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Iterative geostatistical seismic inversion is a vital technique for estimating
subsurface properties. However, a conventional single-scale strategy faces
challenges in preserving large-scale geological features due to the limited
restoration of the type of data template, and conventional multiscale strategies
face the challenge in that it is easy to lose the large-scale structure
that was previously preserved. This paper introduces a novel smoothed
multiscale strategy aimed at overcoming these limitations, which comprises
two components: Simulated annealing at the coarsest scale and smooth
conversation between two scale grids. This approach offers a smoother way
to simultaneously retain large-scale and small-scale structures, improving
the overall accuracy of the subsurface property estimations. To validate the
effectiveness of our approach, we apply it to both synthetic and real examples.
The results show that the simulated annealing strategy at the coarsest scale
grid explores the prior space and finds the best large structures to avoid
the generated models trapping in the local minimal. Meanwhile, the smooth
conversation strategy between two scale grids helps us avoid the damage of
the coarser structure. It can be explained that a large weight is assigned to the
coarse structure at the beginning of the conversation of two grid scale, reducing
the likelihood of the replacing proposed local small-scale geological patterns,
which prone to be accepted in the conventional multiscale strategies. The
combination of the two strategies used in the proposed smoothed multiscale
strategy displays a significant improvement in subsurface property estimation
accuracy compared to traditional multiscale strategies. This innovation can have
far-reaching implications, benefiting a wide range of geophysical applications
and contributing to more accurate and informed decision-making in geological
and hydrogeological assessments.

KEYWORDS

iterative geostatistical seismic inversion, smoothed multiscale strategy, multiple-point
geostatistics, simulated annealing, geological modelling

1 Introduction

The field of geophysics has long grappled with the challenging task of uncovering the
hidden mysteries of Earth’s subsurface. The inverse problem, at the heart of this endeavor,
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involves the formidable quest to unveil the unknown parameters
that govern subsurface properties, including the distribution of
geological features such as mineral deposits and hydrocarbon
reservoirs, as well as essential hydrogeological parameters like
permeability from observed data or measurements like geophysical
data and well logs.

Among the myriad techniques employed in the realm of
geophysics, Bayesian linearized inversion and iterative geostatistical
seismic inversion is a widely used technique to estimate
various subsurface properties like rock properties and reservoir
characteristics (Buland and Omre, 2003; Doyen, 2007; Azevedo and
Soares, 2017; Shi et al., 2024; Yu et al., 2024). Bayesian linearized
inversion can directly estimate the posterior probability density
function of subsurface properties and assess their uncertainty
with remarkable efficiency without requiring an iterative process
(Shi et al., 2024; Yu et al., 2024). However, it assumes a parametric
a priori distribution, which may limit its ability to exhaustively
search the model parameter space. Iterative geostatistical seismic
inversion combines geostatistical modelling (e.g., two-point
geostatistics and multiple-point geostatistics), seismic modelling
(e.g., acoustic wave propagation and elastic wave propagation), and
iterative optimizationmethods (e.g., gradient-based approaches and
probabilistic techniques like Bayesian inversion) to generate a more
accurate representation of the subsurface.

Within the domain of iterative geostatistical seismic inversion,
two overarching directions have emerged. Some strategies
are proposed to accelerate the inversion process, such as
sequential geostatistical resampling (SGR) (Mariethoz et al.,
2010; Hansen et al., 2012), parallelization of computing resources
(Mariethoz, 2010; Ferreirinha et al., 2015; Liu and Grana, 2019),
and dimensionality reduction (Grana et al., 2019; Nunes et al.,
2019; Azevedo, 2022). Simultaneously, other strategies are proposed
to explore the best-fit model parameters, such as the multiscale
strategy (Fu and Gómez-Hernández, 2008; Fu et al., 2011), self-
updating of local probability distribution (Azevedo et al., 2021;
Wang et al., 2022), self-updating of the local variogram models
(Pereira et al., 2023), annealing process (Laloy et al., 2016; Liu et al.,
2018). These strategies may overlap. For example, the coarsest
scales at multiscale strategy only require exploring less parameter
space, so it can also be regarded as a dimensionality reduction
method to enhance computational efficiency. Meanwhile, these
strategies can not only be employed individually but also in
combination. For example, Hu et al. (2023) adopted the mean
acceptance rate of suggested models to combine SGR, multiscale
strategy, and annealing process and coordinate their corresponding
key parameters (i.e., blocking window size, grid level, and
temperature).

Iterative geostatistical seismic inversion usually focuses on a
single spatial scale to exhibit distinct geological features or property
variations (Grana et al., 2012; Azevedo et al., 2021). For most
natural phenomena, geological patterns are complex and hardly
modelled by a single scale. Moreover, the computer store memory
faces limitations when predicting facies and elastic properties
over large areas. For a kriging system, doubling the number of
data necessitates an eight-fold increase in CPU time (Deutsch
and Journel, 1992). For multiple-point simulation, data template
can’t be so large due to the limited restoration of the type of
data template. For example, the 3 × 3 template occupies only 9

grid cells but enables simulation across 36 grid cells. In contact,
a 36 (i.e., 6 × 6) template is required at a single-scale grid, with
a class of the data template 6.87 × 1011, and significant storage
requirements. Thus, in single-scale modelling, the number of
condition points is often reduced to tradeoff computer performance
and simulation effects, which will damage the simulation
quality (Liu, 2006).

Multiscale strategy (or multiple-grid strategy or coarse strategy)
is based on the idea that the coarse scale model provides a
first-order approximation of subsurface properties, subsequently
guiding the refinement of the fine-scale models. In the realm of
geological modelling, the multiscale strategy has proven to be
a powerful tool for subsurface characterization (Tran, 1994; Liu,
2006; Yang et al., 2016; Song et al., 2021). Tran (1994) proposed
multiple-grid variogrammodel increases with the ratio of variogram
range to field size, improving variogram reproduction significantly
with minimal additional computer and memory cost; Liu (2006)
applied multiscale multiple-point simulation methods to solve
the limitation of the size of the template; Song et al. (2021)
and Hu et al. (2024) applied progressively growing generative
adversarial networks to train neural networks layer by layer in
the progressive training process. Zhang et al. (2022) and Liu et al.
(2023) simulated of complex geological architectures based on
multistage generative adversarial networks. The multiscale strategy
has also been used in iterative geostatistical inversion problems
(González et al., 2008; Gardet et al., 2014) and even inMcMC-based
geostatistical inversion problems (Fu and Gómez-Hernández, 2008;
Fu et al., 2011; Hu et al., 2023), where it aids in obtaining inverted
models that better fit observed data.

The small-scale model is guided by the large-scale model in
multiscale geostatistical seismic inversion modelling. However, how
to obtain high-quality large-scale models and how to better inherit
large-scale models during the iterative process are challenges. Thus,
we design a smoothed multiscale strategy in multiscale iterative
geostatistical seismic inversion, which mainly consists of two
components: one is using a simulated annealingmethod to smoothly
search high-quality coarsest model with big iteration numbers, and
another is using the smoothed conversationmethod to inherit large-
scale models when simulating finer models, with small iteration
numbers to save inversion time. Simulated annealing (SA) methods
are often used to search for best-fit models, avoiding the generated
models trapping in the local minimal. It is only suitable for use on
large scaleswhenusingmultiscale strategy because it is easy to accept
the proposed model at high temperatures to destroy the previously
obtained large- or medium-scale structures. For the fusion between
different scales, it is a better way to give a certain weight coefficient
to models of different scales. For example, linear combinations
of variogram models are used for two different scale structures,
modelled by a weighted mean of 70% for the first structure and
30% for the second (Azevedo and Soares, 2017); Smoothly doubling
method is used when the transition from low-resolution images
(weight linearly decrease from 1 to 0) to high-resolution images
(weight increase linearly from 0 to 1) (Karras et al., 2017). Thus,
smoothed resolution conversation may help integrate structures of
different scales.

The next section introduces the details of the proposed
smoothed multiscale iterative geostatistical seismic inversion
(SmoGSI) method.This is followed by the application of themethod
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FIGURE 1
Block updating resample iterative geostatistical seismic inversion.

FIGURE 2
The skeletal of the multiscale strategy. Take the second scale grid, for example. Yellow and white grid cells represent sand and shale, respectively. The
cells indicated with × in the training image are extracted patterns, forming the type of large re-scaled 3 × 3 data templates and associated models.

FIGURE 3
Correspondence between seismic sampling points and simulated cells at different-scale grids. The seismic sampling interval is 2 ms (around 15 m). The
spacing between seismic traces is 15 m.
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FIGURE 4
The smoothed multiscale strategy in the SmoGSI.

FIGURE 5
(A) Reference lithofacies. (B) IP. (C) Seismic data. (D) The training image.

to synthetic and real case examples. Conclusions and results are
then given.

2 Methodology

This section first introduces the seismic inversion problem,
iterative process, multiscale strategy, and proposed smoothed
multiscale strategy. The simulated annealing method at the coarsest

grids and the smoothed conversation method between two scales in
the proposed strategy is explained.

2.1 Seismic inversion

Seismic inversion is a geophysical process that convert
seismic reflection data into subsurface properties, such as acoustic
impedance, porosity, and rock properties, to quantitative descript

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2024.1440863
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Kang et al. 10.3389/feart.2024.1440863

TABLE 1 The input parameters for SmoGSI.

Key input parameters Value

The study area (grid cells) 150–80

Training image (grid cells) 300–160

Block moving window (grid cells) 5–7

Grid size (m) 25–25

The maximum number of iterations 300

The number of iterations at the specific scales 100

Grid level 3

the search scope of Training image 0.3

Data events match rate τ 0.9

The initial temperature T0 5

Cooling rate β 0.9

rock-properties of subsurface reservoir. The primary objective of
the seismic inversion task in this study is to estimate the spatial
distribution of facies mF and acoustic impedance mAI using both
full-stack seismic data dobs and well data. Equation 1 performed
seismic forward modelling:

d = F(m) + e (1)

where F is the forward operator calculated from the convolution
reflection coefficients and a wavelet, m is the inverted parameters
(i.e.,mF andmAI), and e is the noise.

The goal of seismic inversion is to find the model m
that best fits the observed data d by minimizing an objective
function that measures the difference between the observed and
synthetic data. Equation 2 gave a common objective function is the
least-squares misfit:

O = ‖d− F(m)‖2 (2)

2.2 Iterative process

This approach involves both point updates and block updates.
The pixel-based geostatistical technique is a good pair with the point
updates method, while the patch-based geostatistical technique is a
good pair with the block updatesmethod (Alcolea andRenard, 2010;
Hansen et al., 2012; Laloy et al., 2016; Hu et al., 2023).

In this study, we illustrate the block updating resample iterative
multiple-point geostatistical seismic inversion algorithm (Figure 1).
The process begins with the random selection of block updating
areas (the white dotted lines in Figure 1). The conditional data in
block areas comprises available well data, accepted properties from
the previous iteration, and accepted properties from the current
iteration. Suggested facies pattern is generated using the conditional
multiple-point simulation algorithm SIMPAT (Arpat, 2005), and

suggested Ip pattern is sampled based on the corresponding
conditional distribution P(Ip,Facies), which can sometimes be
assumed to follow a Gaussian distribution. Corresponding local
synthetic seismic traces are obtained for both previous and suggested
models. We can observe that the update of the local patterns will
affect the corresponding changes in the entire seismic traces. Thus,
the previous and suggested objected functions of corresponding
seismic traces require computing to determine retaining or updating
the previous model. The objected function, typically the root mean
square error (RMSE) and correlation coefficient (CC), is employed
to evaluate mismatch between the synthetic and actual seismic data.

2.3 Multiscale strategy

A multiscale strategy categorizes the geological domain into
various levels or scales, each representing distinct geological
features that span from large-scale to small-scale heterogeneities.
The suitability of the grid scale depends on the vertical and
horizontal accuracy of the seismic data and specific developmental
requirements. For instance, a coarse grid size may align with or
surpass the accuracy of the seismic data.The level of grid refinement
should be chosen based on the specific developmental requirements.
The maximum number of conditioning data in data template is
constant, while the size of these templates varies across these scales.
The primary advantage of the multiscale approach lies in its ability
to explore large-scale structures without restoring a large number of
conditioning data points. For examples, Figure 2 shows the second
scale grids, two facie types are simulated, and three facie patterns
are scanned from the training image using a large re-scaled 3
× 3 template, generating associated 6 × 6 patterns (red, green,
and blue boxes in Figure 2). In this example, we considered the
multiscale strategy as a coarsening scheme, which employs evenly
spaced grids rather than a cardinal one.

In the context of multiscale geostatistical seismic inversion,
establishing a correspondence between time-domain seismic
sampling points and depth-domain models is importance. On one
hand, when the resolution of the simulatedmodel exceeds that of the
seismic data, we have the option to refine the simulation grid to align
with the seismic sampling points (e.g., the third scale in Figure 3).
Alternatively, we can reduce the sampling points of seismic wavelet
and seismic records. On the other hand, geostatistical modelling
can produce high-resolution models, primarily depending on the
resolution of the training image and well-log data. However, the
resolution of the inverted model, based on seismic inversion, is
limited by the quality of seismic data (Figure 3). Thus, geostatistical
modelling models at the small-scale grid, below the seismic
resolution, necessitates either spaced sampling or coarsening for
convolution with seismic wavelets to compute synthetic seismic
records. These synthetic records are subsequently matched to
observed low-resolution seismic data (e.g., first scale in Figure 3).

2.4 Proposed smoothed multiscale strategy

In the block updating process, the suggested patterns are
suggested and then decide whether to replace it with the existing
patterns (the red dotted lines in Figure 1). To achieve more
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FIGURE 6
The residuals and AR of the GSI, SA-GSI, ST-GSI, and proposed SmoGSI.

FIGURE 7
The inverted facie results of the four methods.

comprehensive exploration of the prior space at the coarsest
grid level and to enhance the likelihood of preserving previous
models during the transition between two scale grids, this paper
introduces a novel smoothed multiscale strategy for iterative
geostatistical seismic inversion (SmoGSI). This strategy comprises
two key components: a simulated annealing (SA) method for the
smooth search the best coarsest model at the coarsest scale and
a smooth transition (ST) method to convert a coarse model into
a fine model (Figure 4). The detailed procedure of SmoGSI is
descript in Algorithm 1.

During the inversion of the coarsest-scale grids, the SA method
is used to explore the prior space and find the most suitable large
structures. This prevents the generated models from becoming
trapping in local minimal. In this phase, we significantly reduce the
number of model parameters. For example, in the third-scale grids,

we only use one-sixteenth of the parameters. Equation 3 defined the
acceptance rate for the suggested model:

α(mk,mk+1) = min{1,exp(−
Lk+1 − Lk

βTk
)} (3)

where T is the temperature in the current iteration, α is the
acceptance probability for the proposed model mk+1 which
replaces the previous model mk, Lk and Lk+1 are the likelihood
functions obtained at the iteration k and k+ 1. Tk+1 = βTk,
and Tk is the annealing temperature at iteration k. As the
temperature is sufficiently high, we will scan the prior solution
space broadly; As the temperature decreases, the likelihood
of accepting inferior suggested models diminishes; As the
temperature approaches zero, only high-quality suggested models
are accepted.
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FIGURE 8
(A) The reference and inverted facie models in the MDS. (B) Explained variance by dimension.

FIGURE 9
The difference in Ip of the GSI, SA-GSI, ST-GSI, and SmoGSI.

In the conversion from the coarsemodel to the finemodel, using
the SA temperature variation scheme may be not suitable for the
fine grid models. High temperatures can disrupt the structure of
“the best model” constructed at the coarsest grid level. Typically,
the reduction in grid level leads to an increase in the mean
accepted rate for the suggested models (AR) from Hu’s work
(Hu et al., 2023). AR is defined as the ratio of accepted proposals
to the total number of proposals made after a certain number of
iterations (e.g., per 100 iterations). Inspired by linear combinations
of variogram models (Azevedo and Soares, 2017) and the smooth
transition methods (Karras et al., 2017), Here, we apply a similar
method, the smoothed conversation method, to avoid the damage
of the coarser structures in multiscale iterative geostatistical seismic
inversion. Thus, rather than selecting the better model based on the
comparison of the fitting of synthetic and observed seismic data, we

enable the inverted models to transition smoothly from low-
resolution models to high-resolution models. During this transition
between different scales, Equation 4 defined the acceptance rate for
the suggested model:

α(mk,mk+1) =
{
{
{

1,γLk+1 ≤ (1− γ)Lk
0,γLk+1 > (1− γ)Lk

(4)

where γ is the smoothing factor, starting at 0 and incrementally
increase (e.g., 0.1, 0.2, …, 0.4, up to 0.5). Thus, previous
models are retained with high probability (i.e., close to 1)
in situations where large structures are more likely to be
retained and transition to normal probability (i.e., decided
by the objected function) in cases where better patterns are
more probable.
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Input: Well data, observed seismic data, training

image, wavelets

  1. Generate initial coarsest models

  for i = 1, …, 400 do

    2. Suggest facies and Ip patterns;

    3. Evaluate the objective function of the

       suggested and previous models;

    if at the coarsest scales (e.g., i ≤ 200)

      4. Use the acceptance rate in Equation 3 to

         accept the suggested models;

      5. Cool the temperature

    else if (e.g., i > 200)

      6. Use the acceptance rate in Equation 4 to

         accept the suggested model;

      7. Increase the smoothing factors;

    end if

  end for

Output: Inverted facies and Ip models

Algorithm 1. SmoGSI.

3 Application examples

In this section, we evaluate SmoGSI, a novel iterative
geostatistical seismic inversion method, using two datasets: a
synthetic dataset from the Stanford Center for Reservoir Forecasting
(SCRF) and a real dataset from the Dagang oilfield in China. We
conduct a comparative analysis by pitting SmoGSI against a slightly
modified version of González’smethod (hereinafter referred toGSI),
focusing on variation in SA and ST strategies.

3.1 Synthetic examples application

Figure 5 displays a reference section of sinuous channels from
the Stanford VI-E reservoirs, which spans 80 m in thickness and
3,750 m in Common Depth Point (CDP) coordinate, comprising
150 × 80 grid cells. Specifically, Figures 5A–C show the reference
facies, acoustic impedance (Ip), and noise-free full-stack seismic
data, respectively, with well locations indicated at CDPs 40 and
120. The training image comprises four randomly selected sections
from the Stanford VI-E reservoirs, twice the size of the simulated
area (Figure 5D). Detailed input parameters for SmoGSI are
provided in Table 1.

GSI was employed for reference. The primary modification
involves the multiscale strategy and the number of suggested
patterns (facies and elastic parameters) samples per iteration. Unlike
González’s original method, which performs multigrid operations
at each iteration (from large-scale to small-scale), GSI progressively
reduces grid levels throughout iterations. In other words, after
simulating small-scale structures, large-scale structures are not
simulated. Additionally, GSI considers only a single group of
suggested patterns in each block update, as opposed to several
groups in González’s original method. This alteration facilitates a
more direct comparison with SmoGSI. To analyze the effects of SA
and ST strategies during the iterative process, we integrate them

separately with GSI, resulting in two methods: SA-GSI and ST-GSI.
After extensive experimentation, we set the initial temperature for
SA to 5 (a moderate value) to avoid prolonged high temperatures
that will hinder convergence speed. The initial smoothing factor for
ST is set to 0.45 to avoid prolonged low smoothing factors that could
impede model updates.

Figure 6 shows the average curves from 20 runs of fourmethods:
GSI, SA-GSI, ST-GSI, and SmoGSI.Thesemethods progress through
three stages: Third-scale grids (iteration <200), second-scale grids
(200 < iteration < 300), and first-scale grids (iteration >300).
The reduction in grid levels results in smaller residual errors
between the model and seismic data, signifying that grid refinement
enhances data fitting. Ultimately, all methods converge to low
residuals (<300) with GSI exhibits the largest residuals. SA aids
in the initial broad exploration of the prior parameter space (0.5
< AR < 1) in the coarsest scale grid, gradually favoring better-
suggested models, leading to smaller residuals compared to the
method without SA. Similarly, ST assists the inversion in capturing
previous coarse structures initially, followed by gradually accepting
suggested finer structures, leading to smaller residuals compared to
the method without ST. Consequently, SmoGSI, combining SA and
ST at different scales, exhibits smoother residual curves than GSI,
resulting in a more effective fit with the seismic data.

Figures 7, 8 show inverted facies models and Multidimensional
Scaling (MDS) plots for the four methods during the inversion
process. Initially, the facies distribution is random in the first
iteration, as realizations are generated without considering seismic
data conditioning (Figure 7). Methods with SA (SA-GSI and
SmoGSI) exhibit superior facies distribution by iteration 200
(Figure 7), with broader scatter distribution at the coarsest-scale
grid (Figure 8A). In contrast, methods without SA become trapped
in local minima at the coarsest-scale grid, resulting in unrealistic
facies model (e.g., red circle in ST-GSI facies realizations in
Figure 7). Methods lacking ST tends to lose large-scale structures
(e.g., white circle in SA-GSI facies realizations in Figure 7). In
Figure 8, Euclidean distance between the reference facies model and
inverted facies models from the four methods are computed. The
shorter the distance between two data, the higher the similarity
between their facies models. We consider the first two dimensions
of the MDS space, explaining approximately 70% of the data
variance (Figure 8B). The scattered points, transitioning from light
to dark colors, represent the optimization process of the inversion
(i.e., the light color indicates the initial result, while the dark
color represents the optimized result), with ST contributing to a
smoother optimization process (indicated by red and green points
in Figure 8A) compared tomethodswithout ST (indicated by orange
and blue points in Figure 8A). SmoGSI yields the best results since
the distance between SmoGSI and the reference data is the shortest.

Figure 9 displays the average Ip models resulting from 20
groups of realizations for each of the four methods. Each group of
realizations represents the last optimal model after 400 iterations
of iterative geostatistical seismic inversion. These models closely
resemble the associated reference models, with SmoGSI exhibiting
lower mean Ip model uncertainty compared to the other three
methods. This result can be attributed to the superior facies
models generated by SmoGSI, which constraint samples of elastic
properties. Furthermore, when comparing the difference between
the theoretical and simulated Ip models, GSI exhibits the largest
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FIGURE 10
Q-Q plot of four methods: (A) GSI Ip models; (B) SA-GSI Ip models; (C) ST-GSI Ip models; (D) SmoGSI Ip models.

FIGURE 11
Seismic data from the mean Ip model of four methods.

difference, while SmoGSI shows the smallest difference. This same
effect is observed in the best-fit realization of Ip obtained from the
20 groups of realizations (Figure 10).The curve results fromSmoGSI
closely match the reference models, indicating that SmoGSI’s
outcomes better produce the probability distribution of Ip.

The synthetic records in Figure 11 are generated from the mean
Ip models. All four sets of results closely resemble the reference
seismic data. When comparing the average correlation coefficients
between the reference and synthetic record traces, it is observed that
the average correlation coefficient from GSI is approximately 0.95,
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FIGURE 12
Trace-by-trace correlation from four methods.

FIGURE 13
Seismic grid and location of well. The white line is the vertical well
section which will be inverted.

while those from the other methods hover around 0.97. SmoGSI
attains the highest correlation coefficient, underscoring its superior
performance (Figure 12).

3.2 Real examples application

We applied GSI and SmoGSI to real datasets obtained from the
Dagang oilfield in China, where a meandering river sedimentary
environment had developed. The inversion grid consists of 370 ×
100 grid cells in the x- and z-directions, respectively, with a grid
size of 20 m × 1.2 m. Figure 13 displays the location of two available
vertical wells. Figure 14A shows the wavelet, while Figure 14B shows
the Ip-well log obtained from two wells.

We utilized an objected-based method on the Petrel software to
simulate a representative training image of the sand-shale channel
system. The simulation referenced geometric parameters of the
channels derived from both well (e.g., channel depth parameters)
and seismic data (e.g., channel width parameters). The training
images encompass a wide range of channel widths and depths,
providing a broader prior space that includes the statistical range

of channel parameters from well and seismic data. The channels in
the training dataset have a length equivalent to that of the inverted
section and a width twice its length, represented as 370 × 200
grid cells (Figure 14C).

We adopted the correlation coefficient as the objective function
for this application. Seismic data were sampled at a rate of 2 ms,
with 100 ms intervals for inversion. The vertical grid cell size
was set to 1 ms (approximately 1.2 m), smaller than the vertical
resolution of seismic data. We retained the horizontal grid cell size
consistent with the horizontal resolution of the seismic data, which
remained at 20 m.

The inversion process comprised a total of 400 iterations.
A higher number of iterations (200 times) were allocated to
the coarsest scale grids to rapidly generate preliminary channel
distributions. In contract, at finer scale grids, we optimized the
model with a reduced number of iterations (100 times in both the
second and first scale grids) due to the increased time required for
simulations with finer grids. After thorough experimentation, we
fine-tuned the initial smoothing factor in ST to 0.49, a value very
close to 0.5, with an incremental increase of 0.0002 per iteration.This
adjustment aimed to prevent prolonged periods of low-smoothing
factors from impeding model updates, especially considering the
minor changes in the objective function during the update process.

Figures 15–17 display the best-fit facies, Ip, and synthetic records
generated using both GSI and SmoGSI. Due to the substantial
distance between well W1 and W2, we relied on facies pattern
guidance from the training image and response characteristics from
the seismic data to determine facies distributions between the two
wells. The fidelity of large-scale and small-scale facies patterns
reproduction served as a reflection of the modelling capabilities
of different multiscale strategies. In comparison to the GSI facies
results, SmoGSI exhibited superior noise suppression both between
and within channels, with improved channel contours, including
isolated channels and vertically stacked channels (red dotted lines
in Figure 15). The distribution of Ip properties in both inversion
methods was constrained by the facies distribution, taking into
account the statistical relationship between facies and Ip. Areas
with sand distribution displayed lower Ip value, while areas with
mudstone distribution exhibited higher Ip value (Figure 16). Since
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FIGURE 14
(A) Wavelet, (B) Ip-log data, and (C) The training image.

FIGURE 15
Facies models from (A) GSI and (B) SmoGSI.
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FIGURE 16
Ip models from (A) GSI and (B) SmoGSI.

SmoGSI benefited from its superior guidance of large-scale and
small-scale facies patterns, the associated Ip properties by its
inversion also have better channel contours and also consistent with
the well-log data. For example, in the SmoGSI Ip model, the low Ip
position of W1 corresponded to three channels (red dotted lines in
Figure 16). Comparing actual and synthetic seismic data in terms
of relative amplitude, Figure 17 that both synthetic records closely
resembled actual seismic data.

Figure 18 presents the variation in correlation coefficient and
AR resulting from the GSI and SmoGSI inversionmethods. Notably,
the SmoGSI outperformed GSI in terms of AR. In summary, these
results demonstrate the effectiveness of SmoGSIwhen applied to real
datasets, yielding good results.

4 Discussion

The proposed method employs simulated annealing and
smoothed transition techniques as the model perturbation methods
at different scales within iterative geostatistical seismic inversion.
Specifically, at coarsest-scales level, we favor accept perturbations to
explore the inversion solution space, while at finer-scale level, the
preference shifts toward rejecting perturbations to preserve existing
large-scale structural features.

In the SA strategy, two key parameters come into play: the
initial temperature and cooling factor. The time cost of large-
scale grid iteration is relatively small compared to small-scale grid
iteration. Although setting a very high temperature (e.g., 105) and

a high cooling factor (e.g., 0.999) can improve the search for
the global optimum in inversion results, such parameters tend to
slow down the optimization process. Similarly, in the ST strategy,
two key parameters are involved: the smoothing factor and its
increment. Opting for a very low smoothing factor (e.g., 0) and a
low factor increment (e.g., 10−-5) can help the inversion maintain
the existing large-scale structures, but it is also results in a slower
optimization process. Consequently, the challenge lies in finding a
balance between time cost and achieve the optimal solution when
selecting appropriate parameters for SA and ST. Additionally, SA is
relatively simple to implement and can be easily adapted to various
types of optimization problems due to its flexibility in dealing with
different types of objective functions. Other global optimization
algorithms, such as the genetic algorithm and quantum annealing
algorithm, which are suitable for finding optimal patterns can be
potential substitutes for SA.

We focus on a new smoothed multiscale strategy to improve the
overall accuracy of the subsurface property estimations, and thus,
we discuss modelling time less extensively. For the computational
efficiency in geological modelling, alternative algorithm such as
DS (Mariethoz et al., 2010) can speed up the modelling process
compared to SIMPAT (Arpat, 2005). It worth noting that the
pixel-based geostatistical technique (e.g., DS) pairs well with
point updates iterative process, while the patch-based geostatistical
technique (e.g., SIMPAT) is compatible with block updates iterative
process. Furthermore, implementing the MPS algorithm with
parallel computation would also benefit our approach by reducing
time costs.
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FIGURE 17
(A) Actual seismic data. (B) Synthetic seismic records from GSI. (C) Synthetic seismic records from SmoGSI.

FIGURE 18
The correlation coefficient and AR from GSI and SmoGSI.
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The proposed method relies on post-stack data and P-
wave impedance for lithology recognition. However, when the
impedances of sand and mudstone overlap significantly, as in
tight sandstone formations, distinguishing between these lithologies
using P-wave impedance alone can be challenging. To address
this issue, additional techniques and data can be integrated to
improve lithology differentiation. For instance, combining P-wave
impedance with other geophysical measurements, such as S-
wave impedance or other seismic attributes, can enhance the
discrimination between sand and mudstone.

The introduction of the smoothed multiscale strategy present
exciting opportunities in the field of geostatistical seismic inversion.
By improving the transition between scales and optimizing models,
this approach has the potential to providemore accurate estimations
of subsurface properties while simultaneously reducing noise in
simulated areas. Future research may explore the application of this
strategy across various geological and geophysical contexts.

5 Conclusion

This paper introduces the smoothed multiscale iterative
geostatistical seismic inversion (SmoGSI) method, which offer
a robust solution for enhancing the precision and reliability of
subsurface property estimations through seamlessly transitions
between coarse and fine-scale models. The comprehensive
assessment of SmoGSI using synthetic and real case studies,
demonstrates its superior performance. SmoGSI consistently
outperforms existing multiscale iterative geostatistical seismic
inversion methods in terms of convergence speed, facies modelling,
and correlation coefficients with reference seismic data.
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