
TYPE Technology and Code
PUBLISHED 06 August 2024
DOI 10.3389/feart.2024.1433662

OPEN ACCESS

EDITED BY

Ebrahim Fathi,
West Virginia University, United States

REVIEWED BY

Mark Lindsay,
Commonwealth Scientific and Industrial
Research Organisation (CSIRO), Australia
Tom Horrocks,
University of Western Australia, Australia

*CORRESPONDENCE

Samuel T. Thiele,
s.thiele@hzdr.de

RECEIVED 16 May 2024
ACCEPTED 25 July 2024
PUBLISHED 06 August 2024

CITATION

Thiele ST, Kirsch M, Lorenz S, Saffi H, El
Alami S, Contreras Acosta IC, Madriz Y and
Gloaguen R (2024), Maximising the value of
hyperspectral drill core scanning through
real-time processing and analysis.
Front. Earth Sci. 12:1433662.
doi: 10.3389/feart.2024.1433662

COPYRIGHT

© 2024 Thiele, Kirsch, Lorenz, Saffi, El Alami,
Contreras Acosta, Madriz and Gloaguen. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Maximising the value of
hyperspectral drill core scanning
through real-time processing
and analysis

Samuel T. Thiele1*, Moritz Kirsch1, Sandra Lorenz1, Houda Saffi2,
Safia El Alami3, Isabel Cecilia Contreras Acosta4, Yuleika Madriz1

and Richard Gloaguen1

1Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology,
Freiberg, Germany, 2Ai Movement - International Artificial Intelligence Center of Morocco, University
Mohammed VI Polytechnic, Rabat, Morocco, 3IAV Hassan II, School of Geomatics and Surveying
Engineering, Rabat, Morocco, 4TheiaX GmbH, Freiberg, Germany

Hyperspectral imaging is gaining widespread use in the resource sector, with
applications inmineral exploration, geometallurgy andminemapping. However,
the sheer size of many hyperspectral datasets (>1 Tb) and associated correction,
visualisation and analysis challenges can limit the integration of this technique
into time-critical exploration and mining workflows. In this contribution, we
propose and demonstrate a novel open-source workflow for rapidly processing
hyperspectral data acquired on exploration drillcores. The resulting products
are adaptable to the varied needs of geologists, geophysicists and geological
engineers, facilitating better integration of hyperspectral data during decision
making. These tools are applied to process hyperspectral data of 6.4 km
of exploration drill cores from Stonepark (Ireland), Collinstown (Ireland) and
Spremberg (Germany). The results are presented via an open-source web-
viewing platform that we have developed to facilitate easy on and off-site
access to hyperspectral data and its derivatives. We suggest that maximum
value can be extracted from hyperspectral data if it is acquired shortly after
drilling and processed on-site in real time, so that results can be quickly
validated and used to inform time-critical decisions on sample selection,
geological interpretation (logging) and drillhole continuation or termination.
This timeliness and accessibility is key to ensure rapid data availability for decision
makers during mineral exploration and exploitation. Finally, we discuss several
remaining challenges that limit the real-time integration of hyperspectral drill
core scanning data, and explore some opportunities that may arise as these rich
datasets become more widely collected.
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1 Introduction

The need for metalliferous raw materials is growing rapidly
(Rankin, 2011), yet exploration successes are simultaneously
becoming less frequent (Okada, 2021). Although efficient resource
use (and re-use) can make-up for some of this looming supply
shortfall, innovative exploration and characterisation techniques are
required to identify previously missed or otherwise undiscovered
deposits (of which there are likely many; Johnson et al., 2014),
and more efficiently process existing resources using adaptive ore-
sorting and processing techniques (Dominy et al., 2018).

Various innovative technologies are being developed to meet
these needs, including novel geophysical approaches (e.g., full-
tensor gravimetry and magnetics, muon tomography, novel seismic
and electric approaches; Bryman et al., 2014; Malehmir et al., 2012;
Pilkington, 2014; Schmidt et al., 2004) and characterisationmethods
(e.g., hyperspectral and XRF core-scanning; Barker et al., 2021;
Kuhn et al., 2016; Linton et al., 2023). Of these, hyperspectral
is one of the most versatile, with applications ranging in scale
from satellite and airborne exploration (Cudahy et al., 2008;
van der Meer et al., 2012; Bedini, 2017; Thiele et al., 2022),
outcrop characterization and mine-face mapping (Kurz et al.,
2011; Kirsch et al., 2018; Thiele et al., 2021; Kirsch et al., 2023),
drill core scanning (Barker et al., 2021; De La Rosa et al., 2021;
Géring et al., 2023; Linton et al., 2023) and petrographic sample
characterisation (Nikonow et al., 2019; van Ruitenbeek et al., 2019).
These all leverage the ability of hyperspectral techniques to
rapidly, remotely and safely acquire continuous mineralogy data
over large areas, and have resulted in innovative applications for
mineral exploration (De La Rosa et al., 2021; Géring et al., 2023),
geometallurgy (Barton et al., 2021), and sensor-based sorting for
primary (Tuşa et al., 2020) and secondary (Paclík et al., 2006)
resource streams.

The resulting “big data” contain many hundreds of highly-
correlated spectral bands, which quantify the absorption or
emission features characteristic of a wide range of materials,
includingmany ore, gangue and alterationminerals (Laukamp et al.,
2021). However, rapid and accurate on-site processing of these
big data remains an outstanding challenge. Off-site work by
hyperspectral experts, and integration with, e.g., mineralogical
calibration data, will likely always be needed to gain full value
from hyperspectral data, however in this contribution we develop
a framework for providing real-time data processing, visualisation
and (customisable) preliminary analysis products to facilitate better
integration with often time-critical exploration decision making.

In the context of mineral exploration and geometallurgy,
large hyperspectral datasets are currently applied to maximise the
information extracted from expensive drill core samples, by:

1. Capturing an objective digital record of drill cores and
their mineralogical composition and lithological variability
(Acosta et al., 2019; Barker et al., 2021; e.g.; De La Rosa et al.,
2021; Gairola et al., 2023; Rotem et al., 2023), i.e., data-driven
geological logging.

2. Identifying alteration footprints that can help
vector towards ore-deposits, including often cryptic
changes in mineral chemistry (Arne et al., 2016;
Lypaczewski et al., 2019; Géring et al., 2023), i.e., exploration
vectoring.

3. Facilitating objective and consistent classification into
lithological or alteration types (e.g., De La Rosa et al., 2022)
for better geomodelling, i.e., domaining.

Each of these applications benefit from the wide-coverage
and objective characterisation offered by hyperspectral core scan
data. However, optimal use requires complex and computationally
expensive preprocessing, correction and data-analysis workflows,
making it a challenge to deliver interpretable data on, e.g.,
mineralogy in a timely fashion. This then limits the ability of
hyperspectral data to be integrated with time-critical workflows,
such as drilling, logging and sampling, especially as many
exploration companies do not have in-house (or on-site)
hyperspectral expertise.

Instead, hyperspectral data tends to be acquired, corrected,
analysed, interpreted, visualised and delivered by service companies
and consultancies (e.g., Terracore, Corescan, TheiaX, GeologicAI,
Hyperspectral Intelligence, etc.). Several of these companies have
developed or are developing (near) realtime processing solutions,
however (to our knowledge) most industrial applications of
hyperspectral core scanning rely on off-site data processing, with
results typically only available after days to months. As a result,
much of the value of hyperspectral data is lost, because decisions
on drilling, sampling, and geological interpretation often take place
before the processed hyperspectral data becomes available. This
implies that the preliminary geological interpretations used to
inform these decisions currently rely on potentially inconsistent
(and often junior) geologists conducting the initial core logging.
Simultaneously, the delay between hyperspectral data acquisition
and analysis limits the ability of hyperspectral data suppliers
to perform essential quality control and geological validation of
hyperspectral predictions, as access to core become difficult if results
only become available after logging has been completed and the core
material put into storage.

In this contribution we aim to demonstrate that maximum
value can be extracted from hyperspectral core scanning if results
can be delivered in real time, and present a suite of open-
source software tools that we have developed to facilitate the
uptake of hyperspectral core scanning data by industry, geological
surveys and academia. We then explore the potential of this
real-time processing framework by envisaging a core shed in
which hyperspectral data is fully integrated into the exploration
workflow, allowing rapid interpretation, hypothesis testing, data
driven sampling, hyperspectrally enhanced logging and self-
updating 3D models.

2 Methods: a framework for real-time
processing

Hyperspectral data acquired with a scanning system need to
be pre-processed and corrected before accurate reflectance spectra
can be derived (Linton et al., 2023). Typically, this involves a chain
of 1) spectral and geometric corrections, 2) coregistration with
sensors covering, e.g., different wavelength ranges, and often 3)
cropping and masking to isolate the material of interest (drill
cores). Once these correction steps are completed, the resulting
stack of reflectance spectra can be analysed (e.g., Barker et al., 2021;
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De La Rosa et al., 2021; Géring et al., 2023) to 4) derive qualitative
(e.g., band ratios, minimum wavelength maps) or quantitative
(e.g., supervised predictions of lithology or mineralogy) results
and 5) generate visualisations (e.g., as RGB false-colour composite
images). These results, and the spectral data from which they
are generated, then need to be saved in some form of database,
alongside crucial metadata on, e.g., drillhole ID, scanned depth
range, etc.

To achieve real-time processing, each of these computationally
intense steps (which can involve the manipulation of several
gigabytes worth of spectral data), need to be completed within
100–200 s, the approximate time taken to scan one tray of drill
core samples. Some scanners also containmultiple sensors (covering
different spectral ranges), increasing the computational load, but
also allowing parallel computation. Lastly, the data and derived
results need to be stored in a consistent data structure that allows
for interactive visualisation, analysis and, e.g., mosaicing of results
at the drillcore or project scale.

2.1 File-based workflows with crunchy

To conduct the real-time pre-processing, correction and analysis
tasks outlined above, we have developed crunchy (https://github.
com/hifexplo/crunchy); a python-based open-source asynchronous
processing pipeline. At its core, crunchy (Figure 1) watches
input directories for new files or directories that match user-
defined patterns and then launches custom processing scripts
(termed workflows), using a pool of worker threads to facilitate
parallelisation. During hyperspectral data acquisition, a python
utility (crunchyMirror) running on each sensor copies data to
a storage and processing computer (in our implementation a
relatively modest PC with 64 GB RAM and a 4.5 GHz AMD Ryzen
7700X 8-Core CPU) over a local LAN network, where a dedicated
thread (crunchyScout) repeatedly checks the size of the new files or
directories. Once file size has stabilised (indicating data copying is
complete), crunchyMirror passes the new file or directory to a set
of (user-defined) fileTriggers, which are represented in code using
decorated functions that can instruct crunchy to:

1. Ignore the file,
2. Flag the file as relevant but incomplete, so that crunchy

continues monitoring it but waits until the file size has
increased further,

3. Trigger a processing workflow, in which the file, user-defined
data and adjustable settings are passed through a list of
processing functions (hereafter referred to as aworkflow) using
a separate worker thread.

We have designed crunchy to be sensor and application agnostic,
with all sensor-specific code implemented via importable workflow
functions and decorated fileTriggers. In our implementation for
the Specim SiSuROCK core scanner (see Section 3), various
functions are defined and chained together to preprocess and
sensor-correct each image, coregister everything, compute
preliminary hyperspectral data products for interpretation (band
ratio composites, minimum wavelength maps and false-colour
images), and save the results in a consistent data structure.
Note that the lack of a robust automatic masking algorithm (as

discussed in Section 4) limits this part of the workflow to relatively
quick analyses that treat each pixel in the image independently,
so that there are no artifacts from including (large numbers of)
background pixels.

The core functionality of crunchy is exposed via a HTTP
server, which provides an interactive browser-based user interface
for monitoring progress and controlling workflow settings. The
available settings are defined as a python dictionary included in each
workflow script, allowing seamless integration of customparameters
with the HTML user interface. Worker threads can also report
processing activity and flag errors, which are then logged in theGUI,
facilitating important preliminary QAQC and error identification
during data acquisition.

2.2 Data management and visualisation

Hyperspectral drill core databases are inherently large, often
many terabytes. They can contain hundreds or thousands of
hyperspectral images, often from multiple sensors, associated
metadata (e.g., box start and end depths, band positions) and
analysis results. Key related data, such as borehole surveys,
assays, geochemistry, petrophysics or sample information, are
often also relevant, so need to be stored in (or linked to) the
data structure. Lastly, to enable real-time processing, this data
structure needs to be modular and self-consistent, such that offline-
scanning activities can easily be synchronised with a centralised
storage system.

We have developed a python utility (hycore; https://github.
com/hifexplo/hycore) that meets these needs. For simplicity,
speed and flexibility, we use a simple hierarchical directory
structure (Figure 1B) that can be constructed, managed and
processed using hycore. Metadata is stored as <key>:<value> pairs
within header text files (akin to the widely used ENVI format
for hyperspectral data), while preview or analysis results are
stored as .png files where possible, allowing rapid visualisation.
Hyperspectral data (or other large arrays) are stored in a binary
format (ENVI or numpy).

This approach, while slightly inefficient in terms of storage
size (due to the lack of compression), facilitates: 1) storage of
multiple data types for each scanned box, 2) fast read/write
operations, 3) consistency over potentially extensive periods
of data acquisition and, crucially, 4) flexible adjustment and
editing of, e.g., erroneously acquired data. The storage of
hyperspectral data in distributed files (each representing a single
core tray) also facilitates parallel processing and out-of-core
analysis when working at the borehole (or larger) scale. Such
parallelism and memory management are essential when analysing
multi-Tb data.

On top of this basic data structure, hycore also provides tools
for assembling hyperspectral data and derived results into mosaics
of one or more drillholes, for, e.g., visualisation, domaining or
3-D modelling. Mosaicing is achieved using a reproducible and
flexible templating system: each pixel in a template image records the
source box (index) and pixel therein (x, y coordinates) from which
data should be extracted when assembling a mosaic. This allows
rapid and memory-optimised assembly of geometrically identical
mosaics presenting data from different sensors or analysis results.
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FIGURE 1
Schematic outline of the processing (A), data storage and visualisation (B) framework we have developed to achieve real time processing. Data is
acquired using a pool of sensors (i) and copied over a local area network to the processing and data storage server (ii) using CrunchyMirror. These files
are then examined by CrunchyScout and, once fully copied, passed to a fileTrigger that, based on the data type, triggers a custom processing workflow
(iii). This workflow is executed in a pool of worker threads that allow for parallel processing (e.g., from different sensors). Workflow functions also write
HSI data and analysis results to the data server, using hycore (iv) to ensure consistent data organisation. Processed results become immediately
available for browser-based visualisation via a HTTP web visualisation server (hywiz).

Templates images can be constructed in arbitrarily complex ways,
generally involving 1) extraction rows of core from each box,
2) assigning a depth to the top of each row based on the box
metadata, and 3) mapping of pixels onto the Template using various
stacking or distribution techniques (e.g., pole and fence mosaics
in which the cores are arranged lengthwise or as stacked boxes,
respectively).

Lastly, we have also developed a HTTP server to accompany
hycore, called hywiz (https://github.com/hifexplo/hywiz) that
can 1) serve hyperspectral visualisations in an interactive
fashion through any web browser, including during data
acquisition and real-time processing 2) facilitate data entry during
logging activities or quality control, by allowing the interactive
addition of metadata or measurement locations, 3) export static
websites that allow for easy distribution or web hosting. These
visualisation tools can be seen in action here, and also serve
as the basis for the augmented reality tool described in the
following section.

2.3 AR-enhanced logging and sampling

Relatively recent advancements in the capabilities of mobile
devices have facilitated the emergence of technologies such as
Augmented Reality (AR; Carmigniani and Furht, 2011). This
technology seamlessly overlays information on top of the real world,
providing novel ways to interact with the environment. AR systems
are based on the generation of real-time interactive graphics by
overlaying live video feed with computer-generated imagery using a
tracking system capable of determining the user’s viewpoint position
and basic scene geometry (Carmigniani and Furht, 2011).

In the context of hyperspectral drill core scanning, these
AR systems could be applied to help better integrate the often-
complex results from hyperspectral analyses with tactile core
logging, sampling or, e.g., XRF measurement activities. We have
built a prototype system for the iPad platform (Figure 2) that
allows the real-time processing results generated using crunchy
and hywiz to be dynamically overlain on the cores using the
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FIGURE 2
False colour composite of the bands at 3000, 3400 and 3800 nm
from the Specim FX50 midwave-infrared sensor overlain on (true
colour) video feed of a core box (A). The red circles are adjustable AR
markers used to adjust alignment between the overlain image and the
video feed. Once alignment is achieved, the tablet can be moved into
any orientation while continuing to track the box (B). Different
visualisations can also be easily toggled, to rapidly compare
hyperspectral results and visual observations of, e.g., colour and
texture. A video showing the use of this AR system is
included in the Supplementary Material.

ARKit framework (Linowes and Babilinski, 2017). Bridging the gap
between digital data and physical samples, this approach allows a
real-time interaction with the hyperspectral data and enhances the
user’s ability to identify and analyse key features.

Our prototype uses a QR-code to quickly retrieve box details,
before querying a (locally networked) hywiz server for the
available visualisation products, and using adjustable markers (red
spheres in Figure 2) to identify the box corners. Overlay images
can then be selected and overlain for visualisation. Although we
have not implemented it, such a system could also be extended
to, for example, facilitate data entry by allowing easy addition of
annotations, samples or measurement locations to the hyperspectral
image data by tapping on the AR overlay. The LogAR project
has developed similar capability, albeit without the integration
of hyperspectral data (https://www.projectlive.org.au/exploration-
metaverse).

3 Results: a real-time case study

To test and demonstrate our real time hyperspectral processing
workflow, we have acquired hyperspectral data covering >6 km
of exploration drill cores from Stonepark (County Limerick,
Ireland), Collinstown (County Westmeath, Ireland) and Spremberg
(Brandenburg, Germany) as part of the Horizon Europe project
Vector (https://vectorproject.eu/). These cores (Table 1) were
selected to better understand sediment-hosted lead, zinc and copper
mineral systems, with a particular emphasis on potential distal

signatures that could be used to “vector” towards mineralisation
during exploration.

To ensure high quality hyperspectral data, the cores were
(where possible) cut, cleaned and levelled prior to scanning.
Although laborious, this helps guarantee good quality spectra
(Damaschke et al., 2023), especially in the mid- and long-wave
spectral ranges, although for larger core diameters scanning
uncut cores is also possible. A Specim SiSuROCK hyperspectral
drill core scanner (Figure 3) fitted with four cameras covering
the visible (RGB-Jai), visible-near infrared to shortwave infrared
(380–2500 nm; AisaFENIX), midwave infrared (2700–5300 nm;
FX50) and longwave infrared (7700–12300 nm; AisaOWL) spectral
ranges (Table 2) was then used to acquire the hyperspectral
data. Two to three core boxes (3–6 m of core) fit in the
sensor per scan (Figure 3C).

At the start of each scanning session, a calibration image
containing six fiducial codes was acquired, which our crunchy-based
workflow used to automatically estimate the camera offsets and
compute an affine transform for coregistering images from each
sensor.The FX50 sensor was used as the base for this coregistration,
as it has the highest spatial resolution. High-resolution RGB
images were also coregistered, but with 6 pixels for every 1
hyperspectral pixel.

Next, the coregistered image stack was subject to a series
of hyperspectral analyses to compute a set of real-time results
containing spectral indices, false-colour composites and minimum
wavelength maps that constrained the distribution of carbonate
and clay minerals, iron speciation and water content. These
results were stored as PNG files and used to create interactive
hywiz visualisations (Figure 4A) that allowed 1) on-site QAQC
of the hyperspectral data quality (by interactively checking the
spectra and associated derivative data, such as band ratios and
minimum wavelength maps), 2) hypothesis testing based on
hyperspectral observations, and 3) targeted sampling formineralogy
characterisation based on the hyperspectral results. This latter
data-driven sampling approach will be the subject of a future
publication.

The workflow described by Arbash et al. (2023) was then
used to generate automated masks separating the drill cores
from the surrounding boxes (and scanning table). This approach
applies the Segment Anything Model (Kirillov et al., 2023), a
deep convolutional neural network that creates generic object
segmentations, to false-colour composite images from the FX50
sensor and then identifies drill cores by their geometric features.
While this approach performed surprisingly well (given its relative
simplicity), manual vetting and correction of the resulting masks
was required.

An interactive plugin for the open-source Napari
image viewer (Chiu and Clack, 2022) was developed to help quickly
check these masks and correct them when necessary. It also allows
the interactive interrogation of image spectra, and addition of
annotations (points and polygons) that document, for example,
sample locations. The plugin, and its associated documentation, is
available at https://github.com/hifexplo/napari-hippo.

After generating these masks (i.e., no longer in real time, as the
masks needed to be manually vetted), hycore was used to construct
mosaics combining the mask information and real-time results
from each of the scanned trays (Figure 4B), to derive summary
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TABLE 1 Summary of the hyperspectral data acquired at each of the VECTOR study sites. Crunchy was used to generate real-time qualitative results
(band ratios, minimum wavelength maps, etc.) during each of these scanning campaigns. The processed datasets are available for download at https://
doi.org/10.14278/rodare.2866, https://doi.org/10.14278/rodare.2868 and https://doi.org/10.14278/rodare.2864.

Site Total Holes Total Scans Scanned
Length (m)

Raw size (GB) Processed
size (GB)

Scanning
time (hours)

Collinstown 10 413 2845 797 1255 26.9

Stonepark 13 354 2319 789 1197 30.3

Spremberg 70 391 1265 682 1196 24.5

TOTAL 93 1158 6429 2268 3648 81.7

FIGURE 3
Hyperspectral drill core scanning campaign for the VECTOR project. (A) Container-housed hyperspectral scanner arrives on site at Stonepark, Ireland.
(B) Drill core preparation at G11 core repository. (C) Scanning of Kupferschiefer drill cores at the Geological Survey of Brandenburg, Germany.

TABLE 2 Acquisition parameters of the SisuROCK drill core scanner.

VNIR SWIR MWIR LWIR

SPECIM camera AisaFENIX AisaFENIX FX50 AisaOWL

Wavelength range 380–970 nm 970–2500 nm 2700–5300 nm 7700–12300 nm

Bands (binning) 175 (4) 275 (1) 154 (1) 96 (1)

Spatial resolution 1.50 mm/px 1.50 mm/px 1.06 mm/px 1.60 mm/px

images for each drillhole. These can be interactively visualised with
the hywiz web-compatible interface, as shown at https://www.hzdr.
de/FWG/FWGE/Spremberg_html/index.html.

These hyperspectral results capture a portion of the lithological
and mineralogical variability associated with sediment hosted base

metal deposits in Ireland and Germany. An in-depth analysis of
these results is beyond the scope of this contribution (though will
be the subject of a follow up paper), however we make a few
observations here relating to the power of hyperspectral analyses
that can be conducted in real or near-real time.
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FIGURE 4
Real time processing results (A) including coregistered false-colour composites of selected bands from each hyperspectral sensor, and qualitative
results highlighting anhydrite abundance, iron speciation and carbonate mineralogy. The hywiz visualisation platform delivers these visualisations in
real-time, including spectral information for QAQC and on-site interpretation. After masking, hycore was used to construct borehole mosaics that can
also be visualised using hywiz as, for example, fence-plots (B). Additional data on, e.g., grade, mineralogy and geochemistry can be included in these
visualisations to facilitate integrated interpretation. These results can be viewed online here.

First and foremost, we were able to compute the band
ratio and minimum wavelength products outlined by Géring et al.
(2023). These allowed us to distinguish key minerals such as
iron oxides, quartz, carbonates, clays and sulphates (which can

be challenging to visually identify; Figure 5) within minutes of
scanning, and generate images of each core box visualising the
mineralogical variability therein. These images (https://www.hzdr.
de/FWG/FWGE/Spremberg_html/index.html) were then used to
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FIGURE 5
Real-time hyperspectral results highlighting otherwise subtle variations that are difficult to identify and interpret during conventional core-logging or
with RGB imagery (A) only. These variations include a gradual transition from calcitic (pink) to dolomitic (green) mineralogy, mapped here using the
MWIR data (B), zones of Fe2+ enrichment (green; in this case ferroan dolomite) mapped using VNIR data (C), and patchy/nodular anhydrite cements
(yellow); (D), mapped using LWIR data. These results can be viewed in the hywiz viewer here. The specific spectral indices used are described in more
detail within Géring et al. (2023).

select sampling locations for automated mineralogy analyses,
allowing us to identify thin-section blocks containing representative
or unusual mineralogy, and devise a sampling strategy aimed to
validate specific hyperspectral hypotheses. Although not conducted
in the scope of this project, these images could also be integrated
into geological logging activities, such that core boxes are laid out on
logging racks after scanning and the hyperspectral results (available
from a computer or, as outlined in Section 2.3, augmented reality
app) used to more accurately log the cores.

4 Discussion and future directions

Rapid and agile decision making are particularly crucial
in dynamic mining and exploration environments. Real-time
hyperspectral analysis, as can be achieved using the methods
outlined above, would allow immediate identification of mineral
variations, enabling on-the-spot adjustments to drilling strategies
or resource delineation. The integration of hyperspectral core
scanning into real-time monitoring systems thus has the potential
to streamline exploration and production workflows, reducing costs
and increasing the overall efficiency of mining and exploration
operations. It seems that several service providers are moving in this
direction.

Recent technology developments and processing approaches
set the scene for real-time geological analysis, based on fast and
smart processing of hyperspectral data. However, the data volumes
can be overwhelming: with this contribution we aim to resolve
this limitation by introducing and demonstrating a flexible open-
source software framework for the pre-processing, analysis and

visualisation of hyperspectral data in real-time (within minutes of
data acquisition). In doing so, hyperspectral data and their derived
products can be provided promptly to inform decision making
during logging, sampling or drilling, and allow rapid testing of
hypotheses on, e.g., mineralogy predicted by the hyperspectral data.
To ensure practical use in remote locations, thesemethods have been
designed to require only modest computing power (i.e., a relatively
standard desktop PC) and, crucially, only need local network access.

4.1 Future potential for real-time
hyperspectral data in mineral exploration
workflows

The framework for the real time processing and interactive
visualisation that we propose and demonstrate in this contribution
opens a range of interesting possibilities. First and foremost, we hope
that it paves the way for significantly tighter integration between
hyperspectral analyses and conventional exploration workflows.
If real-time hyperspectral results can be made available before
sampling and geological logging has been conducted, they could
be used to significantly enhance these activities, by: 1) allowing
spectral domaining approaches (e.g., De La Rosa et al., 2022) to
define geologically-meaningful sampling intervals, 2) identifying
anomalies, clusters or otherwise unexpected spectra for closer
inspection or more detailed sampling (e.g., Gairola et al., 2023), and
3) incorporating spectral interpretations into geological logging and,
e.g., alteration mapping (e.g., Géring et al., 2023; Lypaczewski et al.,
2019). Importantly, feedback from these geological activities would
ideally be integrated to test and adjust or update hyperspectral
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analysis routines, without requiring laborious relogging or other post
hoc quality control or hypothesis testing.

The continuous and mineralogically revealing data captured by
hyperspectral scanners also provides an interesting foundation for
further automated data collection. For example, a small number
of hyperspectral endmember pixels and/or representative domains
can be automatically selected in each core box as part of the
real-time processing routine, and used to guide the collection of
complementary data using handheld XRF or LIBS instruments.
Industrial tools, such as robotic arms, could even be deployed to
completely automate this.

Lastly, the rich data stream made available by real-time
hyperspectral analyses could be fed into self-updating 3D geological
models, to help make rapid decisions on, e.g., further drilling.
Several authors (e.g., De La Rosa et al., 2022; Zaitouny et al., 2021)
have already suggested methods that could be used to identify
lithological domains in hyperspectral data (at adjustable scales),
while developments in implicit 3D geological modelling workflows
(e.g., Grose et al., 2021; Hillier et al., 2023; Varga et al., 2019)
provide the basic tools needed to construct geological models that
can automatically incorporate new data.

4.2 Outstanding challenges

Our experience testing the processing methods presented
above during multi-kilometer scanning campaigns suggest several
challenges remain before the full potential of real-time processing
can be realised.

Firstly, asmentioned already, robustly derivingmasks separating
the core samples of interest from background and core-box
pixels proved challenging. While deep-learning (CNN) based (e.g.,
Arbash et al., 2023; Rotem et al., 2023) and/or spectral-based (e.g.,
De La Rosa et al., 2021; Rogers and Pracht, 2023) methods can
generally be tuned to work in specific situations (e.g., a single box
material and dimensions), these proved challenging to generalise
and prone to misclassify unexpected materials (e.g., metre markers
inserted into core trays, foam spacers,mud, etc.). Hence, while deep-
learning based tray masking shows significant promise, we suggest
that further work is needed to 1) compile training datasets involving
a diversity of core box types and conditions, 2) better integrate
spectral information into CNN-based masking approaches, and
3) achieve performances and computational requirements that are
compatible with real-time masking.

In the meantime, we have circumvented these limitations by
performing real time analyses on unmasked images. For classic
spectral analyses (e.g., band ratios, minimum wavelength maps;
Géring et al., 2023) this is not an issue, though the inclusion of
background pixels requires greater computation power (as more
pixels need to be processed) and limits the applicability of other
common statistical approaches (e.g., dimensionality reduction) that
are negatively influenced by irrelevant variability in the background
pixels. Realising many of the possibilities outlined above (e.g.,
data-driven sampling, robot-assisted point measurements or self-
updating 3D models) would require a robust and generalisable
solution to drill core masking (e.g., Arbash et al., 2023).

Coregistration with pixel or sub-pixel accuracy also remains a
significant challenge. While not strictly necessary if mineralogy is

relatively homogenous (at the mm scale), subpixel coregistration
accuracy is needed to accurately compare spectra between sensors
for, e.g., coarse-grained igneous or sedimentary rocks (to avoid
juxtaposing spectra from different minerals). Our current workflow
automatically computes a homography transformation that aligns
co-registration points automatically detected during a (regularly
repeated) calibration scan. This implicitly assumes a planar
geometry, resulting in coregistration errors above or below the
plane for which this calibration was performed (the focal plane of
the sensors), causing several-pixel offsets where the samples being
scanned are at the incorrect height or non-planar (e.g., round cores).
However, better coregistration could be achieved using an approach
that does not rely on a homography transform, requiring either:

1. Development of computer vision matching techniques
(keypoint detection and/or optical flow algorithms) that are
robust to the significant variability in reflectance between
the different spectral ranges, such that (highly) non-linear
transformations can be used to warp the data cubes from each
sensor into alignment.Newdeep-learning approaches to image
matching, such as Super-Glue (Sarlin et al., 2020; Barath et al.,
2023), may resolve this challenging problem.

2. Use of sensors with overlapping spectral ranges, such that
e.g., optical flow algorithms can be used to construct accurate
pixel displacement maps, and so fit data cubes from each
sensor together.

3. Integration of 3-D information, by adding e.g., a laser profiler
to the scanner setup. As well as capturing additional useful
geometric information on the drill cores (andpotentially useful
features for tray masking), the resulting height maps could
theoretically be used to achieve accurate coregistration using
a back-projection method similar to that used for airborne or
UAV hyperspectral data (e.g., Thiele et al., 2022).

5 Conclusion

Hyperspectral characterisation of exploration drill cores is most
useful if acquired as soon as feasible after drilling, such that 1)
preliminary spectral results can be used to inform time-critical
decision making on drilling, sampling and logging activities, and
2) predictions or hypotheses resulting from the hyperspectral data
can be tested while core is still easily accessible. To enable this,
we present and demonstrate an open-source software pipeline that
facilitates the real-time preprocessing, analysis and visualisation of
large hyperspectral drill core databases. We suggest that this allows
for efficient, timely, and automated delivery of hyperspectral data to
enhance geological activities, and hope that the tools we describe
can help to facilitate the uptake of hyperspectral core scanning
data by industry, geological surveys and academia. In doing so, the
information captured within these rich datasets could be accessed in
real-time and used to enhance explorer’s abilities to log, sample and,
ultimately, vector towards much-needed ore deposits.
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