomalies, which is similar to

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2024.1444679
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Xie et al. 10.3389/feart.2024.1444679

FIGURE 5
Representative zircon CL images from the WSS and TNES.

the REE distribution pattern of hydrothermal zircons or some types
of metamorphic zircons (Figure 7).

For zircons in sample WYG2, the Th/U ratios range from 0.05
to 2.03. Out of 140 analyzed grains, 124 exhibit Th/U ratios greater
than 0.3, 12 have ratios between 0.1 and 0.3, and 4 possess ratios less
than 0.1. Similarly, zircons from sample WYG3 display Th/U ratios
within the same range of 0.05–2.03, with an identical distribution
among the 140 grains. The same Th/U ratio pattern is observed in
samples TJG1 and TJG3: in each of these samples, out of 140 grains,
124 have Th/U ratios over 0.3, 12 grains range between 0.1 and 0.3,
and 4 are below 0.1 (Figure 8).

5.4 Clastic particle composition

The statistics results of clastic particle composition are
provided in Supplementary Table S4. The samples from the WSS
are characterized by a high proportion of quartz (27.2%–59.2%),
low propotion of feldspars (5.1%–12.0%) and lithic fragments
(28.4%–45.2%). Among these lithic fragments in the WSS samples,
sedimentary fragments represent the highest proportion at 51%,
metamorphic fragments come next with 27%, and volcanic
fragments are the least with 22%.

In the samples from the TNES, a significant proportion
of quartz (27.2%–59.2%) is noted. These samples also

exhibit a lower proportion of feldspars (5.1%–12.0%) and
lithic fragments (28.4%–45.2%). Within the lithic fragment
component, sediment fragments are the most prominent
(44%), followed by volcanic fragments at a moderate level
of 32%, and the least proportion is the metamorphic
fragments (24%).

6 Discussion

6.1 Depositional environment and ages

The T3x2 is divided into two sections: the middle-lower part,
corresponding to its early formation, and the upper part, indicative
of its later formation. In the WSS, due to erosion, only the middle-
lower part is present at the topmost layer. In both the WSS and
the TNES, the sandstone of the middle-lower part typically features
an incomplete erosion surface with gravel. Progressing from the
bottomupwards, there is a gradual decrease in gravel proportion and
a corresponding reduction in sandstone grain size. The sandstone
layers exhibit a pattern of alternating parallel and cross bedding.
The parallel bedding is formed under a strong hydrodynamic
environment, with the sediments delaminated from coarse-to fine-
grained during their migration due to their density. In contrast,
cross bedding is typical of environments with braided distributary

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2024.1444679
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Xie et al. 10.3389/feart.2024.1444679

FIGURE 6
(A,C,E and G) Detrital zircon age distributions with significant peak ages and (B,D,F and H) U-Pb Concordia diagrams of sandstone samples from the
WSS and TNES.

channels that periodically alter their course and flow direction.
These observations suggest that the middle-lower part of the T3x2
in the WSS and TNES was likely deposited in a braided delta
plain facies.

Compared to the lower layers, the upper part of the T3x2
predominantly features sandstone with convolute bedding and
slump deposits. These characteristics suggest a subfluvial, rapid
depositional environment marked by turbulent flow. Additionally,
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FIGURE 7
Chondrite-normalized rare earth element distribution pattern diagrams of detrital zircons from the WSS and TNES. The Chondrite-normalized and
primitive mantle-normalized values are from Sun and McDonough (1989).

FIGURE 8
Age vs Th/U diagrams of detrital zircons from the WSS and TNES.
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FIGURE 9
Source rock discrimination diagrams for the studied sandstones and mudstones. (A) A–CN–K ternary plot for the studied sandstones and mudstones;
(B) La/Th versus Hf diagram (after Floyd and Leveridge, 1987); (C) SiO2vs Zr/Sc; (D) Zr/Sc vs Th/Sc (after Cingolani et al., 2003); (E) Rb vs K2O (after
Spalletti et al., 2008); (F) La/Sc vs Co/Th (after Gu et al., 2002)

instances of reverse order sedimentation have been observed in this
upper part, along with widespread development of sheet sandstone,
strongly indicative of a delta front facies. In the TNES, the upper part
of the T3x2 does not exhibit marked differences from the middle-
lower part and is believed to have been deposited in a braided delta
front facies.

To accurately determine the depositional age of the T3x2, zircon
U-Pb dating was conducted on two samples each from the WSS
and the TNES. In sample WYG2 from the WSS, the youngest group
of five zircons has an average age of 220.5 Ma. Conversely, sample
WYG3 from the WSS contains a single youngest zircon with age of
275.6 Ma. Sample TJG1 from the TNES has a youngest grouping of
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eight zircons with an average age of 240.0 Ma, while sample TJG3
has a youngest grouping of seven zircons with an average age of
240.7 Ma. The detrital zircon dating indicates that the youngest
sediment in both the WSS and TNES is 220.5 Ma, suggesting the
actual depositional period is subsequent to this age. Therefore,
assigning a late Triassic age to the T3x2 appears reasonable. The
TNES’s more consistent and abundant late Triassic zircon crystals,
compared to theWSS, could be attributed to the absence of the upper
part in the WSS.

6.2 Source rock and provenance

6.2.1 Source rock features
The palaeo-weathering and source rock composition of clastic

rocks can be traced using whole-rock geochemical indicators. The
Chemical Index of Alteration (CIA, Nesbitt and Young, 1984),
evaluates the ratio of stable minerals to clay minerals and is
effective in assessing paleo-weathering conditions. Unweathered
magmatic rocks typically exhibit CIA values around 40–50, whereas
intense weathering can elevate these values to as high as 100
(Li et al., 2008; Fathy et al., 2023). In the WSS, three sandstone
samples exhibit CIA values ranging from 73 to 75, with one sample
showing a notably lower value of 54. In contrast, four sandstone
samples from the TNES have uniform CIA values of 78–80,
indicating a slightly higher degree of paleo-weathering compared to
the WSS samples. Some layers in the WSS contain samples that are
almost fresh, suggesting minimal weathering.

The increase of clayminerals such as kaolinite and illite, a sign of
more intense weathering (Nesbitt and Young, 1984), is evident in the
Al2O3–Na2O + CaO–K2O diagram (Figure 9A). Interestingly, one
sandstone sample from the WSS deviates from the general trend,
hinting that its weathering is mainly driven by plagioclase, unlike
the other samples where illite plays a more significant role. The
Al2O3–Na2O + CaO parallel regression lines are useful in tracking
the composition of source rocks (Nesbitt and Young, 1984; Li et al.,
2008). In most of the examined samples, these lines intersect at
a point between granites and tonalite–trondhjemite–granodiorite
(TTG) on the plagioclase–K-feldspar line. This suggests that the
primary source rocks are granites, TTG, and rocks with mixed
signatures.

Trace elements are more effective in distinguishing source rocks
than major elements due to their lower mobility during erosion,
transportation, and diagenesis (Ryan and Williams, 2007). Samples
from the WSS and TNES show low La/Th ratios and variable
Hf contents, they plot in the field of felsic source and mixed
felsic/mafic source, indicating an upper crustal affinity (Figure 9B).
Additionally, these samples exhibit high La/Sc, Th/Cr, Th/Co,
and Th/Sc ratios, aligning them with the compositional traits of
upper continental crust and siliceous sandstones rather than lower
continental crust, oceanic crust, or mafic sandstones. This indicates
that their source rocks are predominantly upper crustal felsic
materials. On various diagrams such as SiO2–Zr/Sc, Zr/Sc–Th/Sc,
Rb–K2O, and La/Sc–Co/Th (Figure 9C–F), the samples consistently
fall in the fields of quartz-rich sandstone and mudstone, upper
crust with increasing depositional cycle, intermediate-acid rock and
felsic rock, respectively. Consequently, it is deduced that the primary
source rocks for these samplesweremainly upper crustal felsic rocks.

This can also be proven in upper crust normalized diagrams because
they show flat REE distribution patterns that are approximately 1,
indicating the samples have REE concentrations very much similar
to the average upper crust. Moreover, their upper crust normalized
trace elements are also fluctuate near 1 except Sr and P, indicating
they are originated from specific upper crust materials that are
enriched in P and depleted in Sr.

6.2.2 Source rock of detrital zircons
The analysis of trace elements in zircons is an effective tool

for deducing the source or protolith of metamorphic and igneous
rocks.TheTh/U ratio is particularly useful in differentiating between
metamorphic and magmatic zircons. Typically, zircons crystallized
in magmas exhibit Th/U ratios above 0.4, while those influenced by
metamorphic processes generally show ratios below 0.1 (Xiao et al.,
2018; Li et al., 2021; Zhang et al., 2022). In samples WYG2 and
WYG3, the bulk of detrital zircons have Th/U ratios over 0.3,
with only a minority ranging between 0.1 and 0.3 or below 0.1.
For samples TJG1 and TJG3, while most detrital zircons have
Th/U ratios above 0.3, there is a notable fraction between 0.1 and
0.3, and a smaller subset below 0.1. This indicates that detrital
zircons from theWSS are largely magmatic, with a small proportion
undergoing slight or complete metamorphic alteration. In contrast,
the TNES samples contain a large number of magmatic zircons and
a significant proportion of zircons slightly altered (0.1<Th/U<0.3),
with a smaller number fullymetamorphosed.This reflects the higher
degree of paleo-weathering observed in the TNES samples.

Trace elements in magmatic zircons are often employed
to determine the nature of their host rocks, as zircons from
various magma types display distinct elemental concentrations
(Belousova et al., 2002; Zhang et al., 2023a; Xiao et al., 2023). By
excluding all metamorphic zircons with Th/U ratios less than
0.3, the remaining zircons, which are magmatic in origin, can be
used to deduce the characteristics of their host rocks using their
trace elements content. Detrital magmatic zircons from the WSS
generally exhibit Eu/Eu∗ ratios ranging from 0.1 to 1 and variable
Ce/Ce∗ ratios, whichmainly plot in an intermediate-acid rock field,
suggesting felsic host rocks. In contrast, detrital magmatic zircons
from the TNES show diverse Eu/Eu∗ and Ce/Ce∗ ratios, suggesting
a greater inclusion of zircons from mafic rocks (Figure 10A). To
more precisely trace their host rocks, Pb andTh contents in zircons
were used to distinguish between A-, I-, and S-type granites. This
is crucial as I-type granite magmas generally exhibit higher Th and
lower Pb concentrations compared to S-type granites (Wang et al.,
2012). The detrital zircons from the WSS and TNES, with their
relatively highPb contents exceeding 10 ppm, indicate that their host
rocks are primarily S-type granites (Figure 10B).

6.2.3 Provenance
Detrital zircons extracted from the sandstone samples of the

WSS and the TNES exhibit poor roundness, suggesting they have
undergone only short transport distances. Analysis of two sandstone
samples from each of these sections reveals similar age distributions,
with shared age peaks at 220 Ma, 450 Ma, 800 Ma, and 1800 Ma,
and a minor peak at 2,500 Ma. Zircons from the WSS show a
predominant peak at 800 Ma and include a greater proportion of
zircons that are younger than 500 Ma. In contrast, zircons from

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2024.1444679
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Xie et al. 10.3389/feart.2024.1444679

FIGURE 10
Zircon source rock discriminate diagrams using zircon trace element data (A) Eu/Eu∗ vs Ce/Ce∗ ; (B) Pb vs Th.

the TNES exhibit a main peak at 1800 Ma, suggesting that the
provenance of theWSS is relatively younger compared to the TNES.

The Yangtze Block, when compared to adjacent blocks, exhibits
a unique detrital zircon age spectrum with major peaks at
2,500 Ma, 1800 Ma, and 800 Ma (Figure 11). The oldest peak at
2,500 Ma is indicative of the early formation of the Yangtze Block’s
continental core (Guo et al., 2015). The 1850 Ma peak potentially
signifies the Yangtze Block’s integration into the formation of the
global supercontinent Colombia (Yin et al., 2013). Meanwhile, the
800 Ma peak corresponds to the consolidation of the Yangtze and
Cathaysia Blocks, an event traditionally dated to the period between
1,000–750 Ma, linked to the Jiangnan Orogeny (Yao et al., 2015).
Although the main age peaks of the Yangtze Block at 2,500 Ma,
1850 Ma, and 800 Ma are similar to those in theWSS and the TNES,
it is noteworthy that the Yangtze Block lacks the 450 Ma and 220 Ma
peaks found in the WSS and TNES.

The Qinling Orogenic Belt exhibits complex detrital zircon age
spectra. In theNorthQinling Belt, the zircon age spectra reveal older
peaks at 2,500 Ma, 900 Ma, and 750 Ma, alongwith younger peaks at
400 Ma and 200 Ma (Figure 11). In comparison, the South Qinling
Belt shows age peaks at 2,500 Ma, 750 Ma, and 450 Ma (Figure 11).
These differing age spectra between the North and South Qinling
Belts reflect their different affinity before the Neoproterozoic. The
North Qinling Belt, with a significant age peak at 2,500 Ma and
several others between 1850–1,600 Ma, shares similarities with the
North China Craton, suggesting its development from the south
edge of this craton (Bai et al., 2021; Li et al., 2023b; Ying et al.,
2024). The South Qinling Belt, with age peaks at 2,500 Ma, 750 Ma,
and 450 Ma, and evidence of magmatic events around 1800 Ma,
resembles the Yangtze Block, suggesting its origin from the northern
edge of the Yangtze Block (Nie et al., 2016;Wang et al., 2020).When
compared to the age spectra of the WSS and TNES, only the North
Qinling Belt displays a peak at 900 Ma. Both the North and South
Qinling Belts have peaks at 750 Ma, while only the North Qinling
Belt exhibits a younger peak at 200 Ma.

Detrital zircons from the Songpan-Ganzi Terrane display age
spectra with major peaks at 2,500 Ma, 1850 Ma, 800 Ma, 450 Ma,
and 300 Ma, closely mirroring the age spectra of theWSS and TNES

(Figure 11). Despite these similarities, numerous studies suggest
that the Songpan-Ganzi Terrane is unlikely to be the provenance
of the Xujiahe Formation for several reasons. Firstly, the Xujiahe
Formation’s lithic fragments predominantly comprise limestone,
sandstone, and quartzite, distinctly different from the sediment
types in the Songpan-Ganzi terrane and Longmenshan strike-slip
fault zone (Tang et al., 2018). Secondly, the Hf isotope signatures
of detrital zircons from the Xujiahe Formation closely match those
from the Qinling orogenic belt, suggesting a direct affinity (Yu and
Liang, 2017; Zhang et al., 2020). Finally, paleocurrent analyses show
that the ancient rivers, which carried the detrital zircons to the
study areas, flowed from the north or northeast towards the south or
southwest (Gong et al., 2021), a pattern inconsistent with an origin
in the Songpan-Ganzi Terrane and more indicative of the Qinling
Orogenic Belt.

Overall, the Qinling Orogenic Belt is the most probable source
for the sedimentary material found in the WSS and TNES.
Paleogeographically, the depositional environment of the Xujiahe
Formation was a braided delta located at the intersection angle
between the Qinling Orogenic Belt and Yangtze Block. Previous
studies have proposed the presence of an ancient river flowing
from the north to the south, forming a littoral delta in the south
along the Paleo-Tethys Ocean (Gong et al., 2021). Thus, it seems
likely that the sediments of the WSS and TNES originated from the
Qinling Orogenic Belt. However, a comparison of detrital zircon
ages indicates that those from the North Qinling Orogenic Belt
are more closely aligned with the WSS and TNES than the South
Qinling.TheWSS predominantly features zircons aged 750–800 Ma,
implying a primary sediment source from the South Qinling but
with some input from the North Qinling. Conversely, the TNES
appears to have a larger proportion of sediments from the North
Qinling, with a smaller contribution from the South Qinling.

6.3 Tectonic implications

Sandstone samples from both the WSS and the TNES display
high quartz content and low proportions of feldspar and lithic
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FIGURE 11
Detrital zircon age distributions of Northern Qinling, Southern Qinling, Southern North China, Northern Yangtze, Western Yangtze and Songpan-Ganzi
Blocks compare to the studied samples (data are from Shi, 2009, Tang et al., 2018; Gong et al., 2021 and references therein).

fragments. The lithic fragments in these samples are largely
sedimentary, with amoderate representation ofmagmatic fragments
and the least contribution from metamorphic fragments. This
composition, dominated by quartz and sedimentary fragments,
indicates that the sandstones are composed of recycled crustal
materials (Dickinson and Suczek, 1979; Dickinson et al., 1983). On
the Qt-F-L and Qm-F-Lt diagrams, all samples fall within the
recycled orogenic field, specifically under the quartzose recycled
category, indicating an orogenic tectonic setting for the formation
of these sandstones (Figures 12A,B). Furthermore, the geochemistry

of these sediments can also be used to trace their depositional
tectonic setting (Bhatia, 1983; Bhatia and Crook, 1986). Based on
theK2O/Na2O–SiO2/Al2O3, Fe2O3 +MgO–TiO2, SiO2–K2O/Na2O,
and Fe2O3 + MgO–Al2O3/SiO2 diagrams, the TNES samples align
with a passive margin setting. Whereas, the WSS samples span
both passive and active continental margin settings, indicating a
potential transitional tectonic setting from a passive to an active
continental margin (Figure 12C–F).

Previous studies indicate that the study area was formed within
a foreland basin environment during the Late Triassic (Luo et al.,
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FIGURE 12
(A) Qt–F–L plot; (B) Qm–F–Lt plot. Parameters are from Dickinson and Suczek (1979), Dickinson et al. (1983) and Dickinson (1985); (C) K2O/Na2O vs
SiO2/Al2O3; (D) Fe2O3 + MgO vs TiO2; (E) SiO2 vs K2O/Na2O; (F) Fe2O3 + MgO vs Al2O3/SiO2. Abbreviation: PM-passive margin, ACM-active continental
margin, CIA-continental island arc, OIA-oceanic island arc.

2013; Li et al., 2014; Luo et al., 2019; Mu et al., 2019; Deng et al.,
2022). The subduction of the Paleo-Tethys Oceanic lithosphere
started northward in the Early Permian and shifted southward in the
Early Triassic (Ding et al., 2013; Fathy et al., 2024). During the late
Triassic, the Paleo-Tethys Ocean underwent a scissor-like closure

from east to west. While the eastern segments of the South China
and North China Blocks were already joined along the Qinling and
Dabie orogenic belts, the western part formed a gulf with multiple
rivers and appendant delta. This remaining segment of the Paleo-
Tethys Ocean was flanked by the Kunlun and western Qinling
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FIGURE 13
Provenance model of the T3x2 in late Triassic.

orogenic belts to the north, the South China Block to the east, and
the Qiangtang Block to the south. The study area was located at
the Northeastern corner of the gulf, and it was deposit under the
condition of braided delta formed by several rivers oriented from
northeast to southwest.These paleo riversmay originate fromNorth
China Block and South China Block, but they mainly flow through
theQinling orogenic belt (Figure 13). Hence, they brought abundant
sediments to the study area and formed the super thick Xujiahe
formation.

7 Conclusion

Sandstones in two sections (WSS and TNES) of the T3x2
were carried out for source rock and provenance study. The T3x2
sandstones were deposited during the Late Triassic in a braided
delta facies, which exhibit moderate degrees of paleo-weathering,
indicating that their source rocks were primarily upper crustal felsic
rocks, predominantly S-type granites.

The sediment provenance of the T3x2 sandstones wasmainly the
Qinling Orogenic Belt. However, theWSS predominantly contains a
majority of sediments originated from the South Qinling, while the
TNES primarily contains a majority of sediments originated from
the North Qinling.

The depositional environment of the T3x2 transitioned from a
passive to an active continental margin setting. This change was
concurrent with the east-to-west scissor-like closure of the Paleo-
Tethys Ocean, resulting in the formation of a littoral braided delta
shaped bymultiple rivers flowing from the northeast to the southwest.
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