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The collection of a significant catalogue of seismo-volcanic data involves the
selection of relevant parts of raw signals, which can be automatised by using
the short-term over long-term average (STA/LTA) method. The STA/LTA method
employs the “Characteristic Function” to describe a section of a seismic record
in terms of trace amplitude and first-time difference. This function is calculated
in a short-term and long-term window; the ratio between the two windows
defines a quantity that is controlled through threshold values, i.e., trigger on
and trigger off. These threshold values indicate whether there is an increase
in the energy in the seismic signal compared to the background noise. The
common approach to the selection of the STA/LTA values is the adoption of
literature-suggested ones. This could be a limitation as there may be cases
in which a choice adapted to a specific raw signal may significantly help in
the extraction of the relevant parts. To overcome the possible drawbacks of a
non-adaptive choice imposed by such standard literature values, in this study,
we propose a methodology for the automatic selection of STA/LTA values
that can optimise the extraction of explosion quakes (EQs) from a seismo-
volcanic raw signal. The values are obtained through a grid search over an
index named quality–numerosity index (QNI) that measures the accordance in
the automatic cuts and the consequent number of triggered seismo-volcanic
events with the ones suggested by a human expert. The method was applied
in the volcano domain for the specific application of the explosion quake
signal extraction at Stromboli volcano. The experiments were conducted by
selecting a subset of the dataset as training where to search for the best
values, which were subsequently adopted in a test set. The results prove
that the values suggested by our approach significantly improve the quality
of the relevant part compared to the one extracted by adopting the values
indicated in the literature. The methodology presented in this study can
be applied to a wider typology of signals of volcanic, seismic, and other
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origin, potentially becoming a widely used approach in parameter optimisation
processes.

KEYWORDS

short-term over long-term average method, machine learning, parametrization tuning,
grid search, seismo-volcanic signals, explosion quakes, Stromboli volcano

1 Introduction

The issue of detecting seismo-volcanic events and their
waveform extraction from raw seismic signals is a key problem
of volcanic seismology (Sosa et al., 2024; Journeau et al., 2020;
Soubestre et al., 2018). With the continuous growth of available
data over time, due to the expansion of seismic networks, meeting
this request with the help of a human operator can be laborious
and time-consuming. Thus, computational methods need to be
adopted, such as machine learning methods, for near real-time
event detection and waveform extraction, especially for rapid risk
assessment related to potential destructive events (Makus et al.,
2024; Konstantinou, 2023; Lara et al., 2020). Machine learning
methodologies also emerge in managing post-event intervention
(Cannioto et al., 2017). The scientific community is focused on
identifying and analysing the seismic signals generated by volcanic
activity, for characterising potential precursors that may serve
as early indicators of eruptions. This is especially crucial for
the Stromboli volcano, where paroxysms—sudden and intense
eruptions—pose the greatest danger to populations living in the
surrounding areas (Andronico et al., 2021; Metrich et al., 2021;
Giudicepietro et al., 2020). The Stromboli volcano (926 m) is part
of the Aeolian archipelago in the Tyrrhenian Sea (Italy) and
is renowned for its persistent explosive activity, often referred
to as “Strombolian eruptions” (Giudicepietro et al., 2020). This
volcanic behaviour is characterised by rhythmic bursts of gas and
pyroclasts, driven by the degassing of magma (Chouet, 1996). The
study of Stromboli’s volcanic signals, including seismic activity,
ground deformation, and gas emissions, provides crucial insights
into the underlying magmatic processes and potential eruption
forecasts. Seismic activity signals, such as volcanic tremors and
explosions, are particularly significant as they reflect the movement
ofmagma and gaswithin the volcanic conduit. Ground deformation,
monitored through techniques such as GPS and InSAR, offers
valuable data on the magma’s movement beneath the surface
(Schaefer et al., 2019). Gas emissions, especially the flux of sulphur
dioxide (SO2), serve as key indicators of volcanic activity andmagma
ascent (Aiuppa et al., 2010). Together, these indicators constitute
a comprehensive framework for understanding the Stromboli
volcano’s dynamic nature and assessing the associated risks.
Stromboli is an open-conduit volcano, with three summit craters
(Figure 1), with persistent Strombolian activity. The explosions
occur every 15–20 min. Generally, its volcanic activity is classified as
follows: normal activity (specifically “explosion”), major explosion,
and paroxysm (Chouet, 1996; Wassermann, 2012; Ripepe et al.,
2021b). To distinguish them, the variation of frequency and
energy of activity must be calculated (Calvari et al., 2021). The
permanent seismic network of Istituto Nazionale di Geofisica e
Vulcanologia (INGV) records seismic signals of volcanic nature,
which are as follows: very long period (VLP), landslides, tornillos,

FIGURE 1
Permanent seismic network of Istituto Nazionale di Geofisica e
Vulcanologia (INGV) on Stromboli. Map created using
QGIS Development Team (2024).

explosion quakes (EQs), andmany others (Wassermann, 2012). EQs
along a seismic signal are generally clearly visible to the human
eye. Their features are based on the variation in amplitude and
frequency content, whose range is approximately 10–25 Hz.Another
characteristic is that the EQs are preceded by VLPs, which are
important for identifying the earthquakes themselves (Legrand and
Perton, 2021; Giudicepietro et al., 2019). This feature allows for the
description of the phenomena that occur in the plumbing system.
Specifically, the mechanism that activates the VLP and subsequently
EQs is a progressive degassing magma on the conduit. When the
intensity increases, the conduit goes into resonance with the wall
and produces seismic waves. After the magma starts migrating
from the vent to the crater, it begins to produce resonant events
such as VLPs (Konstantinou, 2023; Ripepe et al., 2021a; Liang et al.,
2020; Ripepe et al., 2017; Ripepe and Harris, 2008; Chouet et al.,
2003). As soon as it reaches the crater, Strombolian activity
begins. Seismic stations record the EQs and produce raw signals
that can be analysed. Stromboli’s volcanic system is characterised
by two magma reservoirs: a shallow reservoir located 3–4 km
below the surface and a deeper reservoir located approximately
11 km below the surface (Petrone et al., 2022; Mattia et al., 2008;
Harris and Ripepe, 2007).

The analysis of seismological data is crucial for understanding
and monitoring the volcanic activity, and the short-term
average/long-term average (STA/LTA) method is one of the
most widely used techniques for detecting seismic events within
continuous waveform data. STA/LTA is a ratio-based approach that
compares the average signal amplitude over a short time window
with the one over a longer time window. When a seismic event
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occurs, the short-term window will capture the strong amplitudes
associated with the event, causing a significant increase in the
STA/LTA ratio. This increase serves as a detection threshold,
and when the ratio exceeds this threshold, it triggers an event
detection. This method is particularly effective in identifying the
onset of seismic events, such as volcanic tremors, explosions,
and microseismicity, by highlighting abrupt changes in the
amplitude, which indicate the start of an event (Allen, 1978). In
volcanic environments, where seismic signals are often complex
and embedded within noisy data, STA/LTA provides a robust
mechanism for real-time event detection. The sensitivity of the
STA/LTA algorithm can be adjusted by tuning the window lengths,
making it adaptable to different types of seismic signals and
noise levels (Withers et al., 1999). This adaptability is crucial for
monitoring diverse volcanic phenomena, where the nature of
seismic signals can vary significantly depending on the type of
volcanic activity. Selecting STA/LTA window lengths can be an
iterative process and ought to be based on real data analysis.
This optimisation process may be time-consuming for human
operators. The application of STA/LTA in the context of volcanic
seismology has proven invaluable for the early detection of eruptive
activity, allowing for timely alerts and the implementation of
mitigation strategies. Furthermore, the integration of STA/LTA
with other signal processing techniques enhances the overall
reliability of volcanic monitoring systems (Hagerty et al., 2000).
Automatic picking and cutting techniques for seismograms are
essential tools in seismic data analysis, particularly in monitoring
volcanic activity. These methods involve the automatic detection
of seismic phases, such as P-waves and S-waves, and the precise
segmentation of relevant seismic events from continuous waveform
data. The automation of these processes is crucial in volcanology,
where the rapid analysis of large datasets is necessary for timely
eruption forecasts and hazard assessments (Beyreuther et al., 2010).
Advanced algorithms, such as those based on machine learning
and neural networks, have significantly improved the accuracy and
efficiency of phase picking, even in the presence of noise, which is
common in volcanic environments (Ross et al., 2018). Additionally,
the development of techniques for automatic cutting or windowing
of seismograms enables researchers to isolate specific seismic events,
such as volcanic tremors or explosions, facilitating a detailed analysis
of their characteristics (Hammer et al., 2012). These automated
processes not only enhance the speed and reliability of seismic
monitoring but also reduce the potential for human error in
interpreting complex seismic signals, thereby improving the overall
understanding of volcanic processes and aiding in the mitigation of
volcanic risks.

In this work, we have implemented a system to perform the
automatic detection and waveform extraction of a seismo-volcanic
event from raw seismic signals such as EQs, using the STA/LTA
method. The data were provided by the Osservatorio Vesuviano
(OV)-INGV. The time range selected for the analysis is from 01
June 2019 to 14 June 2019, before the occurrence of the double
paroxysm of the Stromboli volcano (Andronico et al., 2021). We
have chosen the first days of the dataset as the learning set on which
to perform the training of our method, owing to the large number
of EQs detected.

This study is divided into four main sections:

• Methodology for parameter selection: it provides a description
of the method and the measures designed to evaluate the
extraction of the EQs.
• Experiments and results: it shows the training phase to search

for the optimum parameter’s combination of STA/LTA and the
testing phase where the results of the training were applied on
a test set.
• Discussion: it shows the interpretation of results.
• Conclusions and future improvements.

2 Methodology for parameter
selection

STA/LTA is based on the analysis of the ratio between short-term
and long-term averages of the seismic signal amplitude.Thismethod
provides an efficient way to discriminate between seismic events and
background noise in seismogram data. With the STA/LTA method,
short-term window and long-term window lengths are defined to
compute the average amplitudes of seismic signals. The short-term
window typically spans a few seconds, capturing the immediate
variations in the signal caused by seismic waves. The long-term
window, on the other hand, is usually several times longer, capturing
the overall background noise level. The STA/LTA ratio is calculated
by dividing the average amplitude of the short-term window by the
average amplitude of the long-term window. Thus, the STA/LTA is
a parametric approach where two basic parameters are STA and
LTA window lengths. The ratio between the two windows defines a
quantity that is controlled through two other parameters, i.e., trigger
on and trigger off. Selection of these parameters can be an iterative
process based on real data analysis, where one must remember
to continuously monitor the performance of our detection system
and make the necessary updates to adapt it to the evolution of the
observed phenomenon. We conducted an exploratory research to
find the combination of parameters of the STA/LTA method that
automatically cut at best EQs, compared to the cuts made by the
expert operator. We used our tool developed for our active learning
approach (D’Alessandro et al., 2022, see Section 2) to manually cut
the EQs. As an example of events present in the dataset, Figure 2A
shows the case of two EQs in raw signals, with a zoom on the last
one (Figure 2B). To extract the spectrogram, a short-time Fourier
transform was calculated using 0.5-s sliding time windows with
90% time overlapping. Figure 3 shows the STA/LTA ratio (bottom)
calculated on the zoomed EQ of Figure 2 and the triggers on the
signal (top): the red bar consists of trigger on threshold and the
blue bar consists of trigger off threshold. When the slope of the
curve exceeds the value of the trigger threshold, both for trigger
on and trigger off, the red and blue bars are applied on the plot,
respectively.

The concept underlying our approach is based on the start
and end of the time interval when the event occurs. The start and
end times suggested by our approach can be compared with the
selections performed by an expert operator by defining a specific
measure. In particular, we have proposed two measures: the quality
index and the numerosity index. The product of these two is used to
define an overall measure called quality–numerosity index (QNI).
As a first approach, the characteristic function (CF) Ek [classic one
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FIGURE 2
This figure presents a representative case of explosion quakes observed in raw seismo-volcanic signals. Each subfigure consists of two components:
the raw signal displayed at the top and the corresponding spectrogram at the bottom. The raw signal is plotted with time on the x-axis, while the
spectrogram illustrates the representation of this raw signal in the frequency–time domain. The side colour bar indicates frequency values in decibels.
In subfigure (A), multiple explosion quakes from the Stromboli volcano’s signal are marked with red circles. In subfigure (B), a detailed view of the
second explosion quake is provided.

from Allen (1978)] is used for STA/LTA and is defined as follows:

Ek = x2
k + (x
′
k)

2 +Ck, (1)

where xk is the seismic trace, x′k its derivative, and
Ck (Equation 2) is an empirical weighting constant described as
follows:

Ck =
∑k

j=1
|xj|

∑k
j=1
|xj − xj−1|

, (2)

to underline the importance of the amplitude and derivative.

For each raw signal considered, the STA/LTA method outputs
a list of triggered events, characterised by start time and end time.
Those values are compared individually with the ones chosen by the
operator. For this comparison, the absolute deviation in terms of
the temporal distance is computed. If this value does not exceed a
certain residual value k, both for the start time and the end time of
the event, then the cut is deemed correct. This comparison enables
the assessment of the quality of the cut and the numerosity of
the triggered events (see Section 2.1 for details on the quality and
numerosity indices). The combination of the two indices is used to
obtain an overall index of the triggered events. A list of triggered
events can be generated by varying the combination of the following
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FIGURE 3
STA/LTA performed on the zoomed EQ of Figure 2. Red bar is trigger on and blue bar is trigger off. The figure above illustrates the raw seismo-volcanic
signal, while the figure below represents time along the x-axis and trigger threshold values along the y-axis. In this example case, the chosen values of
the parameters for this example were STA 1 s, LTA 10 s, trigger on 2.5, and trigger off 1.

four parameters: STAwindow size (in seconds), LTAwindow size (in
seconds), trigger on threshold, and trigger off threshold. From now
on, the four parameters will be indicated with the term “quadruple.”
A grid search is performed on a quadruple set, by considering the
overall index computed on the related triggered events.

2.1 Evaluation measures

The quality index of a cut is designated as qi andnumerosity index
of a cut as ni. These measures were designed to analyse different
phenomena represented by time series; in this case, they are used
for EQs. The qi measures the degree of greater temporally precise
cut performed by the STA/LTA compared to one performed by the
human operator. Let m be the mean of all the temporal deviations
computed between the STA/LTA cuts and the operator cuts and k be
the residual value as threshold in seconds.Theqi is defined as follows:

qi = 1− (m/k) . (3)

k is an arbitrarily defined constant, dependent on the reference
dataset. In this case, a constant has been empirically set with a value
of 10 (preset value. Reported on the repository published onGitHub,
see Section 5), based on the average duration of the events (in this
case, EQs). This constant falls within the definition of a finite space
of values, which in this case are the local events. Therefore, it can
also be included if the reference dataset is composed of local seismic
events. If, however, regional, teleseismic, anthropic, and landslide (or
other types of) events are also included in the dataset, the parameter
changes as the finite space in which these events fall varies. Every
time STA/LTA outputs a list of triggers, a check is performed to see

whether the start time (also indicated as ton, trigger on) and end
time (also indicated as toff, trigger off) of every trigger are temporally
close to the start and end times of the EQs extracted by the expert.
When a match is found (correct cut), the absolute value of the
temporal distance is calculated either with the two start times and
end times being within k or that trigger is not considered, but it is
simply taken into account when counting the triggers for the ni. If
nomatch is found, the trigger is not considered but is still accounted
for when counting triggers for ni. Figure 4 shows a representation of
this process.

All the computed deviations are stored in a list, and the mean
deviation m is computed and then normalised by k. The qi is finally
computed as the complement of the ratiom/k so that it is defined in
a range between 0 and 1, where 1 means perfect agreement among
the automatic cuts and the expert cuts.

The ni measures the agreement between the number of events
triggered by the automatic approach and the number of cuts selected
by the human operator.

Let enq be the Experimental EQs, namely, the cardinality of the
set of event trigger list produced by the STA/LTA method, and tnq
be theTheoretical EQs, i.e., the number of the cuts performed by the
human operator. The ni is thus defined:

ni =

{{{{{
{{{{{
{

enq/tnq, ifenq < tnq
tnq−mod (enq, tnq)

tnq
, if tnq ≤ enq < 2∗tnq

0, otherwise

(4)

The ni takes into account the discrepancy between enq and
tnq. If enq is lower than tnq, or enq is between tnq and twice tnq,
then the ni will result in a number in the range [0, 1]. Otherwise,
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FIGURE 4
Selection of the trigger’s start time and end time temporally close to the times of the EQs.

it is set to 0. This latter case occurs when enq exceeds tnq by
at least twice its value, resulting in an enq’s value being out of
range. The choice of twice the value is justified by limiting the
number of false events triggered by STA/LTA with the quadruple
considered.

Finally, the combination of the number of events and their
temporal precision selected by the automatic process, compared to
human experts, makes the QNI the overall measure. This overall
measure determines the effectiveness of the cut made by STA/LTA
and is defined as follows (Equation 5):

qni = qi ∗ ni. (5)

The qni ranges between 0 and 1 and can be converted into
percentages. These measures are mainly dependent on the results
of the STA/LTA method (based on its few parameters) and the
expertise of the operator because of the manual cut. The range of
window values from STA and LTA and the threshold values for
trigger on and trigger off can be determined based on the type of
event one wants to detect and, therefore, cut. For instance, if one
wants to detect teleseismic events compared to local ones, a wide
range of STA and LTA window values must be set to ensure the
expansion of the grid and improve the search for the optimum. In
the beginning of Section 3.2, an in-depth analysis was conducted
in this regard. On the other hand, Jones and Baan (2015) used an
STA/LTA adaptivemethod based on the hiddenMarkovmodel.This
method is independent from data, meaning that it requires only
minimal configuration by the user. The goal of this methodology is
to determine the probability that a term y(t) is an outlier compared
to the noise population. The term y(t) corresponds to the CF of

a data point from the seismogram x. STA and LTA windows are
composed with these probability levels. Thus, by using this model,
the objective of this work is to detect and select a seismic event. Even
though this method is adaptive, it is necessary to determine values
for STA and LTA window length and threshold adjustment in the
initial state.

2.2 Grid-search technique

Grid search is a widely used technique in machine learning
and algorithm parameter optimisation. It is used to search for the
optimal combination of parameters for a model or algorithm while
varying multiple parameters simultaneously. In the present case,
a grid search enables an exhaustive search of the quadruples that
correspond to the optimum QNI values. Figure 5 shows an example
of a representative scheme of the search.

The grid is composed of STA window sizes represented in
rows and LTA window sizes represented in columns. Every cell
is also a grid, where in abscissa the ton and in ordinate the
toff are shown. QNI values are expressed as a percentage and
represented as coloured circles: the darker the colour, the higher
the value. We started from a basic grid (grid on the left) with a
few quadruples (STA window size (in seconds), LTA window size
(in seconds), ton, and toff) and gradually expanded to a grid (grid
on the right) still containing the previous grid. The cardinality of
the grid is determined by the variation of the quadruples by one
unit based on their order of magnitude. As an increase in the
value of QNI is measured, the grid is expanded until the optimum
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FIGURE 5
Grid-search technique for QNI values.

is found. The process is repeated until the QNI values do not
improve further and reach a maximum value. To formalise this
concept, a recursive exploratory grid-search algorithm is proposed
(Algorithm 1). Choosing to use a recursive algorithm is based on
experimenting with all the possible combinations of the quadruples
(STA, LTA, ton, and toff) until the best result of QNI is found.
As input, the algorithm requires the range of values to construct
all possible quadruples (get_combinations function), including a
step value for each parameter (only one is needed for both trigger
thresholds). The step determines the numerical distance between
one value and its next value. After all possible combinations of
quadruples have been calculated, the value of the QNI is determined
for each of them through the compute function; if this value is
greater than the previously calculated QNI, then it is classified
as the best_qni value (the quadruple associated with best_qni is
also stored). The algorithm ends when the best_qni found in lines
5–16 exceeds the threshold value; in this case, the best_quintuple
list is returned. Otherwise, the algorithm is called recursively by
subtracting and adding the step_parameter (step_sta, for instance)
associated with the individual parameter quantities. A series of
checks are performed for each parameter to verify that the lower
bound of each one is respected. The lower bound is determined by
the minimum size of the windows used for the detection, which
are usually approximately 1 s for STA and 5 s for LTA. The upper
bound for STA and LTA is determined for the search for local and
regional events. This limit can, however, be varied based on one’s
needs (types of events sought) (Küperkoch et al., 2010; Gentili and
Michelini, 2006; Earle and Shearer, 1994). If no QNI value exceeds
the threshold value, the programme returns the best value of the
QNI. In our experiments, 20 iterations were set as thresholds by
trial and error.

3 Experiments and results

Starting from 14 days of raw data, our recently developed tool
was used (D’Alessandro et al., 2022) to extract the EQ dataset thanks
to the expertise of our operator.The entire dataset extracted contains
1,506 EQs. The most significant number of EQs are in the first
4 days of July, i.e., 743 EQs. This set was used as a training set.
The subdivision of the training and test datasets is described in
Table 1.

3.1 Training phase

A large grid was explored to better view the distribution of the
QNI values.We found the densest grid in the training phase with the
highest QNI values by combining a range of window values of STA
and LTA, respectively, from 2 s to 16 s and 20 s to 220 s, in steps of 2 s
for STA and 20 s for LTA. The same representation of the parameter
values as in Figure 5 was used. For each combination of windows,
ton and toff threshold values were combined, respectively, from 1 to
7, in steps of 0.5 for both. Every cell is a 12x12 matrix. Figure 6
shows a screenshot of the terminal grid (8 × 11) or the result of this
experiment. At the beginning, the grid was 5 × 5 and step values for
STA and LTA were 2 s and 20 s, respectively. After six iterations, an
8 × 11 grid was obtained, according to the STA, LTA, and lower and
upper bounds defined in Algorithm 1.

In the lower-left region (highlighted by a red circle), where STA
is between 12 s and 16 s and LTA is between 20 s and 60 s, most of
the QNI are 0 (no visible circles), and only a few QNI values are
approximately 20, which means that this parameter’s combination is
not suitable for detecting the EQs efficiently. A dashed red line was
outlined to show a direction where the QNI values are increasing.
The highest values of QNI are found in the central region from left
to right, where STA is between 6 s and 10 s, LTA between 60 s and
220 s, ton between 5 and 7, and toff between 2 and 5. Neither QNI, in
the first and last rows of the grid, shows an improvement, while the
continuous shift toward the right region shows a saturation of the
values. This means that increasing the LTA values does not improve
the search for local events.

From the training phase, we extracted the list of the QNI values
in descending order and generated a plot, shown in Figure 7. An
index identifying the value of the QNI is indicated on the abscissa,
while the value of the QNI is indicated on the ordinate. The QNI
decreases with a moderate slope up to the value 30 and then
rapidly decreases to 0. As a consequence, we decided to extract the
quadruple associated with the highest QNI value to carry out the test
phase, i.e., the one with value 0.78 resulting from the quadruple: 6,
80, 7, and 2. As can be seen, the quadruple is positioned exactly in the
distribution indicated by the dashed red line in Figure 6.The selected
ton and toff define a good balance between the quality index and
numerosity index (see Equations 3, 4) of the detected EQs. This is
because a lower ton than 7 can increase the number of false positives,
and higher toff can worsen the time’s precision of the extraction.
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1: procedure GRID_SEARCH(min_sta, max_sta, step_sta,

min_lta, max_lta, step_lta,min_trig_on,

max_trig_on, step_trig_on, min_trig_off,

max_trig_off, step_trig_off, num_iterations)

2:  quadruples← get_combinations,

(min_sta,max_sta,step_sta,

min_lta,max_lta,step_lta,

min_trig_on,max_trig_on,

min_trig_off,max_trig_off, step_trig)

3:  max← 0

4:  best_quintuple← []

5:  for all quadruple ∈ quadruples do

6:   qni← compute(quadruple)      ⊳ QNI

calculation value

7:   if qni > max then

8:      max← qni

9:      best_sta← sta

10:     best_lta← lta

11:     best_trig_on← trig_on

12:     best_trig_off← trig_off

13:     best_qni← qni

14:     best_quintuple←, best_sta,best_lta,

best_trig_on,best_trig_off,best_qni

15:   end if

16:  end for

17:  if best_qni > threshold or num_iterations > 20

then      ⊳ For instance: threshold=80

18:   return best_quintuple

19:  else

20:   min_sta← min_sta−step_sta

21:   if min_sta < 1 then

22:    min_sta← 1

23:   end if

24:   max_sta← max_sta+step_sta

25:   if max_sta > 16 then

26:    max_sta← 16

27:   end if

28:   min_lta← min_lta−step_lta

29:   if min_lta < 5 then

30:    min_lta← 5

31:   end if

32:   max_lta← max_lta+step_lta

33:   if max_lta > 220 then

34:    max_lta← 220

35:   end if

36:   min_trig_on← min_trig_on−step_trig

37:   if min_trig_on < 0.5 then

38:    min_trig_on← 0.5

39:   end if

40:   min_trig_off← min_trig_off −step_trig

41:   if min_trig_off < 1 then

42:    min_trig_off← 1

43:   end if

44:   return GRID_SEARCH(min_sta, max_sta+step_sta,

step_sta, min_lta, max_lta+step_lta,

step_lta,

min_trig_on, max_trig_on+step_trig,

min_trig_off, max_trig_off +step_trig,

step_trig,

num_iterations+1)

45:  end if

46: end procedure

Algorithm 1 Pseudocode for recursive exploratory grid-search algorithm.

TABLE 1 Dataset subdivision for training and test.

Num. of EQs extracted Phase

First 4 days 743 Training

Days 5–14 763 Test

Total 1,506

3.2 Testing phase

The common approach to the selection of the STA/LTA values is
the adoption of literature-suggested ones. Specifically, these values
are STA 1 s and LTA 10 s. Regarding the ton and toff values, they
were set at 7 and 2, respectively, such as the ones found through the
training phase. The QNI computed is indicated using these values
as the literature quadruple. The test results are shown in Table 2.
In particular, every row corresponds to a range of days in which
a certain number of EQs have occurred. This number is indicated
in the “Num. EQs extracted” column; in the other columns, the
QNI values are reported after an experiment with the associated
days was performed with the corresponding quadruples: training
quadruple (third column, our quadruple) and literature quadruple
(fourth column, quadruple extracted from the literature). Anoverlap
of the days for testing purposes was carried out. In the first row, the
testing result is shown using the same dataset used in the training
phase. This first comparison was made to show our result compared
to the use of the literature quadruple.

4 Discussion

The literature has shown that there is no one single strategy to
search the STA and LTA moving windows to select events based on
triggers (Earle and Shearer, 1994). The lengths for the STA and LTA
windows depend on the frequency content of the seismogram. Long-
period records require larger averaging windows than short-period
records, which require shorter averaging windows. Among different
approaches, we have chosen the work by Küperkoch et al. (2010) as
the base case comparison owing to the completeness of this work,
focussing on P-phase arrival time, where several CFs for STA/LTA
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FIGURE 6
Grid-search exploration for STA windows (rows) and LTA windows (columns), represented by the red rows. Both STA and LTA windows are expressed in
seconds. Trigger on/off thresholds, respectively, in abscissa and ordinate, are shown in every cell of the matrix. The red circle shows a region where
most of the QNI values are 0. The red dashed line indicates a direction where the QNI values are increasing.

FIGURE 7
QNI value distribution.

were used to compare their method. They have implemented an
algorithm based on higher-order statistics (HOS) for automatic P-
phase arrival time determination for local and regional seismic
events. The algorithm was applied to a large dataset with very
heterogeneous qualities of P-onsets. They calculated several CFs by
evaluating higher-order statistical moments, like skewness, kurtosis,
mean, and variance. In our case, we decided to use the CF reported
in Equation 1, which is the base case determined by Allen (1978).
When choosing a “literature quadruple,” there is no clear standard
choice for the types of events analysed, yet Küperkoch et al. (2010)

values can provide a useful comparison. The results presented in the
previous paragraph indicate that, as we move further away from the
training set, the QNI appears to vary over time. This is due to the
rapid evolution of the volcanological phenomenon, and therefore
the EQs generated by it. As is well known (Andronico et al., 2021),
the duration, amplitude, and frequency content of the EQs can vary
rapidly as the volcanic process evolves. The results show that on
average, our training quadruple produced a QNI 0.24 higher than
the literature quadruple. Another strength of our approach is the
tuning of the evaluation measures: for instance, qi is one of the
measures that can be adapted based on the data and objectives one
wants to obtain; in this case (where we look for EQs in the raw data),
we use the mean of the deviations to evaluate the quality of the cut,
but one can consider using different evaluations such as median,
mode, or kurtosis.This possibility can lead to extending the research
to the general volcano domain and also in the seismic domain in
tectonic areas.

Certainly, the main limitation of our study is the low cardinality
of the dataset. Based on the time-consuming process of extracting
the seismo-volcanic events from real raw data, future improvements
will mainly concern the variability of the dataset; extending not only
to other types of seismo-volcanic events, such as the following: VLP,
landslides, volcanic tremors, and others (Wassermann, 2012), but
also to local, regional, and teleseismic events. To achieve this, we
aim to replace the human operator by automating the validation
process through the use of multiple seismic stations recording the
same signal within the same area. This approach replicates the
currentmethod used by operators but will be enhanced by deploying
seismic stations positioned at approximately equal distances around
the crater (Fenner et al., 2022), ensuringmore uniform coverage and
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TABLE 2 Testing results.

Num. of EQs extracted (QNI) training quadruple
6 s 80 s 7 2

(QNI) literature quadruple
1 s 10 s 7 2

First 4 days (train data) 743 0.78 0.59

Days 5–8 395 0.65 0.36

Days 6–9 425 0.64 0.38

Days 7–10 373 0.56 0.33

Days 8–11 397 0.54 0.26

Days 9–12 291 0.48 0.21

Days 10–13 271 0.51 0.3

Last 4 days (11–14) 170 0.5 0.3

reducing potential sources of error. Another limitation is specific
to the grid-search technique. In general, grid search is a powerful
technique for optimising algorithm parameters, but it ought to
be used judiciously as it may be time-consuming when there are
many parameter combinations to evaluate. Other techniques such
as random search or Bayesian optimisation may be more efficient
alternatives in some cases. The choice depends on the specific
problem domain and available resources. Stromboli remains a case
study, but the method is applicable to any type of seismo-volcanic
signal and can therefore be used on other volcanoes as well. For
instance, it is also suitable for earthquakes in non-volcanic areas.

5 Conclusion and future
improvements

In this scientific study, we have explored the potential of using
a grid-search method to study the STA/LTA parameters to select
seismo-volcanic events, starting from raw signals, with a particular
focus on the volcanic activity of Stromboli.Through this application,
we have proved the ability to efficiently detect local events, such
as explosion quakes. The results showed a more accurate choice
of parameters, compared to what was proposed in the literature
(Küperkoch et al., 2010), for searching local events, such as EQs.
As a first example for the approach, we exploited the constant
presence of EQs before the occurrence of the double paroxysms of
Stromboli volcano (Andronico et al., 2021).

With this method, one can collect seismo-volcanic events
that can be used from the machine learning perspective, such as
classification or regression problems, where a certain amount of
data is needed for the dataset (Zhu and Beroza, 2018; Mousavi et al.,
2020). We decided to use, among possible characteristic functions
for STA/LTA, the classic one by Allen (1978) as the first approach.
It is also possible to test other CFs as Küperkoch et al. (2010)
did for their method. To compare our quadruple, we referred to
the work by Küperkoch et al. (2010) to find the baseline quadruple
in the literature for the detection of local events (classifying the
explosion quakes as local events).

In summary, the integration of our approach is a compelling
way to simplify the acquisition of labelled data in seismic–volcanic

and more generally of seismic research. By synergising
active learning (D’Alessandro et al., 2022) with robust deep learning
algorithms and a large dataset, a path towards greater accuracy,
effectiveness, and a comprehensive analysis of seismic–volcanic
phenomena can be achieved.
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