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The most widely used equation to calculate water saturation or suitable shaly
water saturation in clean or shaly formation, respectively, is the modified
Archie formula. The quality of Archie parameters including saturation exponent
affects the preciseness of water saturation, and thus estimated oil and gas in
place. Therefore, estimating the saturation exponent by the soft computation
methods deems to be necessary. In this study, intelligent models such as
multilayer perceptron neural network, least squares support vector machine,
radial basis function neural network, and adaptive neuro-fuzzy inference system
are developed to predict saturation exponent in terms of petrophysical data
including porosity, absolute permeability, water saturation, true resistivity, and
resistivity index by utilizing a databank for middle east oil and gas reservoirs. The
introduced models are optimized using particle swarm optimization, genetic
algorithm, and levenberg marquardt techniques. Graphical and statistical
methods are used to demonstrate the capability of the constructed models.
Based on the statistical indexes obtained for each model, it is found that
radial basis function neural network, multilayer perceptron neural network,
and least squares support vector machine are the most robust models as
they possess the smallest mean squared error, root mean squared error and
average absolute relative error as well as highest coefficient of determination.
Moreover, the sensitivity analysis indicates that water saturation has the most
effect and porosity has the least effect on the saturation exponent. The
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developed models are simple-to-use and time-consuming tools to predict
saturation exponent without needing laboratory methods which are tedious
and arduous.

KEYWORDS

soft computing methods, sensitivity analysis, archie equation, saturation exponent, oil
and gas reservoir

1 Introduction

The preliminary objective of an engineered program of
formation analysis in the oil industry is the assessment of oil and gas
in place in oil and gas reservoirs, respectively (Kravtsova et al., 2022;
Nguyen et al., 2022). Archie’s parameters n, m and a are typically
constant in a routine formation; however, saturation exponent (n)
can be allocated a wide range of numbers from 2 to 20 in water-
wet to strongly oil-wet formations in certain conditions. Myriad
researchers argue that saturation exponent is strongly dependent
on displacement history, wettability, and pore size distribution and
it may be assigned a value from 2 to 10 (Hamada et al., 2002).
Historically, cementation exponent (m) was a parameter in Archie
equation that has accounted for most studies and researches; by
the introduction of Pickett Plot to estimate m from the wireline
measurements of resistivity and porosity, m becomes more variable
which can be estimated by crossplot, while tortuosity factor a and
saturation exponent n remain a preferred-not-touch parameters
unless, for instance, there are some core measurements that can give
a different value from two (n=2.) (Al-Hilali et al., 2015).

In the process of log interpretation, one is required to obtain
precise values of Archie’s parameters in order to determine precise
water saturation in reservoir formations (Hamada et al., 2002;
Dernaika et al., 2007). Constant assumption of saturation exponent,
especially in oil or gas reservoirs with a variety of rocky species,
can be the last resort (Abdrashitova et al., 2022; Xiao et al., 2024;
Zhao et al., 2024). The common method of calculating saturation
exponent obtained through laboratory data is special core analysis
which directly leads to Archie parameters from the core, but the
problem with these methods is the cost and timing of the relevant
experiments (Worthington and Pallatt, 1992; Hamada et al., 2002).

The literature indicates several reports on the determination of
saturation exponent. Al-Hilali (Al-Hilali et al., 2015) introduced a
simple petrophysics-based workflow to estimate water saturation
exponent rigorously, and concluded that it can be put into practice
in any shaly-sand, and carbonate reservoirs. Najafi and Goodarzi
(2011) presented two novel techniques, namely, homogenous
distribution of parameters (HDP), and modified genetic algorithm
(MGA) to specify Archie’s equation parameters simultaneously,
and further compared them with other traditional methods.
Hamada (2010) put forth a new methodology to calculate Archie’s
equation factors based on the 3-dimensional graph of three
different parameters including water saturation, formation porosity,
and formation water resistivity. The author additionally provided
a comparison with other methods to ascertain the accuracy
magnitude belonging to each method. Mardi et al. (2012) put
forward an artificial network based approach to calculate saturation
exponent, cementation factor, and water saturation.

In the past, empirical equations and some analysis techniques
were used for many topics, includingmechanics (Yu et al., 2023), coal
(Su et al., 2023), carbon capture and storage (Feng et al., 2024), fluid
mechanics (Li et al., 2024a), andgashydrates (Li et al., 2023).Recently,
novel methods based on soft computation has successfully been
presented through extensive applications in chemical and petroleum
disciplines (Gharbi, 1997; Aminian et al., 2000). These methods are
immensely stronger than traditional statistical and classical regression
techniques in obtaining precise relationships between input and
output datapoints (Mohebbi and Kaydani, 2015). One main method
is the use of artificial neural network (ANN) for highly non-linear
and classification problems, renowned for its fast estimation, and
generalization capability after effectively network training (Gharbi,
1997). Generally, saturation exponent might be accurately predicted
in terms of petrophysical (well-log) data through the use of ANNs.
Nonetheless, during the learning/training stage, a databank with
small datapoints can often result in the overfitting issue resulting
in poor capability, and non-generalization. Furthermore, a great
deal of time and effort is generally needed to procure the network
optimum structure using an iterative-based and tedious approach
(Saxena and Saad, 2007; Dehghani et al., 2008). Another helpful
methodology is the fuzzy inference system known as FIS.Throughout
FIS modeling, membership functions are used to distribute linguistic
fuzzy data, and classical set principle is progressed (Zeng and Singh,
1996). This metaheuristic algorithm can capture the non-linear
and complex behavior observed, for instance, in multi-dimensional
input and output environments (Li et al., 2024b; Li et al., 2020). It is
also immensely powerful when dealing with systems characterized
with not vividly specified disciplines, and high uncertainties which
are usually detected in geoscience systems (Mohebbi and Kaydani,
2015). A more strong technique recognized as adaptive neuro-fuzzy
inference system (ANFIS) utilizes the combined features of learning
power associated in ANN, and explicit information illustration
linked with FIS (Nowroozi et al., 2009).

Recent attempts on soft computation schemes have resulted
in developing a supervised machine learning technique, namely,
support vector machine (SVM) wherein its relating learning
technique is incorporated for the purpose of pattern recognition
and data analysis (Schölkopf et al., 1999). SVM has gained
much attention for its magnificent performance when handling
classification and harsh regression problems (Kamari et al., 2016).
SVM has been widely implemented hugely in engineering, and
science areas such as porosity and permeability prediction by
lithology, well log data, recognition, text/speech detection, and
pattern identification in medical science (Choisy and Belaid, 2001;
Gao et al., 2001). EL-Sebakhy (El-Sebakhy, 2009) carried out SVM
approach to calculate reservoir fluidPVTbehaviorwith the objective
of canceling out the limitations associated with the classical neural
networks. Chamkalani et al. (Chamkalani et al., 2013) made use
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TABLE 1 Statistical parameters with regard to input and output parameters.

Parameters Symbol Unit Min Max Avg

Porosity PHI Dimensionless (%) 1.26 32.13 13.925

Absolute permeability Ka mD 0.017 4,479.557 148.585

Water saturation Sw Dimensionless 0.018 1 0.641

True resistivity RT Ohm.m 0.3731 2984.047 38.932

Resistivity Index RI Ohm.m 0.25 360 7.641

Saturation exponent n - 0 10.12 1.731

of least square SVM (LSSVM) to put forth a new scaling equation
aiming at predicting asphaltene precipitation with adequate results.

The effect of input parameters on the output variable can be
identified by the concept of “sensitivity analysis” (Helton et al.,
2005; Patelli et al., 2010). Sensitivity analysis is imperative when one
attempts to verify a model, and uncovers how much robust the
results of a model is (Christopher Frey and Patil, 2002). Disparate
methodologies are used for sensitivity analysis and uncertainty
including response surface, differential analysis, fast probability
integration, sampling-based techniques, and Fourier amplitude
sensitivity test (Iman et al., 1981).

In this study, at first a sensitivity analysis is performed in order to
determine the sensitive parameters via relevancy factor.Then, several
modeling approaches such as radial basis function neural network
(RBF-ANN), multilayer perceptron neural network (MLP-ANN),
ANFIS and LSSVM are put forth to estimate saturation exponent. For
this purpose, first, special core analysis (SCAL) reports are collected
from 28 wells from a number of middle eastern oil and gas reservoirs
and the data needed to estimate the saturation exponent is extracted
fromexistingmethods, including 653 saturations exponent datapoints
as a function of porosity (PHI), absolute permeability (Ka), water
saturation (Sw), true resistivity (RT), and resistivity index (RI). Next,
around 75% and 25% of the gathered datapoints are divided in two
subsets including training and testing, respectively, for the intelligent
modelingprocess.Thereliability andaccuracyof thegeneratedmodels
are then examined via statistical and graphical approaches.

2 Database

The databank used in this paper contains 653 core saturation
data as a function of porosity (PHI), absolute permeability
(Ka), water saturation (Sw), true resistivity (RT), and resistivity
index (RI). Table 1 tabulates the statistics associated with the utilized
data. Notice that within the realm of petrophysics which is the globe
of measuring, estimating, and calculating underground geological
formation data, it is widely accepted that rock saturation exponent is
related to rock porosity, absolute permeability, water saturation, true
resistivity and resistivity index, though the direction andmagnitude
are quite different for these parameters. This is why the input
parameters in this study include porosity, absolute permeability,
water saturation, true resistivity, and resistivity index.

3 Model details

3.1 Prediction methods

These days, machine learning is being used in various fields to
predict key parameters (Zhou et al., 2022; Hu et al., 2024; Jiao et al.,
2024). This paper is to apply machine learning algorithms to
establish prediction models to model saturation exponent as a
function of porosity, absolute permeability, water saturation, true
resistivity and resistivity index. A brief introductory of the utilized
machine learning algorithms is put forth below.

3.1.1 Artificial neural network (ANN)
As a robust modeling methodology, artificial neural network

(ANN) is capable of adopting to surrounding variation,
efficiency enhancement, and training/learning from experience
(Mohanraj et al., 2015). The most rudimentary element in ANN
structure is recognized as neurons which are organized in disparate
layers, and linked by connections. Two typical sorts of ANNs are
namedmultilayer perceptron (MLP-ANN) and radial basis function
(RBF-ANN) networks. MLP-ANN is generally characterized as
three different layers of input, hidden, and output. Each hidden
layer contains a number of neurons which are required to become
optimized. In fact, the number of hidden layers, and neurons in
each of them, and ultimately the optimal structure ofMLP-ANN are
attained through optimization techniques. When handling simple
problems, one-hidden layer bearingMLP-ANNmay be satisfactory;
however, one should use a multi-hidden layer MLP-ANN when
the data under study exhibit complicated behavior (Hemmati-
Sarapardeh et al., 2016). The neurons prevailing in each hidden
layer are connected with the neurons existing in the preceding and
subsequent layers through interconnecting weight vectors. Each
node value ismultiplied via weight vector to estimate the proceeding
node value located in the hidden/output layers associated with the
implemented interconnection. Then, these values are summed up.
Subsequently, a transfer function attempts to screen the summation
of the achieved resultant with a bias coefficient. The screened
value is ultimately assigned to a desirable neuron (Hemmati-
Sarapardeh et al., 2018). It is worth noting that while “Linear”
function is mainly put into practice in output layer, “Sigmoid” and
“Tanh” transfer functions are generally utilized in intermediate
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FIGURE 1
Sensitivity analysis on the saturation exponent.

FIGURE 2
Mean squared error (MSE) versus iteration number for Levenberg Marquardt-trained MLP-ANN model.

layers. These functions are mathematically expressed as Eqs 1–3:

Tanh = Tan sig : g(x) = e
x − e−x

e−x + ex
(1)

Sigmoid = Logsig : g(x) = ex

ex + 1
(2)

Linear = Purelin : g(x) = x (3)

In which e is the Euler number and x being the
input value. Taking into account “Sigmoid” and “Linear”

transfer functions related to intermediate and output
layers respectively, and a general network structure with
solely one hidden layer, one may compute the output
according to Eq. 4:

Output = b2 + (Logsig(b1 + x×w1)) ×w2 (4)

Wherein w1/b1 and w2/b2 represent weight bias
coefficients relating to intermediate and output layers,
correspondingly.
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TABLE 2 Optimum bias and weight values based upon the developed MLP-ANNmodeling technique.

Neuron Input layer 1 Output layer

Weight Bias Weight Bias

1 −0.05239 0.003446 −0.07232 −0.23252 0.375631 2.681785 59.78298 58.2503

2 −73.8865 41.36111 −13.7969 −22.6315 34.5756 60.39265 18.43787

3 5.829087 −3.79052 5.273297 −14.1798 5.713449 9.4904 −0.70786

4 −0.02521 −0.28369 1.203023 −2.44554 −28.8115 −35.0474 −405.401

5 0.013985 0.340031 −1.26759 2.762413 30.0377 35.37726 −111.376

6 −72.85 40.69215 −13.5779 −25.5255 34.49124 56.65753 −18.4753

7 −0.07138 −0.39576 2.964897 −0.03899 2.127022 −3.60434 47.1938

8 −0.07292 0.001222 −0.40556 −0.33324 0.379454 −3.30804 −56.0531

TABLE 3 Properties of generated models for the purpose of predicting saturation exponent.

MLP-ANN ANFIS

No. Input neuron layer 5 Membership Function Gaussian

No. Hidden neuron layer 1 8 Number of data used for training 139

No. Output neuron layer 1 Number of data used for testing 46

Hidden layer activation function Logsig Optimization method PSO-GA

Output layer activation function Purelin Population size 90

Optimization method Levenberg-Marquardt Iteration 1,500

Number of data used for training 139 C1 1

Number of data used for testing 46 C2 2

Number of max iterations 1,500 LSSVM

Kernel function RBF

γ 65532.7266

RBF-ANN σ2 0.12285

No. Input neuron layer 5
Number of data used for training 139

No. Hidden neuron layer 1 50

No. Output neuron layer 1
Number of data used for testing 46

Hidden layer activation function RBF

Output layer activation function Purelin
Population size 85

Optimization method Levenberg-Marquardt

Number of data used for training 139
Iteration 1,500

Number of data used for testing 46
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FIGURE 3
Comparison of target and modeled values by various modeling techniques: (A) GA-ANFIS, (B) PSO-ANFIS, (C) LSSVM, (D) MLP-ANN, (E) RBF-ANN.

3.1.2 Adaptive neuro-fuzzy inference system
(ANFIS)

Network-based or adaptive neuro-fuzzy inference system
(ANFIS) has widely been implemented in chemical and petroleum
engineering disciplines as a predictive modeling approach. In
order to overcompensate fuzzy system and neural network, Jang
put forth ANFIS as a five-layered algorithm. ANFIS topology
may be trained through back propagation and hybrid learning
algorithms (Afshar et al., 2014).

3.1.3 Least squares support vector machine
(LSSVM)

Support vector machine (SVM) method categorized under
machine learning discipline ismainly used for problem classification
and regression analysis (Yao et al., 2006; Baylar et al., 2009).
SVM-based techniques are more advantageous than ANN-
based techniques because: overfitting issues are less likely to
happen; the resultant model is more generalized and number
of tuning coefficients are small; and network topology is not
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FIGURE 4
Regression plots using various modeling methods: (A) GA-ANFIS, (B) PSO-ANFIS, (C) LSSVM, (D) MLP-ANN, (E) RBF-ANN.

required to be determined. However, recent examinations have
shown that the major shortcoming of SVM technique is the
largescale quadratic programming problem (Van Gestel et al.,
2002). To overcome the mentioned difficulty, a newer form
of SVM, namely, least square SVM (LSSVM) has been
developed. In this method, each embattled phenomenon is
modeled using linear programming rather than quadratic
equations. Consequently, any problem may be dealt with less
intricacy (Ghiasi et al., 2014).

3.2 Optimization methods

3.2.1 Particle swarm optimization (PSO)
Eberhart and Kennedy (Eberhart and Kennedy, 1995)

developed a population-based technique known as particle swarm
optimization (PSO) behaviorally suggestive to population of animals
including birds and insects. In this method, locations and velocities
are initially assigned so as to initialize the preliminary population.
Subsequently, each particle is evaluated via regression and statistical
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FIGURE 5
Relative deviation between target and modeled values: (A) GA-ANFIS, (B) PSO-ANFIS, (C) LSSVM, (D) MLP-ANN, (E) RBF-ANN.

function analysis. During the simulation, particle location and
velocity values are always being modified until a stopping criterion
called fitness rate is reached, which terminates the mathematical
procedure of PSO algorithm (Eberhart et al., 1996; Coulibaly and
Baldwin, 2005).

3.2.2 Genetic algorithm (GA)
As an evolutionarymethod, genetic algorithm (GA)was initially

introduced for the purpose of problem optimization. Promising
evolution of GA has been achieved using Mendel, Weisman, and
Darwin’s theory genetics in this methodology (Bäck, 1997). The

major property ofGAalgorithm is the detection of a different zone in
a particular region (Hassan et al., 2005).This techniquemakes use of
inversion, crossover,mutation as the genetic operators.The balanced
between formation exploitation an exploration of new zones are
supported by the genetic operations. GA strategy’s first stage is to
initialize a population and specify the problem.Then, the generated
potential solution via the initial population is scrutinized using a
pre-defined fitness function. In the next step, the populations are
categorized in accordance with each fitness value. Then, individual
population is made through mutation and crossover operators.
Honoring the stopping criterion marks the end of GA algorithm.
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TABLE 4 Statistical parameters for various modeling methods in this study.

Model R2 ARE (%) MSE RMSE STD

MLP-ANN

Train 0.988 3.780 0.009746113 0.0987 0.1242

Test 0.991 2.716 0.006937962 0.1377 0.0947

Total 0.989 3.515 0.00904787 0.1377 0.1174

RBF-ANN

Train 0.990 3.946 0.009183527 0.0958 0.0679

Test 0.988 3.405 0.008492303 0.0922 0.0687

Total 0.989 3.811 0.009011655 0.0922 0.0680

PSO-ANFIS

Train 0.888 11.605 0.089156981 0.2986 0.2184

Test 0.908 11.453 0.08663808 0.2943 0.1764

Total 0.893 11.567 0.08853066 0.2943 0.2087

GA-ANFIS

Train 0.696 21.409 0.273356261 0.5228 0.3752

Test 0.692 19.197 0.20856232 0.4567 0.2983

Total 0.690 20.859 0.257245335 0.4567 0.3570

LSSVM

Train 0.999 1.194 0.001050471 0.0324 0.0261

Test 0.998 1.455 0.002328602 0.0483 0.0397

Total 0.998 1.259 0.001368276 0.0483 0.0302

3.2.3 Levenberg-Marquardt (LM)
Levenberg-Marquardt (LM) methodology was presented when

the traditional Newton technique was amended for the purpose of
problem minimization efficiently. In this method, Hessian matrix,
expressed below, is implementedwithin the equation ofNewton-like
weight update (Eq. 5):

xk+1 = xk − (JJT + ηI)
−1eJT (5)

Inwhich η, x, e and J denote a scalar controlling learning process,
weight of neural network, vector representing residual error, and
Jacobian matrix, respectively (Daliakopoulos et al., 2005). Although
LM optimization may only be implemented for small networks
since it seeks large computations and memory occupations (Maier
and Dandy, 1998), myriad reported applications in the literature
report this technique promising andworthwhile (Anctil et al., 2004).
The observed advantages of LM method over other techniques
include higher convergence speed, less possibility of local minima
entrapment, and larger stability and efficiency (Toth et al., 2000).

4 Model development

In the present paper, the acquired databank was initially
categorized into two subsets of train (around 75% of the entire
dataset), and testing (around 25% of the entire dataset), respectively.
Training dataset was utilized to construct themodel, then to validate
the developed model, test dataset was made use of. It is worth

noting that to cancel out the effect of large variations existing in the
databank, the data were first normalized according to the formula
defined below (Eq. 6):

nnorm =
n− nmin

nmax − nmin
(6)

Wherein n, nmax, nmin, and nnorm indicate actual datapoint,
dataset maximum value, dataset minimum value, and normalized
datapoint.

To conduct assessment of the generated models in this paper,
a number of statistical formulations including mean squared error
(MSE), standard deviation of error (SD), root mean squared error
(RMSE), and coefficient of determination (R2), mathematically
indicated below, are used (Eqs 7–10):

MSE =

N

∑
i=1
(nexpi − n

cal
i )

2

N
(7)

R2 =

(
N

∑
i=1
(nexpi − n

exp
i )(n

cal
i − n

cal
i ))

2

N

∑
i=1
(nexpi − n

exp
i )

2(ncali − n
cal
i )

2
(8)

RMSE =(

N

∑
i=1
(nexpi − n

cal
i )

2

N
)

0.5

(9)
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SD = ( 1
N− 1

N

∑
i=1
(
nexpi − n

cal
i

nexpi

)
2

)
0.5

(10)

In the above four equations, N is the datapoint, and superscripts
cal, and exp indicate calculated by the developed model and
experimental saturation exponent, respectively. The mean value for
each dataset is denoted by n.

5 Results and discussion

To indicate to what an extent each input variable affects the
output variable, sensitivity analysis is performed here. For this
purpose, we use the concept of relevancy factor which can lie within
−1 to 1. The relevancy factor is an index, demonstrating the direct
and indirect relationship of each input parameter with the target
variable. In addition, its value determines the magnitude of such
effects. In this way, a positively and negatively derived relevancy
factormeans direct and indirect, respectively, of the input parameter
under study with the target variable. Moreover, a larger value of
this parameter for a specific input variable simply shows that it
is more influential over the output parameter. Relevancy factor is
defined as (Eq. 11):

rj =

n

∑
i=1
(xj,i − xj)(yi − y)

√
n

∑
i=1
(xj,i − xj)

2
n

∑
i=1
(yi − y)

2

(11)

The findings associated with sensitivity analysis on
the saturation exponent using the relevancy concept is
illustrated in Figure 1. As may be seen, among disparate input
parameters, water saturation and porosity are the most and least
effective factors on the saturation exponent. Moreover, we can
conclude in contrast to absolute permeability and water saturation
parameters, porosity, true resistivity and resistivity index factors are
directly related with the saturation exponent.

In the present communication, disparate intelligent modeling
techniques such as RBF-ANN, MLP-ANN, GA-ANFIS, PSO-
ANFIS, and LSSVMwere made use of to model saturation exponent
(n) aided by a number of optimization methods including PSO,
GA, and LM. Levenberg Marquardt (LM) technique was linked
with MLP-ANN. MSE values versus iterations within the MLP-
ANN structure are demonstrated in Figure 2. As can be seen, the
MSE value approaches to lower values as the number of iterations
grow and the minimum MSE is found at the iteration number
equal to 1,500.

The adjusted bias and weight coefficients obtained by LM
method for the output and hidden layers are tabulated in Table 2.
Again, these are the optimum values for the LM structure.

In the RBF-ANN technique, we selected radial basis
function as the hidden layer transfer function, and LM as the
optimizing algorithm. The details of the constructed models are
indicated in Table 3. This table illustrates number of neurons,
internal functions, and tuning parameters for each modeling
technique put forth in this study. Notice that these are the structure
details that were obtained for the optimum structures.

The modeled and target saturation exponent values
are plotted versus data index by various models
in Figure 3.

Figure 3 demonstrates the robustness of the presentedmodels in
predicting the saturation exponent. To more thoroughly showcase
the capability of these introduced models, regression plots for
both the testing and training datasets are provided in Figure 4,
illustrating the performance of the developed modeling techniques.
These plots visually depict the correlation between the predicted
and actual values, allowing for a clear assessment of the models’
accuracy and reliability. The training dataset results indicate how
well the models have learned from the provided data, while the
testing dataset results offer insights into their generalizability to
unseen data. The close alignment of the regression lines to the 45-
degree line in the plots suggests a high degree of accuracy in the
predictions.

Any model with a higher coefficient of determination (R2)
is considered more reliable; in this context, the datapoints are
more closely aligned around the 45-degree line. The results
indicate that GA-ANFIS is less accurate compared to other
models such as MLP-ANN, RBF-ANN, and LSSVM, which
exhibit higher R2 values. Following RBF-ANN, MLP-ANN, and
LSSVM, the ANFIS-PSO model is the next most precise, with
R2 values of 0.90 and 0.88 for the testing and training datasets,
respectively.

Figure 5 displays the relative error against the target
saturation exponent points for all the developed models.
Among these models, MLP-ANN, RBF-ANN, and LSSVM
show results that are tightly clustered around the zero line.
Additionally, several statistical parameters such as Mean
Squared Error (MSE), Root Mean Squared Error (RMSE),
Standard Deviation (STD), and R2 are presented in Table 4
for the developed models. According to this table, LSSVM,
RBF-ANN, and MLP-ANN have the lowest values of SD,
RMSE, and MSE compared to other developed models, which
means that the aforementioned models are the most accurate
amongst all models.

6 Conclusion

In the present study, several modeling techniques such as
RBF-ANN, LSSVM, MLP-ANN, MLP-ANN, PSO-ANFIS, and
GA-ANFIS were implemented to predict the saturation exponent
parameter in terms of well log data. These modeling techniques
were optimized through the use of PSO, GA, and ML algorithms. A
databank of petrophysical data gathered for a number of middle
eastern oil and gas reservoirs was used for this purpose. The
gathered databank was split into two subsets to test and train the
constructed models. Several statistical factors along with graphical
plots were employed to assess the generated models. The results
demonstrated that LSSVM, RBF-ANN, andMLP-ANN are themost
accurate models with regard to prediction of saturation exponent as
they are characterized with R2=0.9815-0.9983 and RMSE=0.0409-
0.1410. The sensitivity analysis additionally indicated that
saturation exponent has the highest dependency upon the
water saturation.
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