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Data-driven multiscale
geomechanical modeling of
unconventional shale gas
reservoirs: a case study of
Duvernay Formation, Alberta,
West Canadian Basin

Yue Xiao*, Weidong Jiang and Chong Liang

Research Institute of Petroleum Exploration and Development (RIPED), Beijing, China

The Duvernay Formation in Canada is one of the major oil and gas source
formations in the Western Canadian Sedimentary Basin, located at its deepest
point. While it demonstrates promising development potential, challenges
arise in the urgent need for integration of geology and engineering models,
as well as in optimizing sweet spots, particularly as infill wells and pads
become central operational objectives for the shale gas field. A lack of the
geomechanical understanding of shale gas reservoirs presents a significant
obstacle in addressing these challenges. To overcome this, we implemented
data acquisition and prepared historical models and profiles, resulting in an
extended high-resolution geological and reservoir property model with a fine
grid system. Subsequently, a 3D full-field multi-scale geomechanical model was
constructed for the main district by integrating seismic data (100 m), geological
structures (km), routine logs (m), core data (cm), and borehole imaging
(0.25 m), following a well-designed workflow. The predicted fracturability
index (brittleness) ranges from 0.6 to 0.78, and a lower horizontal stress
difference (STDIFF) is anticipated in the target formation, Upper Duvernay_D,
making it a favorable candidate for hydraulic fracturing treatment. Post-analysis
of the multi-disciplinary models and various data types provides guidelines
for establishing a specific big database, which serves as the foundation for
production performance analysis and aggregate sweet spot analysis. Fourteen
geological and geomechanical candidate parameters are selected for the
subsequent sweet spot analysis. This study highlights the effectiveness of
multi-scale geomechanical modeling as a tool for the integration of multi-
disciplinary data sources, providing a bridge between geological understanding
and future field development decisions. The workflows also offer a data-driven
framework for selecting parameters for sweet spot analysis and production
dynamic analysis.
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1 Introduction

The development of unconventional resources, such as shale
gas and tight gas, presents one of the largest challenges for
the oil and gas industry. While the fundamental logistics for
characterizing and developing unconventional plays are similar to
those for conventional resources, the process is complicated by the
heterogeneous and anisotropic nature of the reservoirs, as well as the
limited operational and dynamic timescales from development to
depletion.The industry is currently navigating the complexities of an
integrated cross-functional process, where the optimal development
plan relies on a multi-scale and multi-disciplinary workflow.

Recent geomechanical studies on shale gas and oil development
(Dusseault, 2013) (Rodriguez-Herrera et al., 2013) have focused on
several aspects, including experimental mechanical studies that
primarily address wellbore integrity and the mechanical parameters
of physical models (Mehana et al., 2022). These studies also involve
the prediction and calculation of geomechanical properties under
experimental conditions (Bohn et al., 2020), the establishment of
geomechanical models (Srinivasan et al., 2022)− (Ma et al., 2022),
the design of refracturing operations (Zoback et al., 2022), and
well pad development (Liu et al., 2022)− (Kuroda and Hayate,
2022). When designing and optimizing multiple-stage hydraulic
fracturing, the primary factors influencing the stress field at
the target well location include production history, interference
among stages, and frac-hit occurrences between wells. Furthermore,
in formations where natural fractures (NFs) are well-developed
(Weng et al., 2011), it is important to consider the mechanisms and
patterns of fault and NF development, as well as the interactions
between natural fractures and hydraulic fractures. In China,
there has been a detailed discussion and investigation into the
establishment and application of geomechanical models during the

geological–engineering integrated development of unconventional
shale gas plays (Liang et al., 2016)− (Chen et al., 2017).

The success of operations during the Shale Revolution in North
America can be attributed to several factors, including technological
innovations, management reforms, and the establishment of
comprehensive databases by both government and commercial
platforms, which enhance data exchange efficiency. Prominent
commercial database platforms in Canada, such as GeoSCOUT
(GeoSCOUT, 2024) and Canada Discovery (Canadian Discovery,
2024), along with Enverus (Enverus, 2024) in the United States,
have significantly contributed to this landscape. Once a permit
is granted, access to state government databases can be readily
obtained, as federal and state governments impose regulations
on the reporting frequency of well data and the updating
of field data (State public database in United States, 2024). These
commercial databases play a crucial role in operators’ decision-
making processes. Even before the shale play boom of the
2010s, technological advancements led to the daily generation of
substantial datasets in the oil and gas upstream and downstream
sectors. Research indicates that over half of the time of engineers
and geoscientists is spent searching for and consolidating data
before initiating multi-disciplinary analysis (Brule et al., 2009).
Furthermore, major oil companies are reassessing how data quality
and density influence engineering decisions (Gaillot et al., 2020). It
is essential for drilling and completion engineers to conduct rigorous
quality checks on interpreted data provided by geologists and
geophysicists prior to modeling activities. Reservoir properties and
geomechanical parameters must be inter-validated across multiple
data sources and scales; otherwise, the inherent uncertainty in
models may lead to unreliable calculations and predictions.

The integration of multi-disciplinary and multi-scale data
for informed decision-making necessitates several critical

FIGURE 1
Overview of Duvernay Formation and project district: (A) distribution of shale plays in North America, source: U.S. Department of Energy (DOE); (B)
location of Duvernay deep basin, source: U.S. Natural Gas Institute (NGI). (C) Duvernay shale target: Kaybob, Edson, Willesden Green, and Ferrier; well
locations and oil–gas window, source: Wood Mackenzie. (D) Locations of mineral rights in Duvernay Formation and geological map of sedimentary
basin (modified from Gilhooly et al., 2014) (Weissenberger et al., 2014).
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FIGURE 2
Duvernay composite stratigraphy of exploration well #1. Panel content in sequence: stratigraphy, gamma ray (GR), depth, resistivity logs (shallow, LLS;
deep, LLD; medium, MSFL), sonic velocity and density logs (DT and RHOB), total organic carbon and maturity (TOC and Ro), absorbed gas Content (S1),
lithological composition, log-interpreted porosity and water saturation, and core-based permeability.

TABLE 1 List of old data and model acquisition, data source, data type, and dataset details.

Source format Data type Details

3D seismic-interpreted results of the study area 3D seismic data volume 1

Well logging of the study area

Routine well logging data 40 vertical wells、
314 horizontal wells

Well logging interpretation 40 vertical wells

Stratigraphic information

Inter-well and separated layer logging data Stratification at 40 vertical wells and 314 horizontal
wells for Upper Duvernay-A, B, C, and D

Structural map Duvernay_Top and Duvernay_bottom

Production history of the study area Accumulative production data (180–730 days) Well count 260

components: 1) high-resolution geomodeling (Ehsan and
Gu, 2020)− (Amjad et al., 2023); 2) accurate interpretation of
petrophysical and reservoir properties (Ehsan et al., 2024); and 3)
robust computation and modeling of geomechanical parameters.
Geomechanical modeling plays a pivotal role in bridging the
gap between evaluation and design scenarios by incorporating
geological complexity and addressing pre-existing mechanical
discontinuities and anisotropic deformation, such as faults, bedding
planes, and natural fractures (Eze and Hu, 2023), in conjunction
with hydraulic fracturing systems. The development of a multi-
scale geomechanical model facilitates the prediction of NFs across

various scales and the upscaling of geomechanical parameters
in three-dimensional distributions using advanced geostatistical
methodologies.

By utilizing the geomechanical model, hydraulic fracturing
simulations can optimize treatment designs for individual wells
(Mariscal-Romero and Rodolfo, 2022) or across designated
operational districts. This model effectively captures the evolution
of in situ stresses induced by reservoir depletion, infill drilling,
and refracturing interventions through iterative calculations,
resulting in reliable production history matches (Xiao et al., 2022)−

(Pradhan et al., 2022) and accurate production forecasts, thereby
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FIGURE 3
Integrated workflow of multi-scale geological modeling. (A) Flowchart adopted for reconstruction of the high-resolution geological model. (B)
Workflow applied for multi-scale natural fracture (NF) prediction and evaluation.

TABLE 2 Simulation and calculation methodologies summary.

Modeling Data preparation Methodology

Attribute property modeling Petrophysical analysis results from well log data Sequential Gaussian simulation (SGS) (Verly, 1993)-

(Sanei et al., 2023)

Multi-scale natural fractures evaluation Seismic-interpreted ant-tracking body and borehole
imaging data

Discrete fracture network (DFN) modeling

Natural fracture equivalent porosity and permeability
calculation

Geological model and DFN model Oda’s method (Ghahfarokhi, 2017)

Missing DTs prediction GR, RHOB, DTc Artificial neural network (ANN) (Alameedy et al.,
2022) (Eaton, 1972)

Overburden stress and pore pressure Density logs Eaton’s method (Eaton, 1972)- (Legg, 2023)

enhancing the optimization of landing zone selections (Xiong,
2020). The Duvernay Formation, recognized as one of North
America’s most prominent unconventional shale plays (Kleiner,
2019) (Kleiner and Aniekew, 2019), offers an extensive array
of case studies focusing on regional geomechanical assessments
(Li et al., 2020)− (Leshchyshyn andThomson, 2016), optimization of
hydraulic fracturing treatment parameters (Thomson et al., 2016)−

(Bowie, 2018), production prediction and enhancement (Hui et al.,
2023), as well as seismic monitoring (Hui and Gu, 2023).

This article presents a case study on the integrated
geological–engineering investigation of CNPC’s Duvernay project
in Simonette District, as submitted to the journal Frontiers in
Earth Science. During the extensive data acquisition and processing
phases, multi-disciplinary and multi-scale parameter calculations
and modeling workflows for unconventional shale gas reservoirs
were developed. First, the processing of multi-disciplinary input
data and the relatedmodel assumptions are clarified anddiscussed in
detail.Then, the workflows for themulti-scale geomechanical model
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FIGURE 4
Comparison of old (navy blue) and new (magenta) study area with well locations in Duvernay Formation. The old one: 3D seismic interpreted structural
tops of Duvernay Formation (early-stage geophysical data covered area).

and reservoir model are outlined, considering the data acquisition
conditions established in the previous steps: 1) identification and
modeling of NFs; 2) calculation of 1D geomechanical parameters
for single wells; and 3) 3D geomechanical modeling and in situ stress
predictions. Finally, the quality of the data is reassessed based on the
multi-scale geomechanical model, and the controlling parameters
for production performance are summarized for both geological
and geomechanical candidates. This provides a foundation for the
pre-construction of big data-based deep analysis. The development
of a regional high-resolution reservoir attribute and geomechanical
model offers valuable insights for parameter determination in sweet
spot exploration and dynamic production analysis.

2 Project overview

The Duvernay Formation in Canada is a major oil and gas
source formation located in the Western Canadian Sedimentary

Basin, situated at the deepest point of the basin (Figures 1A, B). As
a globally significant unconventional shale gas play, the formation
has produced over 70 million barrels of equivalent gas from
conventional reservoirs. The unconventional oil and gas zone spans
an area of 6 million acres, contributing an estimated 110 to 190
billion barrels of equivalent oil resources. The target formation
for the Duvernay project is the Devonian shale, which is rich in
condensate oil.

The joint venture (JV) project began in 2012 with Encana (now
Ovintiv), and the assets were segregated in 2020 when CNPC
became the sole operator for the districts, including the studied
area.The primary development area is Simonette, covering 254 km2,
which demonstrates strong development prospects for shale targets
(Figure 1C). Dunn et al. (2012) illustrates a typical 3D sedimentary
environment near Simonette, while Figure 1Dmarks the locations of
othermineral rights within the Simonette region.The joint lands dip
to the southwest. Over the past decade of full-scale development, the
JV project has accelerated the iteration of unconventional resource
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FIGURE 5
Geological grid system of the geological model in the studied area (layer Upper Duvernay_A with top, middle, and bottom geological grid).

TABLE 3 Grid system of all layers in the studied area, Resolution, and number count in the I∗ J∗K direction of grids in each structural layer.

Layer/sublayer Thickness (m) Average H (m) Horizontal
grid

resolution (m)

Vertical grid
resolution (m)

I J K Total grid
count

A 2–19 12 100 × 100 0.23 498 565 50 14015400

B 2–13 6 100 × 100 0.13 498 565 50 14015400

C 0–11 4 100 × 100 0.1 498 565 50 14015400

D 0–25 14 100 × 100 0.27 498 565 50 14015400

Mid_Carb 3–25 9 100 × 100 0.17 498 565 50 14015400

Lower Duvernay 0–11 3 100 × 100 0.06 498 565 50 14015400

MLK 1–15 6 100 × 100 0.13 498 565 50 14015400

Total 54 98107800

development technologies, leading to a deeper understanding of the
underground complexities and rock–liquid characteristics.

Petrophysical analyses were conducted on exploration wells as
part of resource evaluation efforts during the early development
stage. Although detailed discussions and consortium processes
are beyond the scope of the current study, the results of
the stratigraphical interpretation are presented in Figure 2. The
Simonette Devonian formation features organic-rich shale with
total organic carbon (TOC) levels ranging from 2% to 6%. It

is vertically divided into three segments: Upper Duvernay shale,
Middle Duvernay carbonate, and Lower Duvernay clay. The major
production zone, the Upper Duvernay, is approximately 60 m thick
and includes 10 m of limestone interlayers along with thin layers of
clay limestone.

Characteristically, the Duvernay Formation is a classic
high-resistivity shale reservoir with near-zero water saturation
and interconnected organic porosity structures. Key coring
and formation property observations confirm that permeable,
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FIGURE 6
(A) Vertical profile of the absorbed shale gas content in the Duvernay Formation (m3/t). (B) Reservoir parameter distribution in the 3D model. Absorbed
shale gas content (m3/t); shale gas total organic carbon (TOC); shale effective hydrocarbon pore volume (HCPV), porosity (%), permeability (mD), and
water saturation (%).

interconnected effective porosity structures are accessible via highly
connected, orthogonal fracture patterns. The Upper Duvernay is
further subdivided into segments A, B, C, and D based on the
TOC and lithological composition, with Upper Duvernay_D being
identified as the most favorable landing zone due to its greater
thickness and superior TOC performance.

Wecompare the reservoirpropertiesof typical shaleplays inNorth
Americawith thoseof theCanadianDuvernay formation:Haynesville,
Marcellus, Eagle Ford, and Barnett. Notably, unconventional plays in
North America, such as Horn River, Bakken, and Marcellus, have
achieved successful and economical production levels comparable to
those found in the Duvernay Formation.
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FIGURE 7
(A) Ant-tracking body model calculated from seismic interpretation along the eight structural surfaces across layers A to MLK of the Upper Duvernay.
(B) Extraction of large-scale NFs from the ant-tracking attribute in the Duvernay Formation; NFs highly developed in Upper Duvernay_A, B, and D
and Mid_Carb.
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FIGURE 8
Well locations of (A) bedding fractures and (B) tectonic fractures in the study area, with the NF rosemap located in neighbor wells for well no. 1 to
well No. 7.

3 Data acquisition and preparation

Theprimary task before undertakingmulti-scale geomechanical
modeling is the comprehensive assembly of data, which involves
evaluating both the density and quantity of multi-source data
within the studied area. Adequate data density is essential to
ensure that sufficient effective data are available for most of the
target district; this includes verifying the well count and ensuring
that well data are sufficient to support the establishment of a
foundational geological model, as insufficient data density can
introduce significant uncertainty into the model from the outset.
In terms of quantity, it is important to verify specific data types,
such as reservoir pore pressure obtained from formation leak-
off tests compared to measurements derived from diagnostic
fracture injection tests; substantial discrepancies among these data
sources can undermine their reliability and necessitate further
investigation into their measurement processes and derivation
methods. A summary of the current data acquisition efforts is
provided in Table 1. Prior to any analysis or decision-making,
integrating these data through various software tools from multiple
vendors is critical for ensuring the robustness and accuracy of the
subsequent analyses.

4 Problems and methodologies

Since the inception of the Joint Adventure Project in 2012,
the targeted district has undergone significant changes, with
infill drilling of wells and pads emerging as the predominant
operational strategy during themiddle-to-late stages of gas reservoir
development. An analysis of current data acquisition along with

historical models has identified several unresolved issues that
impede future development.

i) 1) Absence of a discrete fracture network (DFN) model: the
presence of horizontal beddings and well-developed high-
angle natural fractures is advantageous for increasing the
stimulated reservoir volume (SRV) and facilitating height-
constrained fracture propagation. The lack of a DFN model
poses substantial challenges to the development of a reliable
reservoir depletion model and the optimization of the field
development plan (FDP).

ii) 2) Lack of an integrated geological–engineering model: the
existing geological model is limited to the original seismic
explored area and does not incorporate geomechanical
properties or in situ stress models. This limitation hinders
the ability to conduct comprehensive reservoir and hydraulic
fracturing simulations.

iii) 3) Ambiguity regarding dominant controlling factors: the
primary factors influencing productivity and the enhancement
of fracturing stimulation remain poorly defined.

iv) 4) Requirement for systematic sweet spot analysis: based on the
current data acquisition efforts, improvement in data quality
can be achieved by validating reservoir properties across
multiple sources.

The concerns delineated in points iii) and iv) will extend
beyond the scope of this study and will be addressed in subsequent
publications.The reconstruction of a refined geological model and a
multi-scale natural fractureDFNmodel will adhere to the integrated
flowchart illustrated in Figures 3A, B. Furthermore, the prediction
and calculation of the geomechanical model and three-dimensional
stress distribution, as depicted in Figure 12, serve as critical
inputs for optimizing hydraulic fracture design. These outputs,

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2024.1437255
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Xiao et al. 10.3389/feart.2024.1437255

FIGURE 9
Cross-well plot for (A) bedding NF interpretation and (B)tectonic NF interpretation.

resulting from petrophysical analyses, highlight the geological
complexity and anisotropy inherent in unconventional shale
and tight gas reservoir developments. Advanced methodologies

for hydraulic fracturing and flow simulation must account for
multiple geological phenomena; failure to accurately capture
fine-scale formation property inputs could lead to questionable
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TABLE 4 Fracture strength prediction in borehole imaging logs.

NF prediction Well no. Fracture strength (P10)

Tectonic NFs

1 0.67

2 1.76

3 0.14

4 4.59

5 0.55

Bedding NFs
6 3.94

7 0.47

predictions regarding hydraulic fracturing outcomes and
effective SRV.

The methodologies utilized in establishing models and
performing simulation upscaling are summarized in Table 2
and will be discussed in detail in the following
sections.

5 Redefinition of geological models

The reconstruction of the multi-scale integrated geological
model effectively utilizes all available data types, including
drilling and completion data, well logging, seismic interpretation,
sedimentary analysis, and reservoir characteristics. This process
represents a fundamental workflow that requires meticulous
processing and standardization of all data, whether in real-time or
interpreted. The acquired drilling and completion data encompass
wellhead locations, measured depth (MD), completion depths,
and well trajectories. Well logging provides critical interpretations
of lithology, reservoir properties, and stratigraphy derived from
routine logs.

By integrating precise reservoir descriptions obtained from
well log interpretations with seismic data, a three-dimensional
geological structural model, geological grid system, and reservoir
property model are constructed, as delineated in the flowchart
given in Figure 3A, and detailed in Section 5.1, Section 5.2,
and Section 5.3, respectively. The prediction and evaluation
of NFs are detailed in Section 5.4, where the modeling of
NFs builds upon the previously established geological and
attribute models, resulting in a dual porosity–permeability
model. Furthermore, as depicted in Figure 3B, medium and
small NFs interpreted from borehole imaging and core data,
combined with large-scale NFs extracted from ant-tracking
data, contribute to the development of the multi-scale discrete
fracture network (DFN) model, quantifying the strength and
density of NFs.

In comparison to the original two-dimensional seismic
exploration area, the current target model encompasses all
production wells for PetroChina’s Duvernay project in Simonette
District, as depicted in Figure 4. The original geological model
(navy-colored area) does not cover potential districts for infill pad or

wells. Moreover, it dismisses more than half of the well information
in the current mineral rights area. The new model (in magenta
color) incorporates adequate well data while preserving an optimal
level of data density, thereby mitigating the uncertainty associated
with the model.

5.1 Geological structural modeling

During the process of structural modeling, seismic-interpreted
layering positions are incorporated, utilizing constraints obtained
from the layering at each well location. The workflow includes
a quality control protocol for the structural layering model that
encompasses 1) the conformity between well locations and the
layering model, 2) conformity between the structural shape and
the original structural map, and 3) accuracy of the layering
contact relationships. The primary objective of these quality control
measures is to achieve a strong correlation between the K elements
related to layering and the initial findings from geophysical and
geological studies, as well as to establish rational inter-layer contact
relationships.

The final quality evaluation of the three-dimensional layering
model indicates its effectiveness in accurately representing the
overall structure of faults and sublayers, while also providing
quantitative characteristics of minor structural changes within
each layer and the outer geometry of the gas reservoir. Based on
layer division data derived from drilling information, four series
(Upper Duvernay, Mid_Carb, Lower Duvernay, and MLK) and
eight structural surfaces have been established for seven geological
layers and sublayers. Furthermore, the thickness distribution of
each sublayer is calculated using a thickness contour map. The
entire structural model extends from higher elevations in the west
to lower elevations in the east in a monoclinic configuration,
demonstrating reasonable structural inheritance in each layer with
a gentle dip.

5.2 Geological grid system

The three-dimensional geological meshing constitutes the
grid structure established on layering and faults, which is
essential for supporting subsequent modeling and geomechanical
analysis. The types, sizes, orientations, and magnitudes of the
meshing collectively enhance the accuracy and reliability of the
simulation results. A corner-point grid system is employed to
capture the characteristics of discrete spatial locations through the
coordination of eight hexahedral points. The undefined elemental
lines are advantageous for reflecting the geological characteristics
and geometry of the reservoir, particularly in complex gas
reservoirs exhibiting well-developed natural fractures and structural
variations.

The Petrel platform software is utilized to achieve this
gridding objective, with the dimensions of the grid system
primarily determined by well (pad) spacing, seismic trace spacing,
and the computational capacity necessitated by the specific
numerical model.

Meshing of the structural layering model results in a layering
grid system comprising three horizontal components: top, middle,
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FIGURE 10
Strength attributes of medium-/small-scale NFs (interpreted bedding fractures and tectonic fractures), 3D model distribution in the top area and
vertical profile in the bottom area.

FIGURE 11
Porosity and permeability attributes of multi-scale NFs, 3D model, and vertical profile at the target well and pad location.

and base skeleton grids, which govern the overall construction of
the three-dimensional model, as shown in Figure 5 the skeleton
grids for Upper Duvernay_A. Quality control is also imperative to
identify any abnormal twisting or folding of grids, particularly in
proximity to faults, where a five-point key pillar gridding approach

is applied; the location of the remaining two-point grids must
be reconfirmed along the I and J directions. The new model
builds upon geological and stratigraphical insights from previous
analyses (as indicated in the workflow chart) and demonstrates a
finer grid system, as detailed below.
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FIGURE 12
Flowchart for developing the multi-scale 3D geomechanical model, starts with results of reconstruction of the high-resolution 3D
geological model in Figure 3.

i) The model encompasses an area of 1,321 km2, integrating data
from 40 vertical wells and 314 horizontal wells. The original
seismic-interpreted area spans 414 km2.

ii) Vertical layer distribution consists of Upper Duvernay, Mid_
Carb, Lower Duvernay, andMLK sequentially, withMid_Carb
functioning as the carbonate inter-layer. The principal target
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FIGURE 13
(A) Single-factor ANN model based only on DTc. (B) Multi-factor ANN based on both DTc and density. (C) Comparison of single-factor and multi-factor
prediction on segment with real-time DTs.

layer, Upper Duvernay, is subdivided into A, B, C, and D
sublayers.

iii) The structural layers of Upper Duvernay-A, Upper Duvernay-
B, Upper Duvernay-C, Upper Duvernay-D, Mid_Carb,
Lower Duvernay, and MLK exhibit an average thickness
of approximately 13.7 m, with the most favorable layer
being Upper Duvernay-D, which displays the greatest
thickness of 25 m.

iv) The grid system of the geological model, within the target
area of 1,321 km2, features a horizontal distribution resolution
of 100 × 100 m, resulting in a grid count of 498 × 565. The
average grid thickness is 54 m, and vertical grid sizes range
from 0.06 to 0.23 m, with each sublayer in Upper Duvernay
divided into K = 50 sections. The total grid count for the high-
resolution geologicalmodel exceeds 98million (refer to Table 3
for details).

5.3 Attribute modeling

Petrophysical analysis is conducted for each well within
the target area, and three-dimensional attributes are modeled
using the sequential Gaussian simulation (SGS) methodology,
upscaling petrophysical parameters at well locations for absorbed
shale gas content (m³/t), total organic carbon (TOC) (%),
effective hydrocarbon pore volume (HCPV) (mg/g), porosity (%),
permeability (mD), and water saturation (Sw) (%). Reservoir
propertymodels are assigned based on the geologicalmodel for each
structural layer. Three-dimensional models illustrating absorbed
shale gas content are presented in both vertical shown in Figure 6A
and two-dimensional horizontal distribution profiles shown in

Figure 6B. The average absorbed shale gas content ranges from 1.3
to 1.6 m³/t, reaffirming Upper Duvernay-D as the most favorable
sublayer, with maximum absorbed gas content reaching 2.2 m³/t.
Additional reservoir property models are depicted in Figure 6.

5.4 Natural fracture interpretation

The prediction and evaluation of multi-scale NFs are
accomplished through the application of the discrete fracture
network (DFN) technique.The flowchart illustratingDFNmodeling
for multi-scale NFs is presented in Figure 3B.The identification and
classification of large-, medium-, and small-scale NFs are facilitated
by results from seismic interpretation and borehole image logging
data. Large-scale NFs, such as faults, are recognized based on
pre-stack seismic interpretations, while medium- and small-scale
NFs (including tectonic fractures, bedding fractures, and fissures)
are recognized based on fracture strength attributes interpreted
from borehole image logging data. The prediction of medium- and
small-scale NFs is achieved by leveraging fracture density attributes
referenced from fracture strength attributes.

The extraction of ant-tracking attributes from the eight
structural surfaces across layers A toMLK is illustrated in Figure 7A.
The planar configurations of ant-tracking attributes in each layer
exhibit minimal variation with pronounced vertical inheritance.
NFs are significantly more developed in the southwestern portion
compared to other areas of the seismic exploration region. A total
of seven large-scale NF systems have been extracted for layers A
to MLK from the ant-tracking attributes, with the predominant
NF direction orienting north–south, intersecting regionally across
networks. Among the seven layers, large-scale NFs are more
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FIGURE 14
Prediction of DTs for missing segments lacking real-time data.

extensively developed in Upper Duvernay_A, B, D, and Mid-Carb,
as shown in Figure 7B.

Figure 8 depicts the locations of wells with borehole imaging
logs for bedding NF interpretation (Figure 8A) and tectonic NF
interpretation (Figure 8B). A total of seven borehole imaging
logs have been recorded and analyzed, with cross-well plots
illustrating the tectonic fractures in two wells (Figure 9B) and
bedding fractures in five wells (Figure 9A). In Figure 13, bedding
fractures are notably more developed in Upper Duvernay, Mid_
Carb, and MLK, with no indications present in Lower Duvernay.
The interpretation of borehole imaging from these twowells predicts

382 bedding fractures, exhibiting dip angles ranging from 0° to
10°, with an average dip angle of 4° and northwest direction
(142°). Tectonic NFs are estimated at a count of 15,503 with an
average dip angle of 84° and a direction of northeast (45°). The
predicted fracture strengths for the seven wells are summarized
in Table 4.

The three-dimensional volumetric strengths of bedding
fractures (Figure 10, left) and tectonic fractures (Figure 10, right)
are upscaled from the interpreted results of well imaging logs in
each well through interpolation. The vertical profiles of fracture
strength at the wellbore plane correspond closely with the fracture
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FIGURE 15
One-dimensional single-well geomechanical parameter calculation (real-time data: DTs and DTc; RHOB; dynamic and static Young’s modulus,
dynamic and static Poisson’s ratio, UCS, TSTR, and frictional angle).

density curves for each well. The volumetric strength of fractures
governs fracture development density, while the analysis of bedding
fracture strike provides orientation insights. Consequently, the
DFN (discrete fracture network) is established for the seven
layers from A to MLK, comprising both bedding and tectonic
fractures.

Employing Oda’s approach, the fluid properties of the DFN
model are upscaled for both macroscopic and microscopic
fractures. The porosity and permeability attribute models are
illustrated in Figure 11 at the target well pad location, in 3D view
and vertical profile. The equivalent fracture porosity and fracture
permeability are within the ranges of 0%–1% and 2–486 mD,
respectively.

6 Multi-scale 3D geomechanical
modeling

Utilizing the updated geological model grid system, a
comprehensive geomechanical analysis is performed at each
designated well location. Subsequently, the three-dimensional
geomechanical parameters and stress distribution are simulated.
Static mechanical parameters are derived from experimental
rock mechanical measurements at specified depths, while
continuous dynamic mechanical parameters are predicted from
well logging data. To ensure accuracy in the modeling process,

a conversion coefficient from dynamic to static parameters
is applied. The foundational logic for developing a 1D single
well geomechanical model is depicted in the accompanying
flowchart (Figure 12). The 1D geomechanical model based
on the single well location outputs both rock mechanical
properties (Young’s modulus, Poisson’s ratio, and brittleness) and
pressure–stress profile (overburden stress and pore pressure and in
situ stresses).

6.1 Data quality check

The preliminary phase involves a comprehensive screening
of well data, which encompasses laboratory core data, well
logging data, and diagnostic fracture injection test (DFIT)
data. A well is considered suitable for analysis only if all
three data types are complete and have been cross-verified
across multiple sources. By rigorously evaluating these real-
time or derived datasets against established regional reservoir
characteristics, particularly pore pressure, wells that exhibit
anomalous values are excluded from the preliminary database.
As a result, only 30 wells have successfully passed this initial
screening.

Geomechanical parameter upscaling and calculations are
commonly derived from specific logs, including gamma ray (GR),
density log (RHOB), sonic compressional slowness (DTc), and sonic
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FIGURE 16
Analysis of overburden stress and reservoir pore pressure, with constraints from measurements of neighbor wells.

shear slowness (DTs).The current dataset comprises comprehensive
well log information for only four wells; the remaining wells are
deficient in sufficient number of DT segments. It is imperative
to emphasize the vitality of DT data for accurately establishing
single-well geomechanics; its absence or misinterpretation could
substantially increase uncertainty in the geomechanical model.
Given the interrelationships and predictive capacities of density,

DTc, and DTs, a total of 13 wells—comprising exploratory and
vertical wells—are selected as target wells for the development
of the 1D geomechanical model. This selection process is
critical to ensuring adequate spatial coverage within the study
area, thereby enhancing the reliability of the final 3D model’s
distribution. The workflow for Sections 5.2 and 5.3 is illustrated
in Figure 12.
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FIGURE 17
One-dimensional single-well-based In situ stress prediction: Panel 1 static Poisson’s ratio and static Young’s modulus. Panel 2 DFIT closure pressure
(MPa), reservoir pore pressure (MPa), overburden stress (MPa), Sh, max (MPa), and Sh, min (MPa).

6.2 Single-well geomechanical parameter
calculation

6.2.1 Sonic shear slowness match and prediction
The empirical correlations typically used for predicting DTs

are primarily based on the theoretical equations as indicated

below (Equation 1), where ∆ts represents sonic shear slowness,
∆tp is sonic compressional slowness, and ρ denotes density
log values. The coefficients described in these equations may fall
short in adequately capturing specific reservoir characteristics and
variabilities, resulting in substantial deviations between predicted
and actual data. To enhance the accuracy of DTs predictions, an
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TABLE 5 Calculated brittleness of all layers in the studied area using
BRIT and BI equations.

Layer/sublayer BRIT BI

Range Ave. Range Ave.

Upper Duvernay

A 0.43–0.52 0.47 0.32–0.43 0.37

B 0.41–0.47 0.44 0.30–0.40 0.36

C 0.40–0.55 0.48 0.30–0.40 0.36

D 0.41–0.52 0.46 0.31–0.40 0.36

Lower Duvernay Mid_Carb 0.48–0.69 0.56 0.37–0.62 0.50

MLK 0.34–0.48 0.41 0.26–0.46 0.37

artificial neural network methodology is integrated into the current
workflow. The artificial neural network (ANN) training function
for DTs is constructed taking into consideration the two most
influential variables: DTc and density (see Figure 13 for details).
Both the single-factor ANN model and multi-factor ANN model
are constructed, and the mechanisms are shown in Figures 13A, B,
respectively. The multi-factor ANN model stands out with better
prediction, see Figure 13C for details.Themodel is iteratively trained
using real-time data from the four wells with complete data until
the predicted DTs aligns with actual measurements. This validated
model is then applied for predictions in wells or well segments
lackingDTsdata. Figure 14 demonstrates that themodel successfully
matches the real-time curves within an acceptable margin of error.

Δts = Δtp ⋅ [1−
1.15 ⋅ (ρ−1 + ρ−3)

e
1
ρ

]
−1.5

. (1)

6.2.2 Mechanical elastic-strength parameter
calculation

Dynamic Young’s modulus and Poisson’s ratio are calculated
from the following theoretical equations (Equations 2, 3):

YME =
ρV2

S(3V
2
P − 4V

2
S)

(V2
P −V

2
S)
, (2)

Pr = (V2
P − 2V

2
S)

2(V2
P −V

2
S)
, (3)

where ρ represents the density log value, Vp is the sonic
compressional velocity, and Vs is the sonic shear velocity obtained
from logging. Due to the absence of valid core laboratory data
for converting dynamic to static geomechanical parameters, an
empirical conversion factor of 0.7 is applied to Young’s modulus,
while Poisson’s ratio is fixed at 1. The unconfined compressive
strength (UCS) is calculated based on static Young’s modulus,
and the tensile strength (TSTR) is derived from the UCS. The
friction angle is determined from the GR values using the empirical
relationship:

FANG− fromGR = 0.42− 0.182×GR

The outputs of the 1D geomechanical model are summarized.
The average Young’s modulus for the Upper Duvernay formation
ranges from 25.3 to 27.3 GPa, accompanied by Poisson’s ratios
from 0.19 to 0.20. The Lower Duvernay formation exhibits an
average Young’s modulus of 31.7 GPa and a Poisson’s ratio of
0.24. The results of the 1D geomechanical parameters are visually
represented in Figure 15.

6.2.3 Density and reservoir pore pressure
prediction

The overburden stress for the target formation is computed by
integrating density logs along depth, represented as follows:

Sv = g∫
TVD

0
ρb(z)dz.

The calculated values range from 80.6 to 81.8 MPa and increase
with depth. For wells lacking real-time density logs, the trend
line is extrapolated using reference points from neighboring wells.
A total of 13 wells have been interpreted for overburden stress.
Reservoir pore pressure is predicted for these wells using the Eaton
method based on sonic data, shown in Equation 4. The resulting
pore pressure for the Upper Duvernay_D target ranges from 58.8
to 63.2 MPa, corresponding to a pressure coefficient ranging from
1.79 to 1.91.

PP = S−[(S− PNCT)(
xNCT
xobs
)
3.0
], (4)

where S is the overburden stress, PNCT denotes the normal
pressure, xNCT represents the corresponding well logging response
at normal pressure, and xobs is the actual well logging response
(specifically DTc for this study). The Upper Duvernay formation is
identified as a typical over-pressurized formation with a pressure
coefficient of approximately 1.8. Figure 16 provides an analysis
of overburden stress and reservoir pore pressure calculations
employing the Eaton method, validated against measured pore
pressures from adjacent wells.

6.2.4 In situ stress predictions
By applying a pore-elastic isotropic model, the real-time closure

pressure derived from DFIT can be equated to the minimum
horizontal stress, facilitating the determination of regional
tectonic coefficients. Direct field measurements do not provide
evaluations for maximum horizontal stress, only its directional
components. The following empirical equations (Equations 5, 6)
offer methodologies for calculation, presuming a normal slip fault
mechanism (where SV > Sh,max > Sh,min). The calculated tectonic
coefficients are as follows:

εx = −0.0001εy = 0.0003.

The predicted horizontal stress, given these assumptions, yields
values of Sh,min between 65.9 and 66.6 MPa and Sh,max from 74.5 to
75.1 MPa for Upper Duvernay, while Sh,min is 67.5 MPa and Sh,max is
78.2 MPa for Lower Duvernay.

Investigation into the stress profile of the Duvernay Formation
reveals a strike–slip fault mechanism, suggesting that Sh,min >
SV > Sh,max. Consequently, the tectonic coefficients are adjusted
to correspond with the regional geological understanding and
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FIGURE 18
Brittleness Index calculated from two methods: BRIT and BI indicated segment in the target well.

focal mechanisms. The maximum horizontal stresses are thus
regulated to Sh,max values of 81.3–82.5 MPa for UpperDuvernay and
approximately 81 MPa for Lower Duvernay. Figure 17 illustrates the
1D in situ stress predictions based on well data, utilizing real-time
DFIT measurements as reference points.

Shmin =
v

1− v
SV +

1− 2v
1− v

αPp +
E

1− v2
εx +

vE
1− v2

εy, (5)

SHmax =
v

1− v
SV +

1− 2v
1− v

αPp +
E

1− v2
εy +

vE
1− v2

εx. (6)

6.2.5 Formation brittleness (fracturability)
prediction

Equations typically used for determining fracturability (BRIT)
and the brittleness index (BI) are presented below in Equations 7,
8 and Poisson’s Ratio in Equation 9, where YME and PR denote

the dynamic Young’s modulus and Poisson’s ratio, respectively, while
YMESTA and PRSTA signify the static estimates from core laboratory
evaluations.

Table 5 summarizes the calculation results across each
sublayer. Figure 18 compares the methodologies, revealing
that results yield congruent indicators for the Upper
Duvernay D layers and the Mid-Carb layer, with the
minimum horizontal stress calculated at 62 MPa and 65 MPa,
respectively.

BRIT = (
YMESTA

7
+
PRSTA − 0.4
0.15− 0.4

)× 100%, (7)

BI = YME+PR
2YME

=
YMESTA −YME_STAmin

YME_STAmax−ME_STAmin
× 100%, (8)

PR =
PRSTA −PR_STAmax

PR_STAmin−PR_STAmax
× 100%. (9)
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FIGURE 19
Three-dimensional geomechanical model (A) and vertical profile (B) for key parameters: Young’s modulus (E-GPa), Poisson’s ratio (PR), pore pressure
(Pr-KPa), brittleness (%), and STDIFF (MPa).
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TABLE 6 Summary of geological parameters, geomechanical parameters, and production history data.

Category Candidate parameter Number

Geological parameters Porosity, permeability, gas saturation, TOC, adsorbed gas, fracture permeability, fracture density, and net pay thickness 7

Geomechanical parameters Young’s modulus, Poisson’s ratio, brittleness, pore pressure, minimum horizontal stress, maximum horizontal stress, and
overburden stress

7

Production data Single-well equivalent gas production for 1 yr. and 2 yrs. (condensate oil–natural gas conversion ratio=1:1000) 2

6.3 Three-dimensional geomechanical
modeling

The 1D geomechanical modeling calculates geomechanical
parameters and in situ stresses at specific well locations. The
subsequent step in the workflow involves performing inter-
well correlations of these parameters and stress profiles across
multiple planes. This process effectively upscales the geomechanical
distribution from 1D to 3D by employing SGS for each
geomechanical parameter, including Young’s modulus, Poisson’s
ratio, pore pressure, brittleness, and fracturability.

As demonstrated in Figure 19, the average Young’s modulus
(E) ranges from 24 to 38.2 GPa, while Poisson’s ratio (PR) varies
between 0.19 and 0.25. Notably, the Mid_Carb formation exhibits
a higher Young’s modulus and a lower Poisson’s ratio in comparison
to both the Upper Duvernay and Lower Duvernay formations. This
characteristic is advantageous for enhancing height containment
during hydraulic fracture treatments, as it serves effectively as
barrier bedding. Furthermore, the brittleness index falls within the
range of 0.6–0.78, indicating a greater likelihood of developing
complex fracture systems. It is also noteworthy that a lower stress
differential (STDIFF) is observed in shale formations compared
to carbonate formations, which serves as an additional critical
indicator for the potential formation of complex fracture systems
during hydraulic fracturing operations.

7 Post-analysis of models and data

In recent years, the significance of data analytics has expanded
globally, with the oil and gas industry standing out as a critical
sector in this regard. Big Data encompasses advanced technologies
designed for the management and analysis of extensive datasets.
The utilization of Big Data analytics serves as an effective method
for deriving actionable insights from vast amounts of information,
particularly concerning underground spatial data. However, the
value of such extensive data is limited, unless it is systematically
recognized, stored, analyzed, and refined for practical application.

A primary focus within the petroleum industry is to establish
correlations between production performance and a multitude of
variables within an integrated model that incorporates dynamic
data, including production history and well treatment history.
The multi-scale integrated geomechanical model provides a
foundational framework for the development of a comprehensive
database pertaining to the Duvernay Formation. Through the
sequential implementation of data collection, data cleaning, model

training, and predictive analytics, the foremost controlling factors
influencing production performance can be prioritized, ultimately
offering innovative solutions to facilitate highly efficient field
development.

Previous sections also mark the preliminary construction
of a Big Database. Based on the data collection and cleaning
processes described in the previous section, where the multi-scale
integrated model was established, the geological and engineering
parameters identified for inclusion in the Big Data analysis are
summarized in Table 6.

8 Conclusion and perspectives

This study focuses on Simonette District within the Canadian
Duvernay shale play, establishing a complex and heterogeneous
geomechanical model that incorporates a multi-scale natural
fracture system through thorough analysis of the limited formation
evaluation data from seismic interpretation, well logging, and well
imaging. The model serves as a reliable foundation for simulating
intricate hydraulic fracturing systems, optimizing hydraulic
designs, and enhancing the productivity. Key achievements
include the development of a fine-grid geological model that
integrates geological, natural fracture, geomechanical, and stress
models, alongside real-time fracturing treatment data and
production history. The study also employs ANN methodologies
to predict and estimate missing sonic shear slowness (DTs) data,
significantly improving data quality through rigorous acquisition
and preparation processes prior to analysis. Furthermore, post-
analysis has identified 14 candidate parameters contributing to
production performance, offering pathways for further sweet spot
analysis based on the extensive database constructed.
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