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Meshfree modelling of
magnetotelluric and
controlled-source
electromagnetic data for
conductive earth models with
complex geometries

Jianbo Long*†

Department of Electronic System, Norwegian University of Science and Technology, Trondheim,
Norway

Geophysical electromagnetic survey methods are particularly effective in
locating conductive mineral deposits or mineralization zones in a mineral
resource exploration. The forward modelling of the electromagnetic responses
over such targets is a fundamental task in quantitatively interpreting the
geophysical data into a geological model. Due to the ubiquitous irregular and
complex geometries associated with the mineral rock units, it is critical that the
numerical modelling approach being used is able to adequately and efficiently
incorporate any necessary geometries of the Earth model. To circumvent the
difficulties in representing complex but necessary geometry features in an
Earth model for the existing mesh-based numerical modelling approaches (e.g.,
finite element and finite difference methods), I present a meshfree modelling
approach that does not require a mesh to solve the Maxwell’s equations.
The meshfree approach utilizes a set of unconnected points to represent any
geometries in the Earth model, allowing for the maximal flexibility to account
for irregular surface geometries and topography. In each meshfree subdomain,
radial basis functions are used to construct meshfree function approximation
in transforming the differential equations in the modelling problem into linear
systems of equations. The method solves the potential function equations of
the Maxwell’s equations in the modelling. The modelling accuracy using the
meshfreemethod is examined and verified using onemagnetotelluricmodel and
two frequency-domain controlled-source models. The magnetotelluric model
is the well-known Dublin Test Model 2 in which the spherical geometry of
the conductor in the shallow subsurface may pose as a challenge for many
numerical modelling methods. The first controlled-source model is a simple
half-space model with the electric dipole source for which analytical solutions
exist for the modelling responses. The second controlled-source model is
the volcanic massive sulphide mineral deposit from Voisey’s Bay, Labrador,
Canada in which the deposit’s surface is highly irregular. For all modellings,
the calculated electromagnetic responses are found to agree with other
independent numerical solutions and the analytical solutions. The advantages
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of the meshfree method in discretizing the Earth models with complex
geometries in the forward modelling of geophysical electromagnetic data is
clearly demonstrated.
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meshfree, numerical modelling

1 Introduction

Geophysical electromagnetic (EM) survey methods continue to
be important in the exploration of mineral resources, particularly
those with a high conductivity contrast from their host rocks (e.g.,
copper, zinc, iron, nickle) (Strangway et al., 1973; Dyck and West,
1984; Farquharson and Craven, 2009; Smith, 2014; Gehrmann et al.,
2019). In recent years, due to the increasing acknowledgement
of the important role of mineral resources in energy transition,
various “critical mineral resource” initiatives have been proposed
(e.g., Schulz et al., 2017) and how we as a society can meet the
demands has sparkled much discussion (Jones, 2023).

A geophysical EM survey directly produces a map of the
distribution of electrical conductivity of the subsurface. Naturally,
the interpretation of any EM data collected over a region of
interest becomes vital in determining the parameters of potential
mineral deposits that may host economic resources. At the centre
of a quantitative interpretation of EM data is the numerical
modelling of EM responses (including controlled-source EM,
magnetotelluric, transient EM data) which plays a critical role
in the development of theories and methods of various EM
survey techniques. Of the various advancements made over the
last few decades (e.g., Nabighian, 1988; Zhdanov, 2010; Smith,
2014), the numerical modelling of EM data has steadily evolved
from closed-form, analytical computations of EM responses over
relatively simple conductivity models that started around 1960s
(Wait, 1960; Nabighian, 1988) to fully numerical simulations of
Maxwell’s equations over Earth models with complex geometries
and nonlinear, anisotropic conductivity distributions nowadays
(e.g., Newman, 2014; Han et al., 2018).

The importance of representing realistically complex geometries
of conductive mineral deposits or mineralization zones in the
EM data modelling becomes obvious since mineral deposits or
mineralization zones are naturally of irregular shapes of geometry,
with some presenting quite extreme geometries (e.g., uranium
deposits associated with thin graphite Zeng et al., 2019; Lu et al.,
2021). Despite the ubiquitous existence and importance of such
realistic geometries, there are still significant challenges faced by
numericalmodelling techniques in terms of efficiently incorporating
the geometries. These challenges are precisely what this study is
trying to solve and in order to do so, a new type of modelling
techniques called meshfree methods is used which I will present in
detail in the following sections.

Numerical methods of forward modelling EM responses over
a general three-dimensional (3-D) conductivity Earth model are
often focused on mesh-based modelling methods in the applied
geophysics which include finite difference (e.g., Yee, 1966; Taflove
and Umashankar, 1990; Mackie et al., 1993; Wang and Hohmann,
1993; Newman and Alumbaugh, 1995; Streich, 2009), finite

volume (e.g., Jahandari and Farquharson, 2014; Jahandari et al.,
2017), integral equation (e.g., Jones and Pascoe, 1972; Hohmann,
1975; Newman et al., 1986; Farquharson and Oldenburg, 2002;
Chen et al., 2021) and finite element methods (e.g., Coggon,
1971; Pridmore et al., 1981; Badea et al., 2001; Nam et al., 2007;
Puzyrev et al., 2013; Li J. et al., 2017; Rochlitz et al., 2019). They are
termed mesh-based modelling methods in this study because they
have the common feature of relying on a mesh-based discretization
(e.g., rectilinear, triangular and tetrahedral meshes; see Figure 1A,B)
of the conductivitymodel. Among thesemesh-basedmethods, finite
difference approaches may face more challenges than others in
accurately representing complex topography surfaces and irregular
surface geometries of a conductor since they require tensor-
grid function approximation of differential equations. In contrast,
finite volume, integral equation and finite element methods do
not face such limitation. It may be argued that finite element
modelling techniques, if combined with unstructured meshes
whose automatic generations are facilitated by modern mesh
generation software (Fabri et al., 2000; Si, 2015), are the most
flexible mesh-based approaches in the modelling of EM data
over complex Earth models (Coggon, 1971; Günther et al., 2006;
Nam et al., 2007; Miensopust et al., 2013).

For real-life geometries of exploration targets, unstructured
meshes (e.g., triangular and tetrahedral meshes) possess a
unique advantage in efficiently and accurately representing
complex geometries that are important characteristics of potential
exploration targets (Lelièvre et al., 2012; Lu et al., 2021). However,
accurate numerical solution of EM responses using mesh-based
modelling techniques, including finite element and finite volume
methods, also require a certain degree of regularity of the mesh
cells. In the finite element case, for example, the effect of the mesh
quality (e.g., the ratio of the largest to smallest cell sizes, elongation,
dihedral angles and radius-edge ratio of cells for tetrahedral
meshes) on the computational accuracy is demonstrated to be
significant (Du et al., 2009). Poor mesh quality can lead to very
slow convergence or divergence in iteratively solving the resulting
linear system of equations in modelling controlled-source EM
data using a vector finite element implementation (Ansari and
Farquharson, 2014). On the other hand, ensuring the quality of the
mesh can lead to overwhelmingly excessive number of elements in
the generated mesh, therefore intractable computational resources,
in order to sufficiently conform to the real geometries in the model
(Schwarzbach et al., 2011; Nalepa et al., 2016).

The dilemma in balancing the quality of unstructured meshes
and the number of mesh cells is often addressed using adaptive
mesh refinement techniques (Oden and Prudhomme, 2001; Key and
Ovall, 2011; Schwarzbach et al., 2011; Ren et al., 2013; Zhang et al.,
2018; Spitzer, 2024). In an adaptive mesh refinement approach, the
current mesh used for themodelling of EM responses can be further
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FIGURE 1
Schematic illustration of model discretizations for 2-D irregular geometries using (A) rectilinear mesh with local quadtree refinements, (B) unstructured
triangular mesh and (C) meshfree points. Adapted from Long and Farquharson (2019c).

refined or coarsened based on an estimate of the current numerical
modelling error. The ideal result is that only the part of the mesh
with the largest numerical errors is refined. In the unstructured
mesh scenario, the adaptive refining process is often carried out
by locally modifying the mesh, rather than re-meshing the whole
Earth model, due to the concern of efficiency and robustness of the
process (Zhang et al., 2018; Liu et al., 2023).However, complications
may arise during the adaptive mesh refining. First, as the topology
of the mesh changes at each refining step the mapping between
the old mesh and the new mesh needs to be calculated in order
to update the degrees of freedom, which can be an expensive and
rather complicated process. Second, further dividing the cells in
the current mesh may produce “hanging nodes” due to the non-
conforming new cells within the parent cells (Jahandari et al., 2021).
The nonconformity of the new mesh may be eliminated at the cost
of further refining neighbouring cells, often with a lower quality of
the generated new cells.

Alternatively, the Earth model can be discretized usingmeshfree
points (see Figure 1C) and the corresponding numerical modelling
techniques are called meshfree methods (Nguyen et al., 2008;
Chen et al., 2017). A set of unconnected points, or meshfree points,
serve for the same purpose as that of a quality mesh in obtaining
an accurate numerical solution in forward modelling the EM data.
Because of the lack of connectivity among the points, the physical
property distribution (i.e., the conductivity distribution for EM data
modelling) will be sampled on the points when discretizing the
partial differential equations. With a meshfree point discretization,
the density and regularity of the point distribution are still important
for accurate numerical modellings; however, the advantages of
manipulating points over mesh generations are:

• With comparable regularity of a quality mesh, the generation of
points requires much less effort in computer programming and
is more straightforward. Also, the development of dedicated
point generation software is also significantly easier (Fornberg
and Flyer, 2015).

• Since there is no topology requirement, the generation of
quality, unstructured meshfree points can be more robust than

generating a quality unstructured mesh (Du et al., 2002; Slak
and Kosec, 2019).

• Adaptive point refining and/or coarsening is more
computationally efficient than the same process when using
meshes, since any addition or deletion of local points does not
need to affect the rest of the points. The nonconformity issue
and its complications in a mesh-based adaptive refining are
completely removed (Rabczuk and Belytschko, 2005).

Based on a distribution of points, many meshfree methods
for solving partial differential equations have been proposed
(Chen et al., 2017). For geophysical data modelling, however, only
a few different meshfree methods have been proposed for seismic
wave field modelling (e.g., Jia and Hu, 2006; Takekawa et al.,
2015; Li B. et al., 2017), gravity data modelling (e.g., Long and
Farquharson, 2019c) and EM data modelling (e.g., Wittke and
Tezkan, 2014; Long and Farquharson, 2017; Long and Farquharson,
2019a; Long and Farquharson, 2019b). In general, differentmeshfree
methods differ in the choice of basis functions, the types of meshfree
points (i.e., uniform or unstructured) and in that whether numerical
integration is required in transforming the partial differential
equations into the linear system of equations. The meshfree method
demonstrated here, mostly known as radial-basis-function based
finite difference (RBF-FD), does not need the potentially expensive
step of numerical integration. It also naturally supports unstructured
point distributions allowing for an efficient discretization of
complex-geometry conductivity models. Meshfree modelling of EM
data is considered to be more challenging than those of seismic
and gravity data since the EM fields are discontinuous across
conductivity discontinuities (Long and Farquharson, 2019b).

The rest of the study is organized as follows. The details of
the meshfree modelling method in the context of numerically
solvingMaxwell’s equations will be first presented, which is followed
by the demonstration of the numerical accuracy of the method
using a magnetotelluric example and two controlled-source EM
examples. Further discussions for the applicability for other types of
geophysical data of the modelling method are also presented before
I conclude the study.
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2 Methods

2.1 Maxwell’s equations for meshfree
modelling

The frequency-domain Maxwell’s equations for
the electromagnetic field in the quasi-static limit are
expressed as (Stratton, 2007)

∇×E = −iωB, (1)

∇×H = σE+ Jexe, (2)

for Faraday’s law and Ampère’s law, respectively. Here, E and B are
the electric field and magnetic induction vector, respectively. B =
μH with H as the magnetic field and μ the magnetic permeability.
σ is the conductivity distribution of the Earth model. ω = 2π f with
f as the ordinary frequency in Hz, i is the imaginary unit, and the
convention of the time dependence eiωt is used here. Jexe represents
any external EM sources as a current density vector; for example,
the current density of an induction loop or of an electric dipole
grounded into the Earth.

Eliminating H in Eqs 1, 2 through simple substitutions leads to
the second-order Helmholtz equation for E:

∇× μ−1∇×E+ iωσE = −iωJexe. (3)

Here, the Earth materials are assumed to be non-ferromagnetic so
that the magnetic permeability μ is just that of free space (μ0). As a
result, Eq. 3 is further simplified as:

∇×∇×E+ iωμσE = −iωμJexe. (4)

A naive solving of Eq. 4 using numerical methods may lead to
spurious or incorrect numerical solutions of EM responses if the
discontinuous nature of E at conductivity jumps is not considered.
The ability of handling such discontinuities is one of the reasons
behind the popularity of Yee-scheme finite difference methods
(Yee, 1966) and vector finite element methods (Jin, 2014) when
numerically solving Eq. 4.

In the meshfree modelling of EM responses, the degrees of
freedom of the unknown function (e.g., E in Eq. 4) are coincident
with the point locations in a point discretization of the Earth model,
a scenario similar to scalar finite element methods (Jin, 2014). As
demonstrated in detail by Long and Farquharson (2019b), the RBF-
FD meshfree method using scalar meshfree basis functions, like
scalar finite element methods, will force the numerical solution
of the unknown function to be continuous everywhere. In this
scenario, EM potential function equations can be used instead of the
Helmholtz equation for the electric field. Using the vector magnetic
potential A and electric scalar potential ϕ defined via the relations
(Stratton, 2007):

E≔ −iωA−∇ϕ, (5)

H≔ μ−1∇×A, (6)

we have the Helmholtz equation for the potential functions:

∇×∇×A+ iωμσA+ σμ∇ϕ = μJexe, (7)

which is obtained by substituting Eq. 5 into Eq. 4. Also, taking the
divergence of Eq. 7 gives us the conservation of charge equation for
the potential functions:

∇ ⋅ (iωσA+ σ∇ϕ) = ∇ ⋅ Jexe. (8)

In Eq. 8, the distribution of electric charges resulting from EM
sources such as grounded electric dipoles is represented by the term
∇ ⋅ Jexe. It is well known that the ungauged potential equations, Eqs 7,
8, does not provide a unique solution of the pair (A,ϕ), despite
that the electric and magnetic fields, which are calculated using Eqs
5 and 6, from solving the potential equations may still be unique
(Badea et al., 2001). Here, the Coulomb gauge condition ∇ ⋅A = 0
is applied to Eq. 7 to stabilize the numerical solution (Badea et al.,
2001; Long and Farquharson, 2019b). Taking advantage of the
vector identity ∇×∇×A = ∇(∇ ⋅A) −∇2A, the Coulomb-gauged
Helmholtz equation for the potential functions becomes

−∇2A+ iωμσA+ σμ∇ϕ = μJexe. (9)

Both potential functions, A and ϕ, are continuous across any
conductivity jumps. In fact, the vector potential A is also
smooth at conductivity jumps (Long and Farquharson, 2019b). The
component-wise form of the pair of Eqs 9, 8 which are discretized
here using the RBF-FD meshfree method is

−∇2Ax + iωμσAx + σμ
∂ϕ
∂x
= μJx, (10)

−∇2Ay + iωμσAy + σμ
∂ϕ
∂y
= μJy, (11)

−∇2Az + iωμσAz + σμ
∂ϕ
∂z
= μJz, (12)

iω∇ ⋅ (σA) +∇ ⋅ (σ∇ϕ) = ∇ ⋅ J, (13)

for EMdatamodelling with a general source where J = Jxx̂+ Jyŷ+ Jzẑ
represents Jexe in previous equations.

FIGURE 2
Illustration of meshfree subdomains. A subdomain for a point (“node”)
contains a certain number of points within the chosen distance r from
the point. Here, subdomain 1 contains 7 meshfree points (with the
support node 1 as the center), and subdomain 2 also contains 7
meshfree points.
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2.2 RBF-FD

The description of the RBF-FD meshfree numerical method
here follows Long and Farquharson (2017, 2019a,b, 2020, 2024)
and references therein. Like mesh-based numerical methods, the
first step of the RBF-FD is to locally approximate an unknown
function, f, as some simple, rationale functions. Inmesh-based finite
difference methods, this is often done using Taylor expansions at a
point using linear or quadratic functions depending on the finite
difference scheme and order (e.g., first-order backward). In mesh-
based finite element methods, this is typically done by using low-
order polynomial basis functions within an element (i.e., a cell in
the mesh). In the meshfree RBF-FD, the unknown function at any
point (called support node, see Figure 2) is locally approximated as a
linear combination of translations of a single radial basis function
(RBF) using the neighbouring n points in the subdomain of that
point (Figure 2). Such interpolant s(r) can be written as

s (r) =
n

∑
k=1

R(‖r− rk‖) ⋅ ck, (14)

where r = (x,y,z), ‖ ⋅ ‖ is the l2 norm, ck are the interpolation
coefficients, and rk = (xk,yk,zk) is the position of the kth point which
is also the center of the corresponding RBF R(‖r− rk‖). Note that
unlike polynomial functions, a RBF is always radially symmetric
around its center (Buhmann, 2003). To determine the interpolation
coefficients in Eq. 14, a local linear system of equations resulting
from the Lagrange interpolation conditions (s(ri) = fi, i = 1,…,n,
with fi as the sampled function values at the n points), which can
be written as

(

R (‖r1 − r1‖) R (‖r1 − r2‖) ⋯ R(‖r1 − rn‖)
R (‖r2 − r1‖) R (‖r2 − r2‖) ⋯ R(‖r2 − rn‖)
⋮ ⋮ ⋱ ⋮

R(‖rn − r1‖) R(‖rn − r2‖) ⋯ R(‖rn − rn‖)

)(

c1
c2
⋮
cn

)=(

f1
f2
⋮
fn

),

(15)

or in a compact matrix form

Kc = f, (16)

needs to be solved. The 3-D RBFs R(r,r0) = r5, r =
√(x− x0)2 + (y− y0)2 + (z− z0)2 are used in the RBF-FD method
for its computational efficiency and robustness in solving the
local linear system in Eq. 16 (see detailed discussions in Long
and Farquharson, 2019c). It can be proved that using the RBF, the
symmetricmatrixK is always invertible as long as the local points are
distinct (Fasshauer, 2007). This flexibility of point locations allows
for arbitrary point distributions to be used which will be important
in representing complex geometries in an Earth model. In practice,
Eq. 15 is enriched with additional low-order polynomials to avoid
numerical singularity in case the positions of meshfree points in
a subdomain become too extreme (e.g., colinear, see Long and
Farquharson, 2019c).

Using the above meshfree interpolant, any differential operator
D (e.g., ∇2 in Eq. 10) can be discretized over the meshfree
subdomains in the form of a linear combination of n local
function values, a process that is similar to the traditional mesh-
based finite difference approximation but in a more general
treatment: D f|ri ≈ ∑

n
k=1bk fk. In RBF-FDs, the discretization of the

operator D is multi-dimensional, while in the classical mesh-
based finite differences the discretization of D is restricted to
be directional approximation (i.e., only 1-D). The weights, bk,
are then obtained by solving the following n× n local linear
system

(

R (‖r1 − r1‖) R (‖r1 − r2‖) ⋯ R(‖r1 − rn‖)
R (‖r2 − r1‖) R (‖r2 − r2‖) ⋯ R(‖r2 − rn‖)
⋮ ⋮ ⋱ ⋮

R(‖rn − r1‖) R(‖rn − r2‖) ⋯ R(‖rn − rn‖)

)(

b1
b2
⋮
bn

)=(

DR1 (r) |ri
DR2 (r) |ri
⋮

DRn (r) |ri

),

(17)

and form as the nonzeros in the corresponding rows of the
coefficient matrixA in the resultantN×N global linear systemAx =
h (N is the total number of points). Here,DR1(r)|ri denotes the value
of DR1(r) at the location ri and can be readily calculated using the
chain rules of the derivatives for the chosenRBF. x is the vector of the
unknown function values at the degrees of freedom (i.e., meshfree

FIGURE 3
Schematic illustration of the Dublin Test Model 2 (DTM2). Three MT sites at the surface are marked with black squares (at R = 0, 4,500 m, 5,100 m from
the origin, respectively) in the plan view (left). The radius of the hemisphere conductor is R = 5000 m.
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FIGURE 4
Perspective 3-D views of the meshfree point discretization of the Dublin Test Model 2 (DTM2). In Panel (A): unstructured points inside the conductor. In
Panel (B): 3 MT sites at the surface (at R = 0, 4,500 m, 5,100 m from the origin, respectively) are shown with dense points due to local refinements, and
the 3-D hemisphere conductor in the original model is represented by a multi-facet polyhedron.

points in the RBF-FD). The proof of Eq. 17 is thoroughly presented
in Long and Farquharson (2019b). The right-hand-side vector h is
formed from proper boundary conditions and the discretizations
of EM source terms. Note that only Eq. 17 needs to be solved in
transforming the differential equations (Eq. 10 to Eq. 13) into linear
systems of equations. The well-known numerical analysis package
LAPACK subroutines were used to numerically solve Eq. 17. In
this study, all meshfree points are unstrutured and the size of
meshfree subdomains is fixed as n = 30 (the number of points in a
meshfree subdomain) and the selection of the closest n = 30 points
for each subdomain is carried out using a kd-tree point selection
method which is the same as in Long and Farquharson (2019b).
The fixed number of points in subdomains means that the relative
distances among the n points in a meshfree subdomain can be
smaller (e.g., near CSEM sources) when high numerical accuracies
are needed.

3 Numerical results

In this section, the modellings of different EM data using the
meshfree method are demonstrated. The global linear system from
discretizing the A-ϕ potential function equations is asymmetric,
complex-valued and can be solved using either iterative solvers or
direct solvers. In this study, all global linear systems are solved using
the MUMPS direct solver (Amestoy et al., 2001, version 5.3.3).

3.1 Magnetotelluric data

The magnetotelluric (MT) conductivity model for the
demonstration of the meshfree modelling is the Dublin Test
Model 2 (DTM2, Miensopust et al., 2013) in which a hemispherical
conductor is buried at the top of the subsurface (Figure 3).
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FIGURE 5
Comparison of the meshfree solution and other solutions for the Site-1 (origin) MT responses for DTM2. From top to bottom are XX, XY, YX, and YY
components of the impedance tensor. Different users or runners of the used modelling codes are shown in the legend with algorithm acronyms as FD
(finite difference), FE (finite element) and, IE (integral equation).

The hemispherical conductor has the resistivity of 10 Ωm and
the background earth’s resistivity is 300 Ωm. The radius of the
hemisphere is R = 5 km. Because of the perfect symmetry of the

conductivity structure, there exists analytical solutions of MT
responses at the galvanic limit (i.e., zero-frequency limit). For the
same reason, the observed MT responses will be symmetric. These
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FIGURE 6
Comparison of the meshfree solution and other solutions for the Site-2 (R = 4500 m) MT responses for DTM2. From top to bottom are XX, XY, YX, and
YY components of the impedance tensor. Different users or runners of the used modelling codes are shown in the legend with algorithm acronyms as
FD (finite difference), FE (finite element) and, IE (integral equation).

features of this model make it a good example for the comparison
of different numerical modelling algorithms (Miensopust et al.,
2013). However, also due to the spherical surface geometry of

the conductor, mesh-based modelling techniques, particularly
those relying on tensor-grid or rectilinear meshes, will face
challenges in accurately representing the geometry, and therefore in

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2024.1432992
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Long 10.3389/feart.2024.1432992

FIGURE 7
Comparison of the meshfree solution and other solutions for the Site-3 (R = 5100 m) MT responses for DTM2. From top to bottom are XX, XY, YX, and
YY components of the impedance tensor. Different users or runners of the used modelling codes are shown in the legend with algorithm acronyms as
FD (finite difference), FE (finite element) and, IE (integral equation).

studying the effects of shallow inhomogeneities of the conductivity
distribution on the MT data at sites near the edge of the
conductor.

In MT data modellings, the EM source terms in Eqs 10–13, i.e.,
J and its divergence, vanish as the actual EM sources are far away
from the surface of the Earth (Long and Farquharson, 2019b). In this
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model, the boundary conductivity distribution is that of the uniform
subsurface and 1-D boundary conditions were used to compute
boundary values (see details in Long and Farquharson, 2019b).
The EM responses in the MT scenario are typically represented
using apparent resistivity and phase data which are calculated from
the electric and magnetic fields at the measurement locations.
Although the previous study using the RBF-FD method (Long
and Farquharson, 2019b) has demonstrated the effectiveness of the
modelling capability, particularly how the discontinuous electric
field can be correctlymodelled using the developedRBF-FDmethod
here, it does not demonstrate the flexible meshfree discretization of
highly irregular surface geometries as we see in the DTM2 here.
The unstructured point discretization with local refinements for
this model is shown in Figure 4. The total number of points in
the discretization is N = 165,940 for a computational domain of
{(x,y,z)| − 30km ≤ x,y ≤ 30km,−50km ≤ z ≤ 10km}.

Three MT sites (Figure 3) are designed here to examine the
modelling accuracy of the meshfree method. Site 1 is at the origin of
the coordinate system and at the center of the hemisphere conductor.
Site 2 (R = 4500 m; x = y = 3182 m) is 500 m away from the edge
of the hemisphere and is inside the hemisphere (same as Site 10
in Miensopust et al. (2013)). Site 3 (R = 5100 m; x = y = 3606 m) is
100 m away from the edge of and outside the hemisphere (same as
Site 18 in Miensopust et al. (2013)). MT responses at Site 2 and 3
are expected to be significantly affected by the irregular shape of
the hemisphere for long periods. Same as Miensopust et al. (2013),
the frequency range of 10−4 Hz to 100 Hz (periods from 0.01 s
to 10,000 s) were used for the examination. The calculated MT
responses at the three sites using themeshfree RBF-FDmethodwere
compared with other independent solutions (all using mesh-based
modelling methods) that are documented from Miensopust et al.
(2013) and are shown in Figures 5–7 for the three sites. At each site,
the apparent resistivity and phase data for the four components of
the impedance tensor (i.e., ZXX, ZXY, ZYX and ZYY) are plotted from
top to bottom.

At Site 1 (Figure 5), which is at the origin of the model, the
theoretical apparent resistivity of the MT responses for ZXX and
ZYY are zero, which explains the extremely small and random
numerical values of the apparent resistivity and phase data observed
for all numerical solutions. For the off-diagonal components ZXY
and ZYX, almost all numerical solutions agree with each other. At
Site 2 (Figure 6) and Site 3 (Figure 7), all four components of the
impedance tensor will be non-zero due to the edge effect of the
conductor. For the phase data in the ZXX and ZYY components at
these two sites, the meshfree solution appears to deviate from other
solutions; this is because of the difference in the Coordinate systems
being used and the phase angle calculation methods.1 Themeshfree
numerical solutions are validated by the following two observations:
the symmetry in the solution (MT responses for ZXX and ZYY are
the same, so are the ZXY and ZYX) and the good agreement with
the majority of other independent solutions. Note that among those
independent solutions, a few solutions (e.g., Kiyan and Khoza) have
a clear deviation from the mainMT response curves in long periods

1 The solutions provided from Miensopust et al. (2013) only have the

computed phase angles, rather than the impedance values themselves

(after 10 s for Site 2) due to insufficient mesh discretizations around
the edge of the hemisphere conductor.

3.2 Frequency-domain controlled-source
EM data

To compute the controlled-source EM (CSEM) responses, the
external source terms in Eqs 10–13 (J and its divergence) will be
non-zero at the locations of the source. Here, in the context of the

FIGURE 8
Schematic illustration of meshfree point representation of CSEM
source wires. Panel (A): the grounded wire is represented by 5 special
points designated as source points. Panel (B): for each source point, a
local unstructured mesh is formed using the point (left-most source
point here) and its neighbouring points.

FIGURE 9
A half-space conductivity model with the horizontal electric dipole
source (black arrow) at the top of the subsurface. Adapted from Long
and Farquharson (2019a).
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FIGURE 10
Comparison between the meshfree and the analytical solutions. From (A–D), each panel shows the real and imaginary parts of Ex of the two solutions
at a different frequency. All real part values are positive. The imaginary part values are all negative values except for bold, colored symbols (as the
imaginary analytical solution at f = 3 Hz shows). In panel (D), the imaginary Ex values are outside the range and are not shown.

meshfree RBF-FD method, the source handling method of Long
and Farquharson (2019a) is used. As shown in Figure 8, any CSEM
source wire is initially represented by meshfree points in space with
proper distances and regularity of distribution among them. For

each point representing the source wire, a local unstructured mesh
is contructed by connecting the points found in the subdomain
of the point. Then a finite element-like weak-form treatment (e.g.,
Badea et al., 2001; Jin, 2014) is used to discretize the equations
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FIGURE 11
3-D views of the CSEM configuration of the Ovoid deposit model. Panels (A) and (B): two different views of the grounded wire source (white dots) and
the CSEM measurement sites (purple dots) overlaying the Earth’s surface with topography. Panel (C): the geometry of the Ovoid mineral deposit in the
subsurface and the 11 profiles of measurement sites numbered from 1 (x = −600 m) to 11 (x = 400 m) from west to east. Panel (D): meshfree point
discretization of the subsurface when viewed from the air, with the CSEM source and site locations locally refined.

at the source point in which the electrical current of the wire
will be coincident with the edges of the local mesh which is
of tetrahedral type in this study. The number of nodes in this
local mesh is very small (≤ = n = 30) and the mesh connectivity is
generated automatically using common mesh generation software
(e.g., Tetgen and Gmsh). For grounded wires, the divergence of the
current density is only non-zero at the beginning and the ending
source points.

The above method is capable of treating an arbitrarily shaped
controlled source (grounded wires or current loops) in the point
discretization of an Earth model. Because of this capability, the
total-field approach of modelling the EM data, as described
in Eqs 10–13 in the case of potential functions, is being used
here and will provide more flexibility in handling complex
topography and surface geometries. Under the total-field approach,
the boundary values of the EM field on the computational
domain is zero.

3.2.1 Half-space model
The first CSEM test model is that of a uniform subsurface with

an electric dipole source at the Earth’s surface (Figure 9). Although
the model is relatively ideal, analytical solutions exist for the EM
fields at the surface which allows for a first-step examination of the
accuracy of the developed RBF-FDmeshfreemethod for CSEMdata
modellings. An x-directed electric dipole, for example, will have the
current density Js as (Ward and Hohmann, 1988)

Js = I0 [H (x1) −H (x2)]δ(y− y0)δ(z− z0) x̂, (18)

where I0 is the current intensity, H(x) is Heaviside function,
(x1,y0,z0) and (x2,y0,z0) are the two ends of the grounded wire, and
δ is the Dirac delta function. The closed-form, analytical formula
(eq. 4.159 in Ward and Hohmann, 1988) for computing the inline
electric field due to the above CSEM transmitter (Eq. 18) for any
measurement locations at the surface of the subsurface (i.e., at z =
0) is:

Ex (x,y) =
I0ds
2πσρ3
[1+ (ikρ+ 1)e−ikρ −

3y2

ρ2
], (19)

where ρ = √x2 + y2, k = − iωμσ is the wavenumber with σ as the
conductivity of the subsurface. In the case of dipole sources where
the length of the grounded wire approaches infinitesimally small in
relative to the distance from the dipole to measurement locations,
ds = 1in Eq. 19.

The current density of the electric dipole source is set to
be 1 A. For the meshfree solution, a set of unstructured points
with local refinements around the dipole source was used. The
actual CSEM source in the meshfree modelling is 1 m in length
along the x direction and is represented by six points with the
equal spacing of 0.2 m from x = − 0.5 m to x = 0.5 m. Four
frequencies at f = 3,0.3,10−4 and 10−8 Hz were used for the
accuracy examination. The uniform Earth’s subsurface has the
conductivity of 0.02 S/m. With this conductivity value, the very
low frequency of 10−8 Hz will approach the direct current limit
and the electric field responses will approach those of a direct
current resistivity survey. The total number of the points for the
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FIGURE 12
Computed Ex and Hz components of the CSEM responses at f = 500 Hz over the Ovoid model at the site profile x = 400 m (Profile 11 in Figure 11 (c)).
Panels (A) and (B): real and imaginary parts of Ex, respectively. Panels (C) and (D): real and imaginary parts of Hz, respectively. Bold, colored symbols
indicate positive values; thin, black symbols represent negative values.

model discretization is 81,951 which are distributed within the
computational domain {(x,y,z)| − 40km ≤ x,y,z ≤ 40km} where the
dipole is located at the center. The computed Ex responses at
the surface (y = z = 0) are shown in Figure 10. As evident from
the comparison, the two solutions have an excellent agreement
with each other, demonstrating the computational accuracy of the
meshfree method. At the highest frequency f = 3 Hz (Figure 10A),
the imaginary Ex from the meshfree numerical solution starts
to deviate from the theoretical solution when ‖x‖ ≥ 7 km. This
deviation is due to the decreased point density after the distance.
At lower frequencies, such deviation vanishes due to less rapid
changes of the EM field at the same locations. In addition, when the
frequency approaches the direct current limit (Figure 10C,D), the
frequency-domain Ex response has the real part almost unchanged
but the imaginary part continuously decreased until zero; that is,
Ex response is approaching the direct current resistivity response,
which is another evidence of the correct modelling of the CSEM
responses.

3.2.2 Ovoid mineral deposit model
The second CSEM test example is from the volcanic massive

sulphide mineral deposit (termed as Ovoid deposit here) from
Voisey’s Bay, Labrador, Canada, which has been under extensive
studies for both geology and geophysical data modelling studies
(e.g., Jahandari and Farquharson, 2014; Li J. et al., 2017; Long and

Farquharson, 2019c; Kara and Farquharson, 2023). The Ovoid
deposit is a highly conductive iron-dominant deposit with complex
surface geometry which serves as a perfect testing example for
geophysical datamodelling software. To test themeshfreemodelling
method developed here, the real topography of the Earth’s surface
(also see Jahandari and Farquharson, 2014; Kara and Farquharson,
2023) has been used here. The nearest point of the deposit to the
surface is about 70 m below the uneven surface (see Figure 11).
Following Kara and Farquharson (2023), a grounded wire of 400 m
long with a current density of 1 A along the easting direction
(Figure 11A,B) is used as the source for a ground EM survey. The
offset of the wire source is roughly 600 m away from the central
part of the deposit. There are 143 measurement sites at the surface
designed as receiver locations which are distributed evenly along 11
South-to-North profiles (Figure 11C). The profile spacing is 100 m.
The site spacing along each profile is approximately 50 m.The highly
conductive deposit is assumed to have a uniform conductivity of
1 S/m here and the relatively resistive background earth is assigned
the conductivity of 0.001 S/m. Both conductivity values are taken
from the previous test model of Kara and Farquharson (2023) for
facilitating a direct comparison of the meshfree modelling results
with theirs.

For the model discretization, the meshfree points used here are
also directly taken from the point distribution from the tetrahedral
mesh used by Kara and Farquharson (2023) which are visualized
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FIGURE 13
Computed Ex and Hz components of the CSEM responses at f = 500 Hz over the Ovoid model at the site profile x = 0 m (Profile 7 in Figure 11C). Panels
(A) and (B): real and imaginary parts of Ex, respectively. Panels (C) and (D): real and imaginary parts of Hz, respectively. Bold, colored symbols indicate
positive values; thin, black symbols represent negative values.

in Figure 11D. In their modelling, they have used a vector finite
element method for computing the CSEM responses. For both
finite elementmethods andmeshfreemethods, the local refinements
around the transmitter and the receiver locations are necessary
to improve the numerical modelling accuracy. The 400-m long
grounded wire is represented in the meshfree method using 80
points located at the topographic surface with in average 5 m of
distance apart from each other (see Figure 8). The total number
of points for this discretization is 44,230 within the computational
domain of {(x,y,z)| − 20km ≤ x,y,z ≤ 20km}. For long grounded
wire sources, the inline electric field and vertical magnetic field
components are often the main measurements. The computed Ex
and Hz responses using the meshfree method are compared with
the finite element results of Kara and Farquharson (2023) which
are shown in Figures 12–14 at the measurement site profiles x =
400,0,−200 m (also see Figure 11C), respectively, for the frequency
of 500 Hz. It is seen that the two independent solutions, calculated
using the same model discretization (i.e., meshfree points and
tetrahedral mesh), have a very good agreement with each other
for all sites (see supplemental materials for the comparison for the
remaining profiles). The strong EM induction caused by the deposit
is well reflected at the sites that are more closely above the deposit
(see the profiles x = − 200 m and x = 0 m). The higher frequency
(i.e., f = 1500 Hz) responses for the profile x = − 200 (Profile 5) is
also shown in Figure 15. Comparing Figure 15 with Figure 14, it is

seen that at the higher frequency, the EM responses, particularlyHz
responses, attenuate faster in space.

4 Discussions

Direct current resistivity (DCR) survey methods are also
frequently used for mineral resource exploration. Although I have
not directly shown the modelling capability of the meshfree method
for DCR data modelling, the first CSEM modelling example (in
the case of freq→ 0) is essentially a simple demonstration of
how the developed meshfree modelling approach can be directly
applied to compute DCR data for a general conductivity model.
When the frequency is zero, the potential function equations
described in Eqs 10–13 will be reduced to the exact potential
function equation (i.e., Poisson’s equation for ϕ) used for DCR data
computation.

Formodel discretization, the unstructuredmeshfree points were
generated using a combination of existing open-source software
tools (including Tetgen and Paraview). The geophysical community
is likely to continue to benefit from research in other fields. In
the situation of dedicated software development for meshfree point
generation, there have been significant research and development in
the past decade (Fornberg and Flyer, 2015). It is anticipated that, like
the history of the classical finite elementmethods,more open-source
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FIGURE 14
Computed Ex and Hz components of the CSEM responses at f = 500 Hz over the Ovoid model at the site profile x = −200 m (Profile 5 in Figure 11C).
Panels (A) and (B): real and imaginary parts of Ex, respectively. Panels (C) and (D): real and imaginary parts of Hz, respectively. Bold, colored symbols
indicate positive values; thin, black symbols represent negative values.

point generation tools will be available once the meshfree methods
along with their capability of incorporating complex geometries
become more widely known.

5 Conclusion

Earth models in the context of mineral resource exploration
using geophysical surveymethods often have rather complex surface
geometries. It is important that the numerical forward modelling
of geophysical EM data for such models is capable of efficiently
handling these geometries. A meshfree modelling method that
uses only unconnected points, instead of the traditional pixel
cell-based meshes, to represent geometries has been developed
and presented here. The A-ϕ potential equations instead of
the Helmholtz equation for the electric field are used for the
continuity property of the potential functions.Themeshfreemethod
supports both uniform and non-uniform, unstructured point
distributions with the latter being of particularly advantageous in
discretizing Earth models with complex geometries with a minimal
amount of points.

The modelling accuracy and the capability of handling highly
irregular surface geometries of the method are demonstrated using
three EMmodelling examples.The first example is amagnetotelluric
model in which the magnetotelluric impedance responses of a

hemisphere-shaped near-surface conductor were modelled. The
second example is an idealized half-space conductivity model
excited with a grounded electric dipole source for which closed-
form analytical solutions exist. The third example, which is also
a controlled-source example, is the real-life highly conductive
Ovoid mineral deposit model in which the realistic surface
geometry of the deposit and the topography were used. The
EM transmitter for this example is a 400 m long grounded wire.
Through these examples, the feasibility of easily representing
irregular surface geometries of the Earth models is clearly
demonstrated. The point discretizations are considered to be more
advantageous over traditional mesh discretizations for complex
Earth models as they are easier to generate and manipulate. For
all examples, the modelling accuracies of the meshfree method are
verified using other independent numerical solutions or analytical
solutions.

The demonstratedmeshfreemodellingmethod is also applicable
to other geophysical data modellings in which numerical solutions
and complex geometries of the model are important. The developed
meshfree method for geophysical EM data modellings is shown to
be effective for both natural-source magnetotelluric surveys and
controlled-source EM surveys. For the magnetotelluric example,
the meshing of the spherical surface geometry is a non-trivial
task, especially for numerical methods that are restricted to the
use of rectilinear meshes, as evident from the large differences
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FIGURE 15
Same CSEM responses as in Figure 14 but at f = 1500 Hz. Panels (A,B): real and imaginary parts of Ex, respectively. Panels (C,D): real and imaginary parts
of Hz, respectively. Bold, colored symbols indicate positive values; thin, black symbols represent negative values.

of modelled magnetotelluric responses among some independent
solutions (Miensopust et al., 2013). The representation of such
geometry is however quite straightforward and easy in the meshfree
point discretization.
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