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Lithofacies identification of deep
coalbed methane reservoir based
on high-resolution seismic
inversion

Yu Qi*, Kui Wu, Bo Wang, Xiaowen Zheng, Wenlan Li and
Dan Li

CNOOC Research Institute Ltd., Beijing, China

During the exploration and development of deep coalbed methane (CBM),
delineating the thickness of coal seam and lithofacies of the roof and floor is
one of the major challenging tasks. In past attempts, the prediction methods of
these parameters have been limited to the conventional inversion. However, the
effect of coal shielding on adjacent reflecting layers restricts the identification of
underlying sand effectively by conventional inversion. Also, the depth at which
the deep CBM zone is located (1,500–2000 m) produces a significant overlap of
P-wave impedance and Vp/Vs of sands and shale which increases classification
uncertainty between these two lithofacies. We proposed a new workflow for
high-precision quantitative seismic interpretation of deep CBM reservoir. Not
only P-wave impedance but also GR is selected as the optimized attributes
for lithofacies classification. To reduce the effect of strong reflection of coal
seam and identifying thin coal layers, the seismic waveform indication inversion
method is used to obtain high-resolution results of P-wave impedance andGR. It
uses horizontal changes in seismic waveforms to reflect lithological assemblage
characteristics for facies-controlled constraints. Then, Bayesian classification
theory is used to achieve three-dimensional lithofacies classification with multi-
source data. To improve the continuity and accuracy of the interpreted results, a
Markov chain is applied in the Bayesian rule as the spatial prior constraint. A well-
associated synthetic test and field data application in Ordos Basin demonstrates
the accuracy of the proposed workflow. Compared with conventional inversion,
the results of proposed workflow showed higher resolution and accuracy. By
providing a new solution for the identification of roof and floor lithofacies of
deep CBM reservoir, this workflow aims to contribute to the better exploration
and development of deep CBM.

KEYWORDS

deep coalbed methane, lithofacies identification, seismic waveform indication
inversion, bayes classification, ordos basin

1 Introduction

Deep coalbed methane (CBM) resources at depths below 1524 m are abundant globally,
as indicated by the review of major coal-bearing basins worldwide (Kuuskraa and Wyman,
1993). Countries such as theUnited States andCanada realized the commercial development
of deep CBM resources in the last century owing to the relatively simple geological
conditions in these countries (Moore, 2012; Li et al., 2018). For instance, The United States
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pioneered the co-production of deep coal seams and sandstones in
the Piceance Basin, with 60% of gas production originating from
coal seams. This approach led to significant advancements in the
industrial exploitation of deep CBM. In contrast, although the latent
capacity of deep CBM in China is considerable, the exploration
and production of deep CBM is still in its exploratory stage. The
CBM resources within deep formations (depth >1,000 m) in China
were estimated to be 22.5 × 1012 m3 (61.2% of total CBM resource).
Qinshui Basin and eastern Ordos Basin are two leading basins
with proven CBM resources over 100 × 109 m3. Notably, in 2023,
CNOOC’s discovery of a trillion cubic meters of deep CBM in the
Shenfu area of the Ordos Basin substantially enhanced industry
confidence (Fan et al., 2024; Guo et al., 2024).

In the process of CBM exploration and production, the
accurate lithofacies identification of the coal seam roof and
floor is essential for assessing the potential of CBM reservoir
(Hemza et al., 2009).The reason is that the lithofacies, thickness, and
mechanical properties of the coal seam roof and floor are pivotal in
determining the storage capacity. Shale, in contrast to the porous and
permeable sandstone, exhibit relatively smaller pore sizes, and lower
permeability, which are conducive to the sequestration of CBM
(Saghafi et al., 2010; Liu et al., 2020). Commonly, the lithofacies
identification by seismic data is executed on the basis of seismic
inversion-derived elastic attributes, including P-wave impedance
and S-wave impedance, as well as density. Based on these attributes,
an objective function is formulated by applying probabilistic and
statistical principles to conduct lithofacies classification. Thus, the
key challenge to construct reliable 3D CBM reservoir lithofacies
models is to accurately predict feasible elastic attributes using
seismic inversion.

Different seismic attribute pairs vary in their ability to
classify lithofacies. Pore fluid and rock property variation can be
discriminated over a crossplot of acoustic impedance versus the
ratio of P-wave velocity to S-wave velocity (Vp/Vs) (Avseth et al.,
2003). However, for sandstone and shale in proximity to deep
CBM reservoir, there is considerable overlap in the crossplot
of P-wave impedance against Vp/Vs, resulting high uncertainty
in reservoir characterization using this seismic attribute pair
(Avseth et al., 2003; Aleardi and Ciabarri, 2017). To reduce this
uncertainty, the proposedworkflow conducts a comparative analysis
of confusion matrix for various attribute pairs. P-wave impedance
and nature gamma (GR) are selected as the optimized pair of
attributes for lithofacies classification.

Another problem is that, coal seams are characterized by
low P-wave impedance, forming a strong impedance contrast
with surrounding strata and high seismic reflection coefficient.
In scenarios with low seismic resolution, the strong seismic
reflections interfere with weaker adjacent reflections, leading to
the appearance of strong amplitudes on seismic profiles. This
phenomenon presents a challenge to precisely delineate sandstone
formations adjacent to coal seams for conventional inversion
methods, including conventional post-stack inversion and pre-stack
amplitude versus offset (AVO) inversion, among others (Veeken
and Da Silva, 2004; Phan and Sen, 2018; Yuan et al., 2019). To
address this challenge, we utilize a seismic waveform indication
inversion approach, which imports horizontal waveform similarity
to invert for high-frequency geological data from well logs, thus
achieving high-resolution inversion. In recent years, waveform

indication inversion techniques have gradually been applied to
thin reservoir prediction, sand body identification and boundary
delineation, carbonate reservoir type recognition, and exploration of
subtle hydrocarbon traps, yielding favorable application outcomes
(Gao et al., 2017; Duan, 2019). Gu et al. (2017) employed seismic
waveform indication inversion techniques, thereby enhancing the
resolution of inversion results and effectively addressing the
prediction of thin sandstone reservoirs under conditions of strong
amplitude masking.

It is a complex nonlinear classification issue for lithofacies
identification using seismic attributes. Discriminant analysis,
Bayesian inference, neural network modeling, support vector
machine (SVM), and K-nearest neighbors (KNN) classification
are prevalent methodologies employed in classification techniques
(Mukerji et al., 2001; Baddari et al., 2009; He et al., 2022). Among
these, Bayesian classification is recognized for its advanced and
extensively applied nature (Avseth et al., 2005; Grana, 2018).
Bayesian classification methods exploit the seismic likelihood
function, coupled with a set of a priori information (derived from
well log data), to calculate a posterior probability, which quantify the
likelihood of each sample belonging to a specific lithological class
(Grana, 2016; Aleardi and Ciabarri, 2017). Furthermore, within the
Bayesian framework, a 1DMarkov chain a priorimodel, in the form
of a transition probability matrix, is often incorporated as additional
priori information to ensure the vertical continuity of the lithofacies
(Larsen et al., 2006; Wang et al., 2019).

We first employ a multi-attribute high-resolution waveform
indication inversion technique to obtain the 3D of GR and P-
wave impedance, thereby achieving a detailed characterization
of deep coal seams. Then, to interpret different lithofacies from
elastic parameters of seismic inversion, the statistical rock-physics
technique in Mukerji et al. (2001) and Avseth et al. (2005) is
subsequently applied to GR and P-wave impedance volumes.
This enables the realization of refined coal seam description and
prediction of the lithology of the coal seam roof and floor. This
proposed workflow is demonstrated by application to synthetic data
and real seismic data from the Ordos Basin in China. The results
show that themethod can identify coal seams as thin as 3 m, thereby
enhancing the accuracy of prediction.

2 Geologic information

The study area (H area) is located in the east margin of Ordos
Basin, as depicted in Figure 1. It is tectonically positioned within the
northeastern extremity of the Yishan Slope and the western region
of the Shanxi Fold Belt, characterized by a topography that inclines
from the northeast to the southwest. Within the region, the Upper
Paleozoic Carboniferous-Permian strata are developed, which from
the base to the top, sequentially manifest a transition from
marine-terrestrial intercalated strata to terrestrial deltaic deposits.
Furthermore, the Benxi Formation, influenced by the sedimentary
environment of the study area, exhibits a facies transition from delta
front to lagoon-tidal, leading to horizontally discontinuous sand
body development and vertically complex lithological assemblages.
The principal hydrocarbon source rocks are the No.8+9 and No.4+5
coal seams. Analysis of drilled wells within the study area reveals
that the No.8+9 coal seam of the Benxi Formation possesses a

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2024.1440729
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Qi et al. 10.3389/feart.2024.1440729

FIGURE 1
(A) Structural location map, (B) comprehensive stratigraphic column of research area.

thickness that varies between 3 and 20 m, averaging 11.5 m, and is
buried at depth about 1,500 m. It is classified within the deep CBM
category.Themetamorphic grade of the No. 8+9 coal seam increases
progressively with greater burial depth, with a vitrinite reflectance
value ranging from 0.8% to 0.9%, classifying it as a medium rank
CBM (Qin et al., 2021; Zhu et al., 2022).

Within the study area, a total of 20 wells have been drilled.
This research classifies the lithologies within the study area into
three categories including sandstone, shale and coal seams based
on the analysis of porosity, mineral content and water saturation
well log curves. Figure 2 presents the spatial distribution of the
aforementioned 20 wells, alongside the elastic parameter curves
and the true vertical lithofacies profile derived from the actual
well log measurements for Well 8. The lithofacies profile utilizes
yellow color for sandstone, black for coal seams, and gray for
shale. The majority of the wells are situated in the southern
sector of the operational area. Logging interpretations indicate
that the thinnest coal seam observed within 20 wells is a mere
3 m in thickness. Concurrently, the dominant frequency of the
existing seismic dataset is around 35 Hz, a value substantially
lower than the minimum resolution necessary for seismic

discrimination of such thin layers. This discrepancy presents
a significant challenge to the precise characterization of deep
CBM reservoirs.

3 Methodology

Figure 3 delineates the workflow for lithofacies prediction
within coal-bearing strata. It encompasses four main stages: 1) Log
curve upscaling. Utilizing the Backus averaging theory (Gelinsky
and Shapiro, 1997), log curves are up-scaled to match the well-
seismic scale precisely, ensuring precise scale match between well
data and seismic information. 2) Seismic attribute pair selection.
Initially, kernel density estimation (KDE) is applied to derive
the probability density functions (PDFs) for various seismic
attribute pairs. These PDFs act as likelihood functions within
the Bayesian classification framework. Also, the corresponding
Bayesian confusion matrix for each pair is calculated to assess the
classification efficacy of each attribute pair.The objective of this stage
is to identify the seismic attribute pair that exhibits the greatest
sensitivity to sandstone and shale. 3) High-resolution seismic
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FIGURE 2
(A) Well location map, (B) the well log curves and lithofacies of Well 8.

inversion. Utilizing the selected pair of attributes in step 2), seismic
waveform indication inversion is executed, integrating well log data
alongside seismic data. This process yields high-resolution results
of P-wave impedance and GR. 4) Seismic attributes interpretation.
Constructing upon the foundation laid in step 2), PDFs derived from
well logs are applied to conduct Bayesian classification of seismic
attributes volumes.This stage interprets seismic data into discernible
lithological categories in accordance with the relationships
previously defined.

This comprehensive workflow integrates both statistical
analysis and geophysical inversion techniques to enhance
the precision of lithofacies prediction in complex coal-
bearing strata.

3.1 Well log curve upscaling

Well logs provide precise reservoir and rock physics
information at the wellbore points, typically sampled at an
interval of 0.125 m. Conversely, 3D seismic data offer a
comprehensive reflection of subsurface geological information
but are sampled at a coarser scale, conventionally around
1 ms (Cao, 2015). This disparity in vertical resolution, which
can be an order of magnitude higher, impedes the direct
application of well log data for seismic interpretation. The
Backus equivalent averaging method is extensively employed
for upscaling purpose. It accounts for the anisotropy induced
in stratified media under conditions of long-wavelength,
thereby enhancing the accuracy of well-seismic data correlation
while maintaining the equivalence of parameters (Lindsay and
Van Kouqhnet, 2001; Bayuk et al., 2008). The Backus averaging
formula, adapted for isotropic media, can be reformulated to

compute the vertical and horizontal wave velocities and density
as follows:

Vp∗ = √
< (λ+ 2μ)−1>−1

< ρ >
, V∗s = √

< μ−1>−1

< ρ >
, ρ∗ =< ρ > (1)

where λ represents the Lamé constants corresponding to the
sampling points in the well log, and μ represents the shear
module, and ρ represents density; Vp∗ ,V∗s and ρ∗ denote
the equivalent P-wave velocity, S-wave velocity, and equivalent
density obtained after upscaling, respectively. The notation < ⋅ >
implies a weighted average over the time window considered.
Additionally, in this study, the natural gamma attribute is
also scaled up. Lacking a specific calculation formula for this
attribute, it is upscaled analogously using the same approach as
for density.

Figure 4 illustrates the results of applying the Backus averaging
scale-up process to the well log data for the work area, as
depicted by the red line. An empirical value of 1/8 of the
wavelet wavelength was chosen as the scale-up window for
this process.

3.2 Bayesian lithofacies classification
technique

Indeed, as the burial depth increases, the elastic properties of
sandstone and shale become increasingly similar (Avseth et al.,
2003), which complicates the classification of lithofacies based
on seismic attributes. Figure 5 presents the cross-plots of various
attribute pairs for 20 wells within the study area, where black
represents coal seams, yellow denotes sandstone, and gray
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FIGURE 3
Flow chart of the deep coal lithofacies prediction technology based on high-resolution seismic inversion.

corresponds to shale. Evidently, within these cross-plots, coal seams
exhibit a distinctively low impedance characteristic, allowing clear
differentiation from other lithologies. However, there is an overlap
between sandstone and shale across multiple attribute pairs, which
precludes a definitive distinction between each other.

To address the aforementioned issues, this paper utilizes
Bayesian classification algorithms to conduct lithofacies
classification based on various combinations of well log attributes,
and introduces the classification confusion matrix (CM) to quantify
the classification capability (Avseth et al., 2005; González, 2006),
thereby selecting the attribute pairs with optimal discriminative
power to enhance the resolution of sandstone and shale above
and below coal seams. Furthermore, to enhance the accuracy
and spatial continuity of the identifications, this paper also
establishes a Markov chain prior model to incorporate the
interrelationships between neighboring points as spatial constraints
(Larsen et al., 2006).

The Bayesian classification algorithm bases its categorization on
the probability densities of classes, achieving statistically optimal
classification results. Assuming there are n lithofacies to be
differentiated, represented by Cn, and the attributes corresponding
to lithofacies Cn are denoted by X, with the conditions between
attributes being mutually independent. Then for an unknown

sample with attribute parameters X, the probability that it
belongs to lithofacies Ci expressed by the posterior probability,
as shown in Equation 2. Among the calculated n posterior
probabilities, if the maximum belongs to Ci, then the sample X is
classified as belonging to Ci

P(Ci/X) ∝ P(X/Ci)P(Ci) (2)

where P(Ci) is the prior probability of class Ci occurring, which
is typically computed from well log data, P(X/Ci) represents the
likelihood function, expressible by the probability density function
fi(x), and P(X/Ci) = 2a fi(X) indicates the probability that the
attribute parameter is X given the lithofacies Ci, with a denoting
an infinitesimally small interval surrounding. The probability
density function can be estimated using corrected well log data
corresponding to different lithofacies via KDE, thereby calculating
the bivariate probability density functions for various combinations
of attributes. Its mathematical formulation is given as follows.

fi(x) =
1
mh
∑
i
K(

x−Xi

h
) (3)

wherem represents the total number of known samples, h represents
the bandwidth (or smoothing parameter), x signifies a random
sample point,Xi represents the ith known sample, andK() represents
the kernel function.
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FIGURE 4
(A) Lithofacies distribution extracted from up-scaled well logs: shale (gray), sand (yellow), and coal (black). Up-scaled well logs of (B) P-wave
impedance, (C) ratio of Vp to Vs., and (D) nature gamma ray (GR). (E) Stacked seismic traces at the well location corresponding to CDP 550.

In geology, it is commonly assumed that stratigraphic sequences
exhibit Markov properties (Eidsvik et al., 2004). Incorporating these
Markov properties into a prior model enhances the posterior

probabilities to better align with the characteristics of the
depositional process, thereby improving the accuracy of lithology
identification. The fundamental assumption of a first-order Markov
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FIGURE 5
The crossplot for lithofacies of sand (yellow), coal (black) and shale (grey) corresponding to different attribute pairs. (A) GR-Impedance, (B)
Vp/Vs-Impedance.

FIGURE 6
Probability density functions of lithofacies corresponding to different pairs of attributes (A) GR–Impedance, (B) Vp/Vs–Impedance.

FIGURE 7
(A) Real lithofacies distribution and well curves extracted from Well-8, (B) Bayesian classification based on GR-Impedance elastic attributes, and (C)
Bayesian classification based on Vp/Vs-Impedance elastic attributes.

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2024.1440729
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Qi et al. 10.3389/feart.2024.1440729

FIGURE 8
(A) The confusion matrix of GR-Impedance, (B) the confusion matrix of Vp/Vs-Impedance.

FIGURE 9
Seismic section near well bore of study area.

chain is that the probability distribution of lithofacies at given time
t depends solely on the lithofacies category at the immediately
preceding time t − 1, and is independent of all other previous states.
Thus, the evolution of a Markov chain through time can be viewed
as transitions between different states, which are represented by a
transition probability matrix P. Elements Pij of this matrix denote
the conditional probability of transitioning from state i to state
j, with the sum of elements in any row equaling unity. Transition
probabilities describe the probabilistic and statistical attributes of the
Markov process, which are time-independent. Therefore, a related
downward transition probability matrix P can be defined as prior

information for Bayes theory. The probability of moving from time
t to t + 1 is then computed as follows:

P(Ct+1) = P(Ct)P = P(Ct)P(Ct+1|Ct) =
i=t

∏
i=0

P(Ci+1|Ci) (4)

where P(C1) = P(C1|C0). Hence, given the initial state probabilities
and the transition probability matrix P, the behavior of this Markov
chain can be determined.

Figure 6 presents PDFs for different lithofacies, which have
been derived from upscaled well data using various attribute
pairs. In accordance with the observations from the attribute
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FIGURE 10
(A) High resolution seismic waveform indication inversion of P-impedance, (B) high resolution seismic waveform indication inversion of GR, (C)
conventional post-stack inversion of P-impedance.

cross-plots, PDFs for sandstone and shale exhibit overlapping
regions. Furthermore, a comparison of the probability density
function graphs reveals a greater overlap for sandstone and

shale when using the Vp/Vs-Impedance attribute pair rather
than the GR-Impedance attribute pair, suggesting that the GR-
Impedance attribute pair offer enhanced discriminatory potential
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FIGURE 11
Comparison between the inversion results (red) and real well data (black) of P-impedance and GR for Well-8.

between sandstone and shale. Subsequently, we shall demonstrate
lithofacies classification utilizing well data to substantiate this
assertion. Utilizing Well-8 as an illustrative case, the classification
of lithofacies is executed employing PDFs derived from Equation 4.

The classification is subsequently conducted applying the Bayesian
rule outlined in Equation 3, succeeded by the calculation of a
confusion matrix to evaluate the efficacy of the classification. The
diagonal elements of the confusionmatrix represent the probabilities
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FIGURE 12
Classification results of lithofacies at well location. (A) Classification results based on traditional inversion (B) classification results based on
proposed method.

of correct classifications, for instance, signifies the probability that a
sample truly belonging to class 1 is classified as class 1.

CM =
[[[[[

[

P11 P12 L P1n
P21 P22 L P2n
M M O M
Pn1 Pn2 L Pnn

]]]]]

]

, (5)

Figure 7 delineates the classification outcomes utilizing distinct
attribute pairs. Specifically, Figure 7A displays the log curves of the
target layer and the interpreted lithology from Well-8, Figure 7B
illustrates the lithology classification outcome employing the GR-
Impedance attribute pair, and Figure 7C represents the classification
result utilizing the Vp/Vs-Impedance attribute pair. It is evident that
theVp/Vs-Impedance pair’s lack of sensitivity to sandstone and shale
lithofacies results in numerous misclassifications, notably within
the interval ranging from 1750 m to 1800 m. Figure 8 presents the
confusion matrix results for the aforementioned attribute pairs,

with yellow denoting high discriminatory power and blue signifying
low discriminatory power. Clearly, the GR-Impedance attribute pair
exhibits superior discrimination across all three lithofacies.The GR-
Impedance attribute combinationdisplays themost robust capability
for lithology classification. This analysis leads to the conclusion that
theGR-Impedance attribute pair accurately classifies each lithofacies
type with a probability that surpasses 80%, indicative of its high
lithology classification capacity. Consequently, this attribute pair
is chosen for the computation of conditional probability density
functions and is designated as the definitive inversion parameters
for subsequent inversion procedures.

3.3 Seismic waveform indication inversion

According to statistical data from 20 wells drilled in the area, the
No. 8 + 9 coal seam thickness ranges from 3 to 20 m and exhibits a
vertical pattern characterized by an intercalation of continuous and
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FIGURE 13
Crossplot between predicted thickness of 8+9# coal and real thickness of 8+9# coal.

bifurcated deposition. At low seismic resolution, the strong seismic
reflection signature from coal seams has a tendency to obscure
weaker reflections. The acquired seismic data, with a dominant
frequency of approximately 35 Hz, renders conventional inversion
incapable of accurately predicting thin coal seams and the lithology
of their roof and floor, thereby hampering the effective identification
of sweet spots for deep coalbed methane reservoirs.

The aforementioned study has identified P-wave impedance and
GR attributes as the optimal pair for lithofacies discrimination.
To achieve the high-resolution seismic attributes, a waveform
indication inversion method is introduced to the study. Researches
have revealed that well log curves and their corresponding
seismic traces exhibit certain degree of similarities within defined
frequency bands (Wang et al., 2022). Leveraging this characteristic,
seismic waveform indication inversion establishes a mapping
relationship between the high-frequency information of well logs
and seismic waveform, thereby enhancing the lateral and vertical
resolution of the inversion results.

The principle of waveform indication inversion is herein
simplified as follows. Implement dynamic clustering analysis of
seismic waveforms through singular value decomposition, to
obtain the correspondence between different reservoir types of
seismic waveforms and the characteristics of well logging curves,
establish an initial sample set, and carry out waveform indication
inversion under the Bayesian framework for different reservoir
types. Assuming that the noise adheres to a Gaussian distribution,
the posterior probability distribution of the model parameters
within the Bayesian framework is articulated as:

P (d| m,I) = 1

σ√2πN
exp
[[[[[

[

−

N

∑
i=1

Δdi −GΔmi
2

2σ2

]]]]]

]

× 1

2π
3
2√|σΔm|

3 exp (−
ΔmTΔm
2σΔm
) (6)

where the vector d represents the input seismic data, m represent
the elastic parameter model, I represents prior information, N
represents the size of the data, Δmi represents the perturbation
term of the model, Δdi represents the perturbation of seismic data,
and σΔm represents the variance of the perturbation of the model
parameters.

The solution where the probability is maximized in Equation 6
is the final solution of the inversion, that is, the maximum
a posteriori probability solution. By taking the logarithm of
both sides of Equation 6 and omitting parameters that are irrelevant
to the solution, the objective function is obtained.

O(m|d, I) = − 1
2σ2

n

∑
n=1
(Δdn −G · Δmn)

2 − Δm
TΔm

2σΔm
(7)

Tomaximize the posterior probability, we differentiate the above
equation with respect to the model parameters and obtain:

O′(Δm) = 1
σ2
[GTGΔm−GTΔd] − Δm

σΔm
(8)

Taking the derivative of the above equation with respect to
the model parameter, and setting it to zero, yields the point of
maximum posterior probability. At this point, the perturbation can
be determined as follows:

Δm = (GTG+ σ2

σΔm
I)
−1
GTΔd (9)

Substituted into the objective function, the maximum
probability is the answer of the inversion problem. The final
inversion result approximates the sample data by the perturbation
of the iteration model.

The specific process of seismic waveform indication inversion
can be divided into three steps: 1) Each seismic trace is individually
compared with the borehole nearby traces, and the top N wells
with the highest similarity are selected, where N represents the
number of effective samples. Log curves from these top N wells
are taken and, using singular value decomposition, waveform
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FIGURE 14
Distribution characteristics of (A) the coalbed thickness of No.8 and No.9 coal seam, (B) the thickness of roof sand of No.8 and No.9 coal seam and (C)
the thickness of floor sand of No.8 and No.9 coal seam.

clustering techniques are applied to establish amapping relationship
between seismic traces and log curve samples, forming a sample
set. 2) Employing wavelet transform technology, the log curves in
the sample set are decomposed into information across different
frequency ranges. Common structural features in the low-to-middle
frequency components are extracted and used to construct the initial
model. 3) Based on seismic data, relative impedances are derived,
and in conjunction with well log data, absolute impedances are
calculated to establish a likelihood function. Grounded in Bayesian
theory, Markov Chain Monte Carlo (MCMC) stochastic simulation
is employed to introduce random perturbations to the initial model,
ensuring the inversion results conform to both middle-frequency
seismic information and well log structural characteristics. Here,
the MCMC method is employed to calculate the expected value
of complex posterior distributions. The concrete implementation of

MCMC algorithm using in Seismic waveform indicated inversion
is Metropolis Hastings Sampling. The idea of MH is to construct a
Markov chain that tends to converge to a stationary distribution,
which then converges to the posterior probability. Utilizing this
framework to derive sampling samples facilitates the computation of
the target expected value, bypassing the need to directly engage with
the posterior probability. If conformity is not met, the perturbation
process is iteratively repeated until inversion results that meet the
criteria are obtained.

3.4 Field data results

We conduct an application of proposed lithofacies identification
workflow on 3D seismic data from Ordos Basin as an example
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to test the prediction effect of the proposed method. Figure 9
presents a seismic profile near wellbore.The predominant frequency
of the 3D seismic data for the target stratum is 35 Hz, with an
average P-wave velocity of the formation at 4,200 m/s. Based on
the Rayleigh criterion (Kallweit and wood, 1982), the maximum
reservoir thickness identifiable by seismic data is approximately
30 m, which is clearly insufficient for the identification of thin
interbedded sand bodies in the roof and floor strata.

The selected inversion parameters are enumerated as follows:
smoothing radius = 1, number of effective samples = 5, optimal
cut-off frequency = 300 Hz, and target sampling rate = 0.2 ms.
The smoothing radius parameter exerts an influence on the lateral
resolution of the inversion results, whereas the optimal cut-off
frequency impacts the vertical resolution. Figure 10A displays
the P-wave impedance inversion result section, wherein blue
indicates low P-wave impedance values, associated with coal seams,
and red denotes high P-wave impedance values, indicative of
sandstone and shale. It illustrates the efficacy of the inverted P-
wave impedance in the delineation of coal seams. Furthermore,
this study implemented waveform indication inversion on a GR
data volume, as depicted in Figure 10B, where blue signifies low
GR values, corresponding to coal seams and sandstones, and
red indicates high GR values, characteristic of shale. This figure
elucidates the discriminatory capability of GR between sandstones
and shale. Additionally, Figure 10C portrays the traditional post-
stack impedance inversion, from which it is evident that it possesses
a lower resolution compared to the aforementioned results.

Utilizing the high-resolution P-wave impedance and GR
data volumes from the prior inversions, this study employed
the Bayesian classification theory for lithofacies classification.
And the Markov chain prior information of Bayes frame is
derived by using Equation 4. To accurately describe the thickness
distribution of the target layer, a time-depth conversion was
also performed on the time domain results, utilizing a velocity
model derived from the seismic data processing workflow. The
software implementation details of the time-depth conversion are
not discussed here. The 3D lithofacies data volume provides a
directly depiction of coal seam thicknesses and the lithologies of the
roof and floor strata.

Figure 12A shows the lithofacies prediction results based on
the Vp/Vs-Impedance attribute pairs, where the Vp/Vs attribute is
obtained by model-based pre-stack inversion, while the impedance
attribute is obtained by traditional post-stack inversion. The
lithofacies profile using proposed workflow is illustrated in
Figure 12B. Compared with Figure 12A, the results in Figure 12B
exhibit a more significant concordance with the interpretations
derived from well logs. And moreover, the figure illustrates that
the new method is capable of identifying thin coal seams as little
as 3.3 m thick. To quantitatively evaluated the goodness of the
results, the diagonal element confusion matrix is introduced here.
It is calculated using the classification results at well location
and true vertical lithofacies profile derived from the actual well
log measurements for Well 8. The prediction accuracy of sand, coal,
shale for proposed workflow is [0.90 0.86 0.85]. The prediction
accuracy of sand, coal, shale for traditional inversion is [0.80 0.85
0.75]. The results show the proposed workflow exhibits a higher
accuracy rate.

By statistically analyzing the depth-domain inversion results at
well locations for the No. 8+9 coal seam thickness, it was found that
the predicted thicknesses from 20 wells correlate with the actual
thicknesses with a coefficient of 0.89, as shown in Figure 13. This
substantiates the precision of the lithofacies classification results.

To further emphasize the superiority of the aforementioned
method in terms of vertical resolution, Figure 11 presents the
inversion outcomes alongside actual well log curves, where black
solid lines denote logging data and red solid lines denote inversion
results. The correlation coefficient between the P-wave impedance
inversion and well logs attain a value of 0.91, whereas the coefficient
for the GR simulation is 0.88. These inversion results indicate
that the technique enhances inversion resolution and improves the
accuracy of coal seam characterization.

Figure 14 shows extracted layer slice attributes from the
lithofacies data volume. Figure 14A presents a plan view map of
the No. 8+9 coal seam thickness distribution across the study
area, revealing extensive development of thick coal seams in the
southern-central part, indicative of pre-coal peat swamp and post-
coal formation interdistributary bay development zones. Figure 14B
depicts the distribution of sandstone thickness within the upper
10 m of the coal seam roof across the study area, showing the
development of underwater distributary channels in the western
part, where thicker sandstones have been deposited. Figure 14C
illustrates the distribution of sandstone thickness within the lower
10 m of the coal seam floor across the study region, with two
underwater distributary channels distributing sandstones on the
east and west sides. These findings align with sedimentological
understandings. The above analysis indicates that the proposed
lithofacies prediction method has been well applied in Ordos Basin,
and the obtained 3D lithofacies cube is of guiding significance to the
exploration and development of deep CBM.

4 Discussion

The representation of deep CBM reservoir lithofacies as a 3D
model has advantages in recognizing productive zones of CBM
reservoirs, designing horizontal wells and hydraulic fracturing. It is
used to build and analyze the distribution of deep coal and roof/floor
lithofacies in a 3D space, which is important to better understand
the local and regional scale distribution of CBM productive zones.
Though we have provided a new solution for the identification of
roof and floor lithofacies of deep CBM reservoir, this workflow can
be improved for better application.

The method mainly includes waveform indication inversion
and Bayesian lithofacies classification. With respect to waveform
indication inversion, the selected attributes to be inverted is not
limited in using P-wave Impedance and GR. For the discrimination
of shale and sand, research indicates that the GR can discriminate
these two lithofacies effectively, and the characteristic has been
applicated in Suez Rift Basin and Appalachian Basin (Grana et al.,
2015). However, the selected optimized attributes may be different
when it comes to different reservoirs, such as carbonate or
dolomite reservoir.We suggest the discrimination ability of different
attributes should be cautiously evaluated using the confused matrix
or other way to allow more reliable lithofacies identification.
Furthermore, Bayesian lithofacies classification has been widely
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used in worldwide, for instance in North Sea sandstone reservoir,
shale reservoir in China (Larsen, et al., 2006; Wang, et al., 2019).
The main limitation of the case study is that the prior information
about the spatial correlation in horizontal for the lithofacies model
has not been taken into account. Numerically, the prior model on
the lithofacies classes can be characterized by a Markov random
field instead a Mrkov chain that captures the locally vertical and
horizontal continuities (Larsen et al., 2006; Ulvmoen and More,
2010). This should be considered in future work.

5 Conclusion

A new seismic interpretation workflow based on high resolution
seismic waveform indication inversion and Bayesian classification
is proposed to enable the lithofacies identification of the deep
coal-bearing strata. P-wave impedance and GR are selected as the
optimized pair of attributes to classify three lithofacies including
shale, tight sand and coal. The seismic waveform indication
inversion method is used for reducing the effect of coal shielding
on adjacent reflecting layers to obtain high-resolution results of P-
wave impedance and GR. A Markov chain is applied to maintain
the spatial continuity of the lithofacies classification. This study,
taking the Block H in Ordos Bain, China as an example, has
established a comprehensive workflow for predicting 3D lithofacies
volumes. This methodology has demonstrated the capability to
discern coal seams with a minimal thickness of 3.3 m. Furthermore,
the coal seam thicknesses predicted from the lithofacies data volume
exhibited a significant correlation coefficient of 0.89 with the real
measured thicknesses, thus achieving a quantitative characterization
of the coal seams and the lithology of the roof and floor strata.
Despite the existence of thinner reservoir layers that may lie
beneath the resolution threshold of seismic data, along with the
pronounced lateral variability in rock properties and fluid phases,
the research outcomes remain satisfactory. However, to substantiate
these findings, the drilling of additional wells represents a viable
option for further validation. The 3D lithofacies model obtained
from the workflow provides a good basic data for development
of deep CBM, and has great potential to be applicated in other
region or depth. Nevertheless, in regard to considering horizontal
continuities, there is still room for this proposed lithofacies
identification method for deep CBM reservoir.
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