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Introduction: The Qinghai-Tibet Plateau holds a significant position in the
global ecosystem, with its unique high altitude and complex geographical
features fostering rich biodiversity. The plateau’s high-altitude environment
and distinctive climate system significantly influence the Asian monsoon and
regional hydrological cycles. Its vast glaciers and snow reserves are crucial in
regulating the Asian climate. While previous studies have analyzed the habitat
quality of the Qinghai-Tibet Plateau, significant variations exist across different
vegetation ecoregions, warranting further investigation into these variations and
their influencing factors.

Methods: This study conducted a comprehensive assessment of habitat quality
on theQinghai-TibetPlateaubyanalyzing the impactsofhumanactivities, climate
change, and grazing intensity. Using the InVEST Model and Geodetector Model,
we evaluated habitat quality across the plateau’s six vegetation ecoregions from
2000 to 2020. The efficacy of ecological red-line policies in actual conservation
efforts was also examined.

Results: The results indicate that habitat quality among vegetation ecoregions is
shaped by a complex interaction of geographical and human-induced factors,
leading to notable spatiotemporal variations. From 2000 to 2020, the quality of
habitats was significantly impacted by human activities, climate change, grazing
intensity, and land-use changes. These effects were especially prominent during
the period from 2005 to 2010.

Discussion: The changes in habitat quality on the Qinghai-Tibet Plateau are
influenced by multiple driving factors, with significant differences in the drivers
across various vegetation ecoregions. The ecological redline policy has played
an important role in protecting the ecological environment in key areas,
particularly in regions with high human intervention, where its effectiveness is
more pronounced. In future ecological management, it is essential to strengthen
conservation measures based on regional specificity. By comprehensively
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considering the impact of human activities and natural factors, developing more
targeted management strategies is crucial for improving habitat quality.

KEYWORDS

Qinghai-Tibet plateau, habitat quality, InVEST model, geodetector model, ecological
red-line policy, climate change, human activities, grazing intensity

1 Introduction

The Qinghai-Tibet Plateau (QTP), situated at the heart of
Asia, is a testament to the power of nature, with its unique
geographical position and extreme climatic conditions shaping a
complex ecosystem of global ecological significance. The region
is a biodiversity hotspot, hosting many endemic species that are
irreplaceable for maintaining global biodiversity (Liu et al., 2021;
Sun et al., 2023). The high-altitude environment and unique climate
system of the QTP have a far-reaching impact on global climate
patterns, primarily regulating the Asian monsoon system and
regional hydrological cycles (Ding and Peng, 2020; Hua et al., 2022).
However, the Qinghai-Tibet Plateau faces numerous ecological
challenges. Climate change poses a significant threat, with rising
temperatures and changing precipitation patterns leading to glacier
retreat and permafrost degradation. Recent studies have highlighted
the role of the glaciers in this area as crucial freshwater sources
for Asia, directly replenishing river basins in China, India, and
other South Asian countries. However, the accelerating glacier
retreat and permafrost melting due to global warming are hastening
changes in the region’s water resources, posing a significant threat
to ecological balance (Drucker et al., 2011). The QTP is a vital
global alpine ecological research hub, providing a valuable natural
laboratory for studying global environmental changes. In terms of
conservation status, the Qinghai-Tibet Plateau has been the focus
of various national and international conservation efforts. Protected
areas and nature reserves have been established, encompassing
significant portions of the plateau to preserve its unique biodiversity
and ecological functions.

Assessing habitat quality is a matter of scientific interest and
a pressing need in the face of rapid global ecological changes
and expanding human activities. The urgency is underscored by
the increasing need to assess ecosystem services. Direct evaluation
of habitat quality is the bedrock for biodiversity protection, land
use planning, and ecological compensation mechanisms (Hadley
and Betts, 2016; Hall et al., 1997). Nevertheless, despite recent
strides in assessment methodologies, significant gaps persist.
Most studies focus on the habitat needs of specific habitats
or species, necessitating a more comprehensive and systematic
assessment of habitat quality (Liu et al., 2016a; Chen J. et al.,
2022; Giam et al., 2010; Terrado et al., 2016; Weber et al., 2018).
Moreover, significant variations exist among different vegetation
ecoregions, and further investigation is needed to understand
these variations and the factors influencing them (Wu and Zhu,
2023). Technologically, the application of remote sensing and GIS
technologies has improved the efficiency of spatial data acquisition
(Liu et al., 2016a; Gu et al., 2019). However, the challenge lies
in accurately interpreting and converting these data into habitat
quality assessment information. Furthermore, the long-term impact
assessments of climate change on habitats need to be improved

by sufficient long-term monitoring data, which curtails scientific
predictions of future habitat trends (Liu et al., 2016b). Thus, a
thorough evaluation of habitat quality on the Qinghai-Tibet Plateau,
elucidating the combined effects of human activities, climate change,
and grazing intensity on the region’s ecosystem, is essential for
both ecological assessments and the development of environmental
protection policies. (Sanderson et al., 2002; Venter et al., 2016; Liu et
al., 2016b; Wang et al., 2023). In this paper, the InVEST model was
selected for the assessment of habitat quality. Compared with other
models such as Zonation and MARXAN, InVEST provides a more
direct function of habitat quality assessment and a comprehensive
range of habitat quality indicators, as well as being relatively flexible
in terms of data requirements, which makes it more suitable for the
QTP region.

This study aims to conduct a multidimensional assessment of
habitat quality on the QTP, exploring how habitat quality evolves
under the multifaceted pressures of human activity (Bai et al., 2019;
Hack et al., 2020; Liu et al., 2023), grazing intensity, and climate
change and discussing the practical effectiveness of the Ecological
red-line Policy in habitat protection. Grounded in vegetation
ecoregions released by authoritative experts, this study employs
the InVEST model to quantify habitat quality, incorporating the
impacts of human activity intensity (Chen et al., 2016), grazing
intensity (Fetzel et al., 2017; van Doorn et al., 2015; Zhang et al.,
2018), and climate change (Gao et al, 2016; Niu et al., 2004;
Wang S. R. et al., 2020; Yuke, 2019). The innovative aspects of
this study’s methodology and indicators lie in its interdisciplinary
analytical framework, which combines insights from various fields
to enhance the precision of habitat quality assessments and bolster
the specificity and effectiveness of policy interventions. This study
evaluates the successes and challenges of the Ecological Red-line
Policy using practical application data, providing support and
a scientific basis for enhancing ecological protection strategies.
Moreover, the methodological and technological innovations apply
to the QTP and offer a reference for managing other ecologically
sensitive areas and conservation zones (Chen et al., 2023a; Li and
Song, 2022).

2 QTP vegetation ecoregions

The QTP, positioned in central Asia between 73° and 105°
east longitude and 26°–40° north latitude, is recognized as the
highest plateau globally, with an average elevation surpassing
4,000 m and covering an area of approximately 2.5 million square
kilometers (Figure 1). This region is characterized by a complex and
diverse geomorphological landscape, predominantly comprised of
expansive plateaus, precipitous mountains, and deep river valleys,
forming a unique highland mountainous geomorphological system
(Sun et al., 2023). Based on the studies on vegetation ecoregions

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2024.1432434
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Jiang et al. 10.3389/feart.2024.1432434

FIGURE 1
Vegetation ecoregions map of the Qinghai-Tibet Plateau.

from Chinese Academy of Sciences and other authoritative
researches (Hou, 1982; Editorial Board of the Vegetation
Atlas of China, Chinese Academy of Sciences, 2001; Xu et al.,
2008), the QTP’s vegetation has been categorized into six
ecoregions in this study: desert, alpine grassland, meadow,
broad-leaved forest, tender grassland, and tropical rainforest.
This classification mirrors the Plateau’s complex geographic
and climatic characteristics and their significant influence on
vegetation distribution.

3 Methodology

3.1 Data source

This study utilizes a comprehensive dataset comprising
five distinct temporal snapshots—2000, 2005, 2010, 2015, and
2020—that capture land use and land cover changes on the
QTP. Moreover, the research impressively integrates data on
vegetation ecoregions, population density, gross domestic product,
nocturnal lighting intensity (Chen et al., 2020), road infrastructure,
grazing intensity, and climatological metrics, including average
annual temperature and precipitation (Peng et al., 2019; Peng et al.,
2017a; Peng et al., 2017b; Rong et al., 2020). Detailed information
about the specific data types and their sources is methodically
provided in Table 1.

3.2 Habitat quality assessment based on
InVEST model

The Habitat Quality component of the InVEST model operates
by integrating landuse and land cover (LULC) datawith threat factor
data from the study area (Sharp et al., 2020). This integration paves
the way for a meticulous evaluation of habitat quality across various
scales. The model then quantifies the impact of threat sources
on habitats, providing a precise measure of habitat degradation.
The degradation is computed using the formulas outlined in
Equations 1–3.

Dxj =
R

∑
r=1

Yr

∑
y=1
(

wr
R

∑
r=1

wr

)= ryirxyβxSjrD (1)

irxy = 1−(
dxy
drmax
)i f linear (2)

irxy = exp(−
2.99dxy
drmax
)i f exponential (3)

Where R is the number of threat factors; Yr is the total number
of rasters of the threat layer on the landform layer; wr is the weight
of the threat factor; ry is the number of threat factors; irxy is the
impact of threat R in habitat x on raster y; each raster impact of the
threat source in the habitat can be based on an exponential or linear
correlation of ecological factors to show the spatial relationship
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TABLE 1 Data types and sources.

Data type Data sources Spatial resolution

LULC Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn) 30∗ 30 m

Vegetation ecoregions Editorial Board of the Vegetation Atlas of China, Chinese Academy of Sciences. Vegetation Atlas of China.
Beijing: Science Press, 2001

—

Population density LandScan Global, LandScan High-Definition (HD), and LandScan USA 1,000∗ 1000 m

GDP Chen et al. (2022) 1,000∗ 1000 m

Night lighting Chen et al. (2020) 1,000∗ 1000 m

Road OpenStreetMap contributors. (2000–2020). Road network data. Retrieved from http://www.openstreetmap.org —

Grazing intensity Liu (2021) 250∗ 250 m

Average annual temperature Ding and Peng, (2020) 1,000∗ 1000 m

Average annual precipitation Peng et al., (2019) 1,000∗ 1000 m

of the threat factor with each habitat type; and βx is the level of
protection of raster cells.

Habitat quality is calculated by the degree of habitat
degradation and the degree of habitat suitability, as
publicized below (Equation 4).

Qxj =Hj(1−
Dz
xj

Dz
xj + k

z) (4)

WhereQxj is the habitat quality index of x raster in habitat type j;
Hj is the ecological suitability; z is themodel; and k is the half-packet
saturation constant.

This study utilized version 3.14.0 of the InVEST software
for habitat quality modeling. Initially, land-use data from the
QTP spanning the years 2000, 2005, 2010, 2015, and 2020 were
processed using the GIS platform. Based on prior research
(Chen B. et al., 2022; Terrado et al., 2016; Weber et al., 2018),
fieldwork on the ecological environment of the QTP, as well as
relevant expert opinions and policy protection documents, the
maximum influence distance and weight of threat factors and their
decay modes were established and detailed in the accompanying
table. Concurrently, the habitat suitability for various land-use
types and their sensitivity to identified threats were defined.
Parameters for the maximum influence distances and weights
of threat factors, along with their attenuation mechanisms, are
detailed in the table; additionally, habitat suitability for different
land-use categories and their sensitivity to threat sources are
documented in Supplementary Tables 1, 2.

3.3 Human activity intensity assessment

In this study, drawing upon prior related research (Liu, 2023),
variables such as population density, GDP density, nighttime light
intensity (Chen et al, 2021), land use type, and road infrastructure
were employed to estimate metrics of anthropogenic activity
from 2000 to 2020. Population density data were sourced from

demographic surveys and censuses. This variable represents the
number of people living per unit area and serves as a fundamental
indicator of human presence and potential environmental impact.
Nighttime light intensity was derived from satellite imagery,
particularly from sensors that capture light emissions during
nighttime. This measure is indicative of urbanization and human
activities since higher light intensities generally correspond to
more developed and densely populated areas. GDP density data
were obtained from economic reports and databases. GDP per
capita provides insights into the economic activity and development
level of a region, reflecting the economic footprint of human
activities. Land use and land cover data were collected from
remote sensing and GIS databases, tracking changes in land
use types such as agricultural land, forest, urban areas, etc.
These changes are crucial for understanding human impact on
natural landscapes. Road data were extracted from transportation
and infrastructure databases, detailing the extent and type of
road networks. Roads facilitate human movement and economic
activities, significantly contributing to anthropogenic impacts. The
raw raster data underwent preprocessing to derive the dataset
on human activity intensity, which was calculated using the
specified formula (Equation 5).

HAI(i, t) = PopD(i, t) +NL(i, t) +GDP(i, t) + LULC(i, t) +RD(i, t)
(5)

Where HAI is human activity intensity, PopD is population
density; NL is night light intensity; GDP is gross domestic
product per capita; LULC is land use and land cover change;
RD is the road. The HAI for each region i at each time point
t was calculated by summing the normalized values of the five
variables, as per Equation 5. This composite index effectively
captures the multidimensional nature of human activities and
their temporal changes. The land use type impact value, as well
as the road type impact reference, are given in the following
assignments (Supplementary Tables 3, 4).
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3.4 Geodetector Model

The Geodetector model, predicated on the theory of geospatial
differentiation, serves to discern spatial disparities among
geographic elements and elucidate the underlying drivers,
encompassing element detection, interaction detection, and risk
area identification (Wang et al., 2010). This model surpasses other
spatial analytical tools in its capacity to pinpoint crucial factors
influencing spatial distribution effectively and to ascertain the
interplay among diverse factors, accommodating a range of data
distributions. Within this study, the Geodetector model was
employed to explore the spatial relationships and interactions
between habitat quality (HQ) and variables such as human
activity intensity (HAI), grazing intensity (GI), temperature
(T), and precipitation (P) across various vegetation zones,
utilizing Equation 6 for calculations.

q = 1−
∑L

h=1
Nhσ

2
h

Nσ2 (6)

where q represents the intensity of the effect of the driver, taking
the value of [0, 1], the closer to one means the greater the intensity
of the effect; L denotes the number of drivers; Nh denotes the
number of sample points in the region h,σ2

h is the variance of the
study variables in sub-region h,N is the total number of sample
points, and σ2 is the total variance of the study variables in the total
study region.

4 Results

4.1 Analysis of land use change in
vegetation ecoregions

TheQinghai-Tibet Plateau, characterized by its extreme altitude,
harsh climate, and unique biodiversity, highlights the profound
sensitivity of its ecosystems to land use changes (Sanderson et al.,
2002; Venter et al., 2016). From 2000 to 2020, data on land
cover changes across the Plateau’s habitats reveal a landscape
in constant flux, shaped by the pressures of climate change
and human expansion (Figure 2). This study utilizes vegetation
ecoregions to construct a land use transition matrix (Table 2;
Supplementary Figure 1). It analyzes the net changes of various land
use types within each vegetation zone, as depicted in Figure 4. In
alpine grassland vegetation types, the transformation of grasslands
into unused land is substantial, showing a clear trend towards
desertification likely influenced by overgrazing or developmental
activities. The net changes in cropland and forested areas are
minimal, while the area of watersheds is rising, possibly reflecting
the several key management and policy initiatives, including
major ecological protection projects and compensation schemes
implemented over the years. In broadleaf forest areas, the increase
in net changes of cropland and developed land indicates intensified
human activities recently. Concurrently, expanding forested areas
and reducing unused land highlight the success of ecological
restoration and forest resource management initiatives in these
regions. In desert, meadow, and tender grassland vegetation zones,
there is a significant decrease in grassland area and a noticeable

increase in unused land. In tropical rainforest areas, significant
reductions in forests and unused lands are accompanied by
increased grasslands. According to analyses from Table 6; Figure 4,
the pattern of land use transition is characterized by a decline in
grasslands, relative stability in forests and watersheds, and marginal
changes in cropland and developed areas. The varied changes across
vegetation types are underscored by the notable reduction in areas
of alpine grasslands, deserts, meadows, and tender grasslands, with
particularly sharp declines observed in alpine grasslands. Despite
these disparities, forests and watersheds have maintained relative
stability, with minimal fluctuations in area, providing reassurance
about the effectiveness of conservation and management strategies.
The slight variations in cropland and developed areas may be
attributed to land management policies, planning, and the intrinsic
natural conditions of the region, indicating that human activity
intensity on the QTP has remained relatively high over the
past 2 decades.

4.2 Evaluation of human activity intensity

Over these 2 decades, significant GDP growth was
predominantly concentrated in the eastern and southern peripheries
of the plateau, regions largely corresponding to broadleaf and
tropical rainforest zones. In contrast, economic growth in alpine
grassland and desert areas was comparatively slower. The economic
expansion in broadleaf and tropical rainforest areas is likely linked
to agriculture, tourism, and forest product development. High
altitudes and harsh climatic conditions limit the expansion of
agriculture and other economic activities. Economic development
in these regions requires reliance on eco-friendly strategies, such
as ecotourism and sustainable herding, which help preserve
the fragile highland ecology and bring economic benefits to
local communities.

Increases in population density have primarily occurred
in regions with abundant vegetation, particularly in broadleaf
forests and tropical rainforest zones. This trend reflects human
residential preferences and the aggregation of economic activities
in ecologically favorable areas. Population distribution on the
QTP is closely linked to regional ecological conditions. With
their mild climate and abundant water resources, Broadleaf forests
and tropical rainforest zones support agriculture and habitation,
thus attracting significant population inflows. In contrast, the
population density changes in alpine grassland and desert regions
remain minimal due to harsh natural conditions such as high
altitude and low rainfall, which limit extensive human activity
and socio-economic development. Although this is beneficial for
preserving local natural habitats, it also highlights the imbalance in
regional development.

Increases in illumination have primarily concentrated in the
eastern part of the plateau and along major transportation routes,
particularly near large cities and transportation hubs. This trend
is closely linked to regional economic growth, urbanization, and
infrastructure development. As an essential indicator of human
activity and economic progress, the enhancement of nighttime
lighting reflects the rapid socio-economic development across the
plateau over the past 2 decades. Especially in broadleaf forests and
tropical rainforest zones, the intensification of nighttime lighting is
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FIGURE 2
Land use situation on the Qinghai-Tibet Plateau from 2000 to 2020.

likely directly related to urban expansion, tourism development, and
improvements in transportation networks. While these activities
have spurred regional economic growth, they may also pressure
the local ecological environment, such as light pollution and
disturbances (Figure 3).

Analyzing the changes in the road network on the QTP from
2000 to 2020 reveals a significant acceleration in infrastructure
development acrossmost regions, excluding some parts of the desert
and high-altitude grasslands (Figure 4). This transformation reflects
the rapid modernization the plateau has undergone over the last
2 decades, particularly in terms of investment in transportation
infrastructure. In 2000, the road network on the plateau was
relatively sparse, primarily concentrated in more populous areas
and along major river corridors. As time progressed, especially
after 2010, the road network expanded rapidly, with new roads
extending into remote areas to the west and north. By 2020, even
some previously isolated high-altitude grassland and meadow areas
saw significant improvements in transportation accessibility.

The QTP experienced a significant increase in human
activity, particularly in the eastern and southern regions where
transportation infrastructure is well-developed and along major
river valleys (Figure 5). In the broad-leaved forest and tropical
rainforest zones, where the climate is more suitable and natural
resources are abundant, attracting greater human settlement
and economic development. The analysis indicates that the
increase in human activity is concentrated near urban centers and
transportation networks, closely tied to infrastructure development.
As roads and railways were expanded and improved, and as urban
areas grew, human activity in these regions naturally intensified.
Areas with high activity often see agricultural expansion, industrial
development, and residential construction, which exert pressure on
local ecosystems, potentially leading to a decrease in biodiversity and
degradation of ecosystem services. Conversely, changes in human
activity intensity in vegetation zones such as high-altitude grasslands
and deserts are less pronounced, reflecting potentially effective

conservation measures or the natural constraints of these areas,
which make them unsuitable for large-scale economic activities.

4.3 Analysis of grazing intensity

Grazing intensity varies significantly across the plateau’s diverse
ecosystems. In alpine meadows and grasslands, where vegetation
regrowth can be relatively slow due to harsh climate conditions,
intense grazing can lead to soil compaction, reduced vegetation
cover, and increased erosion. In forested areas, such as the coniferous
forests found in higher elevations, overgrazing can still degrade
understory vegetation and disrupt ecosystem processes essential for
forest regeneration and biodiversity conservation.

An analysis of the grazing intensity changes on the QTP
from 2000 to 2020 reveals a pronounced trend, particularly
with significant increases in the meadow and high mountain
grassland areas (Figure 6). This change indicates an intensification
of human utilization of these vegetative regions, especially in
pastoral activities. In the high mountain grasslands, as grazing
intensity increases, so does the pressure on the grasslands,
potentially leading to degradation, enhanced soil erosion, and
reduced biodiversity. Additionally, since grasslands play a crucial
role in carbon sequestration, excessive grazing could weaken this
ecological service, exacerbating the adverse effects of climate change.
In themeadow regions, increased grazing intensitymay also degrade
ecosystem services, including reduced water retention and soil
quality. Meadows, typically rich in biodiversity, may experience
shifts in plant community composition due to overgrazing,
impacting the entire ecosystem’s structure and function. Notably,
the changes in grazing intensity in broadleaf forests and tropical
rainforest regions are relativelyminor.This is likely due to the natural
conditions and vegetative types of these areas, which are unsuitable
for large-scale pastoral activities, thereby maintaining a more stable
ecosystem.
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TABLE 2 Land use transfer matrix for vegetation zones from 2000 to 2020.

Vegetation zones 2000–2020 Plowland Forest Meadow Water C Land U Land

Alpine
Grassland

Plowland 5561830 12856 140709 42928 141524 2,922

Forest 8,767 7456942 231530 4,583 3,733 35388

Meadow 450927 8471098 331616159 20319987 184420 203398617

Water 13432 90628 2001157 37038792 8,774 2719721

C land 19241 836 6,259 1909 564813 119

U land 7,828 575653 20797530 7860476 18164 100860113

Meadow

Plowland 963265 17973 246418 1841 1,344 1,445

Forest 17190 23827372 4363548 15790 580 379849

Meadow 216222 2698740 275853908 561732 15691 24474887

Water 8,242 60883 896838 6329827 1,069 816350

C land 19439 2,745 168175 2,749 79521 14594

U land 610 236377 11657472 457525 109 32964735

Desert

Plowland 1862168 2,998 45102 17348 10641 14056

Forest 21955 12712280 515222 43334 11645 111226

Meadow 341525 6024908 264890960 11088078 197178 108108138

Water 955 42202 3768593 32405221 4,131 10823025

C land 8,043 1,443 16771 135708 291182 15573

U land 69047 2665023 85248915 12019460 270941 338012732

Broad-leaved Forest

Plowland 12620572 1476393 1738501 153277 277089 36728

Forest 1597297 175876134 25024242 415856 79160 2306346

Meadow 3381994 37449485 191762599 1138815 240803 8235757

Water 72553 886193 3496874 3754710 6,719 3810923

C land 47734 9,217 21243 7,780 353992 310

U land 61313 7832464 22596379 1452077 6,838 33028994

Tender
Grassland

Plowland 1506013 283871 1091625 195214 121402 142324

Forest 76581 2629567 2209896 93467 12987 389636

Meadow 1760800 16959543 116313999 4111187 139055 44489338

Water 83311 97809 873345 5781969 14807 2395804

C land 33564 4,135 12934 2,525 67729 3,943

U land 128965 999444 9947973 1514508 17575 17121098

(Continued on the following page)
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TABLE 2 (Continued) Land use transfer matrix for vegetation zones from 2000 to 2020.

Vegetation zones 2000–2020 Plowland Forest Meadow Water C Land U Land

Tropical Rain Forest

Plowland 101961 348564 40920 40619 1936 846

Forest 959620 61675634 12965582 644917 7,444 894394

Meadow 198740 6244503 6185752 436601 10120 2334010

Water 17182 358487 785752 1038437 234 1450545

C land 0 184 0 0 0 0

U land 3,842 3598496 5965422 939300 0 6590061

FIGURE 3
Changes in the GDP, NL and PopD of the Qinghai-tibet plateau, 2000–2020.

4.4 Climate indicator analysis

Annual precipitation and temperature serve as critical indicators
of the climatic characteristics of the QTP. The analysis of

annual precipitation changes from 2000 to 2020 reveals significant
geographical and temporal variations across different vegetation
zones. The western, eastern and north-eastern parts of the plateau
show an increasing trend in precipitation, accounting for 56.01
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FIGURE 4
Changes in the road network of the Qinghai-Tibet Plateau, 2000–2020.

FIGURE 5
Changes in human activity intensity on the Qinghai-Tibet Plateau, 2000–2020.

per cent of the region, while the northern, central and south-
eastern parts of the plateau show a decreasing trend in precipitation.
In the eastern regions, characterized by broadleaf forests and
tropical rainforests, precipitation levels are notably higher and
more stable due to the influence of monsoonal climates. These
areas support complex ecosystems and high biodiversity due to
their ample rainfall. In contrast, the central and western regions,
comprising alpine grasslands and meadows, experience relatively
lower andmore variable precipitation.The ecosystems in these areas
are susceptible to precipitation changes, with fluctuations directly
impacting grassland productivity and degradation levels. Desert
regions consistently exhibit low precipitation, limiting vegetation
growth and biodiversity development.

Over this period, the Plateau has witnessed a notable gradual
increase in average temperatures. Overall, more than 90 per cent
of the Tibetan Plateau has shown a warming trend in the last 20
years, with cooling occurring mainly in the northern part of the
plateau. Temperature increases have been especially noticeable in
the broadleaf forest and tropical rainforest zones, likely due to
their lower elevations and denser human activities. In contrast,
the alpine grassland and desert regions experienced more modest
temperature changes but still demonstrated a progressive warming
trend, reflecting the pervasive effects of global warming on high-
altitude areas.The temperature surge carries significant implications
for the Plateau’s ecosystems. In the lower elevation zones of broadleaf
forests and tropical rainforests, the rising temperatures could disrupt
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FIGURE 6
Changes in grazing intensity on the Qinghai-Tibet Plateau from 2000 to 2020.

phenological cycles, reshape species population structures, and
foster the proliferation of invasive species, potentially resulting
in biodiversity loss and ecosystem function degradation, such as
carbon storage and water regulation (Figure 7).

4.5 Habitat quality evaluation

Between 2000 and 2020, habitat quality in the QTP
predominantly remained within the quality range of 0.6–1.0,
maintaining a relatively stable proportion. Nonetheless, there has
been an increase in low-quality biotic habitats, with habitat quality
values between 0 and 0.4. Mean habitat quality has significantly
fluctuated over these 2 decades, decreasing from 0.52 to 0.46. This
trend indicates that the ecological environment of the QTP may be
under substantial pressure and threat, necessitating further scrutiny
and investigation (Figure 8; Table 3).

4.6 Analysis of driving factors for habitat
quality

4.6.1 Desert region
In the desert region, HQ correlations display marked variability

across distinct temporal segments and influencing variables. During
the 2005 to 2010 interval, HQ showed pronounced correlations,
contrasting with the generally insignificant correlations observed
with other factors throughout most assessed periods (Table 4). This
analysis underscores the complexity of environmental responses
in arid landscapes, suggesting that specific temporal contexts
significantly modulate the impact of various ecological drivers on
habitat quality.

From 2000 to 2005, T exhibited a weak relationship with P, GI,
and HAI, with P showing similarly weak correlations with another
factor. GI and HAI demonstrated relatively strong correlations,

indicating a potential link between them. From 2005 to 2010,
T maintained weak relationships with other factors, and P was
weakly correlated with all factors, particularly with T and GI. The
correlation between GI and HAI was notably higher than between
T and GI, suggesting a closer connection between environmental
protection efforts and human activities during this interval. In
the 2010 to 2015 timeframe, T remained weakly related to other
factors, while P exhibited weak relations with T but stronger
connections with GI and HAI. Although GI’s correlation with P and
T remained low, its correlation with HAI was more pronounced.
From 2015 to 2020, the correlation of T with other factors
strengthened, particularly with P. The relationship between P and
T became significant, and interactions with GI and HAI were more
pronounced (Supplementary Table 5).

4.6.2 Alpine grassland region
The dynamics between T, P, GI, and anthropogenic indices

with HQ in the alpine grassland region showed variable trends
and intensities from 2000 to 2020. Notably, from 2010 to 2015,
all factors demonstrated highly significant correlations with HQ.
T showed correlations with HQ during this period. Furthermore,
the HQ index maintained high correlations across multiple periods,
suggesting that human activities have significantly influenced
ecological transformations within this region (Table 5).

During the initial phase of the study, T demonstrated
weak associations with P, GI, and HAI. Precipitation displayed
similarly weak correlations with the other variables, though
slightly more pronounced with GI than HAI. Notably, GI and
HAI exhibited relatively strong correlations during this period,
highlighting a significant link between grazing and human
activities. As the study progressed, the relationship between GI
and HAI became markedly stronger than between T and GI,
suggesting an increasingly close connection between environmental
protection efforts and human activities. This trend persisted, with
P maintaining weak relationships with T but showing stronger
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FIGURE 7
Annual average temperature, precipitation conditions of the QTP, 2000–2020.

ties with GI and HAI. While the correlation of GI with P and T
remained modest, its association with HAI grew more distinct.
In later years, the correlation of T with other factors intensified,
especially with P. The relationship between P and T solidified,
and its connections with GI and HAI became more conspicuous.
Throughout the study, the robust correlation of GI with HAI
persisted (Supplementary Table 6).

4.6.3 Meadow region
In theMeadow area, P’s correlationwas significantly strong from

2000 to 2005, Additionally, GI showed significant correlations from
2005 to 2010 and 2015 to 2020, respectively, indicating a more
substantial impact of human activities on the meadow ecosystem
during these specific intervals. Conversely, the correlations between
temperature and GI were weaker for most of the studied periods.
This robust statistical analysis provides a clear picture of the
environmental dynamics in the meadow region (Table 6).

During the initial phase of the study, T exhibited a significant
correlation with all evaluated factors, notably with P. Precipitation
displayed moderate to high correlations across all factors,
particularly with GI. The correlation between GI and HAI
was relatively low, indicating a limited influence of human
activities on vegetation cover during this period. As the study
progressed, there was a marked increase in the correlations among
all factors, with HAI showing a more pronounced association

with the other three factors. In subsequent years, correlations
among factors generally declined, with T showing minimal
significant correlations with other factors. However, the relationship
between GI and HAI became more distinct, indicating a more
substantial influence of human activities on grazing practices.
In the final years of the study, there was a general increase in
the correlation of all factors, particularly between HAI and other
environmental factors (Supplementary Table 7).

4.6.4 Broad-leaved forest region
The study’s findings in the broad-leaved forest area revealed

significant variations in the impacts of environmental factors and
human activities over time. Human activities were found to have
a substantial and consistent impact on the broad-leaved forest,
spanning multiple periods. Additionally, temperature was identified
as a significant factor during 2015–2020, underscoring the critical
role of climate change. These findings highlight the need for
continued research and monitoring of these areas (Table 7).

From 2000 to 2005, T correlation with other environmental
factors indicated a limited direct impact on the region. P also
showed minimal correlations with other factors. GI presented
low correlations, suggesting that changes in GI are relatively
independent of other variables. HAI, displaying slightly higher
correlations, indicates some interaction between anthropogenic
activities and climatic conditions. From 2005 to 2010, an increase
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FIGURE 8
Habitat quality on the Qinghai-tibet plateau from 2000 to 2020.

TABLE 3 Normalized statistics of habitat quality indicators on the Qinghai-Tibet Plateau, 2000–2020.

Habitat quality value 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 Mean

2000 0.278434 0.026034178 0.091203 0.401694 0.202634 0.5125

2005 0.273878 0.022434419 0.052348 0.415109 0.236231 0.5218

2010 0.346206 0.024205158 0.067333 0.391372 0.170884 0.4664

2015 0.346761 0.024272507 0.068236 0.389817 0.170914 0.4600

2020 0.346590 0.024501516 0.068703 0.389806 0.170399 0.4662

TABLE 4 Desert region one-way correlation.

Value T P GI HAI

2000–2005
q statistic 0.015956 0.047389 0.001838 0.069393

p-value 0.45046 0.376691 0.959714 0.241595

2005–2010
q statistic 0.02298 0.017915 0.004452 0.309095

p-value 0.462005 0.393854 0.733777 0.000

2010–2015
q statistic 0.019344 0.020809 0 0.059223

p-value 0.93644 0.330986 0.999856 0.02954

2015–2020
q statistic 0.046304 0.010567 0.004831 0.081547

p-value 0.61662 0.814304 0.589371 0.08182

in the correlations among all factors was observed, especially the
correlation of HAI with the other three factors, signaling intensified
interactions between human activities and environmental factors.

TABLE 5 Alpine grassland region one-way correlation.

Value T P GI HAI

2000–2005
q statistic 0.001299 0.016759 0.000614 0.002765

p-value 0.626486 0.083171 0.94567 0.777991

2005–2010
q statistic 0.341505 0.036652 0.053893 0.071386

p-value 0.000 0.016922 0.055961 0.003912

2010–2015
q statistic 0.577706 0.122751 0.300847 0.346794

p-value 0 0.003861 0 0

2015–2020
q statistic 0.0136 0 0.004289 0.152355

p-value 0.968477 0.999988 0.547498 0.000

Between 2010 and 2015, correlations among factors escalated
further, with the correlation between HAI and GI reaching an
exceptionally high level. This significant correlation underscores
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TABLE 6 Meadow region one-way correlation.

Value T P GI HAI

2000–2005
q statistic 0.114183 0.105122 0.003467 0.002313

p-value 0.074166 0.000 0.7378 0.814845

2005–2010
q statistic 0.003646 0.013089 0.007668 0.190426

p-value 0.415325 0.310756 0.71621 0.000

2010–2015
q statistic 0.004993 0.000246 0.032964 0.01004

p-value 0.996464 0.832155 0.193117 0.425271

2015–2020
q statistic 0.036093 0.005863 0.000364 0.086716

p-value 0.629077 0.722596 0.824648 0.027913

TABLE 7 Broad-leaved forest region one-way correlation.

Value T P GI HAI

2000–2005
q statistic 0.056489 0.001528 0.005323 0.016176

p-value 0.53415 0.873906 0.825341 0.71111

2005–2010
q statistic 0.07538 0.014648 0.016518 0.282846

p-value 0.580323 0.27248 0.604393 0.000

2010–2015
q statistic 0.132339 0.04842 0.012418 0.501486

p-value 0.003629 0.11291 0.856453 0.000

2015–2020
q statistic 0.005604 0.005604 0.000199 0.152012

p-value 0.713788 0.713788 0.867934 0.000

the pronounced effects of human activities like urban development
and land-use alterations on the natural environment. From
2015 to 2020, although correlations among factors declined,
HAI continued to show high correlations with other variables,
particularly with T and P (Supplementary Table 8).

4.6.5 Grassland region
In the tender grassland area, T demonstrated varying effects

from 2000 to 2005. However, its influence waned in subsequent
periods, suggesting that other environmental or anthropogenic
factors might mitigate T’s direct impact on the tender grassland
ecosystem. Nevertheless, the direct linkage between P and the
area continued to be weak. GI consistently showed non-significant
effects, indicating a potentially weaker connection between
grass cover and singular climatic factors or a predominance
of other non-climatic influences, such as grazing pressure.
Conversely, HAI consistently exhibited a significant impact across
various periods (Table 8).

Between 2000 and 2005, the weak correlation of T with
other factors underscored its independence from variations in
associated environmental and anthropogenic parameters. The

TABLE 8 Tender grassland region one-way correlation.

Value T P GI HAI

2000–2005
q statistic 0.019136 0.01494 0.010705 0.023767

p-value 0.070185 0.896939 0.620463 0.137239

2005–2010
q statistic 0.00224 0.00712 0.00932 0.294399

p-value 0.527437 0.943091 0.521824 0

2010–2015
q statistic 0.023484 0.03253 0.018598 0.022722

p-value 0.663502 0.302979 0.486293 0.21699

2015–2020
q statistic 0.029365 0.033304 0.010738 0.055095

p-value 0.814261 0.23338 0.679784 0.017976

more pronounced correlations between HAI with GI and P
indicated significant interactions between human activities and
environmental conditions. From 2005 to 2010, the correlation
among all factors generally increased, suggesting a significant
intensification in the interplay between human activities and
environmental factors during this interval.The relationship between
P and T notably strengthened from 2010 to 2015, possibly due
to enhanced linkages amid more pronounced climate variations.
Although HAI’s correlation with all factors was evident, it remained
relatively subdued, suggesting that their direct interactions might
have weakened while human activities continued to exert influence.
From 2015 to 2020, the correlations among all factors were
moderate, and the association of HAI with P and GI showed
improvement (Supplementary Table 9).

4.6.6 Tropical rainforest region
In the tropical rainforest area, data analysis from 2000 to

2020 revealed significant temporal fluctuations in the impacts of
environmental and anthropogenic factors. Notably, the influence
of P on the tropical rainforest was particularly pronounced
during 2000–2005, aligning with the ecosystem’s high reliance
on rainfall. Concurrently, the influence of HAI became markedly
noticeable during 2010–2015, highlighting a period of intensified
human impact (Table 9).

Between 2000 and 2005, the correlation between P, T, and GI
was significantly high, with P exhibiting a significant influence,
as evidenced by a q-statistic of 0.192654. The q-statistic quantifies
the strength and direction of the linear relationship between two
variables, with one representing a perfect positive correlation, −1
representing a perfect negative correlation, and 0 indicating the
absence of correlation. It underscores P’s critical role in shaping
the dynamics of the tropical rainforest during this period. The
association betweenHAI, P, andGIwas also pronounced, suggesting
impactful interactions. From 2005 to 2010, correlations among
all factors were generally subdued, indicating a period of lesser
interactivity among these variables. However, from 2010 to 2015,
the correlation of HAI with other factors, notably P and GI,
intensified, reflecting an alarming increase in human footprint in
the tropical rainforests. This period likely saw a significant rise in
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TABLE 9 Tropical rain forest region one-way correlation.

Value T P GI HAI

2000–2005
q statistic 0.01848 0.192654 0.001921 0.017349

p-value 0.839287 0.000 0.956236 0.241509

2005–2010
q statistic 0.006064 0.020492 0.000416 0.027303

p-value 0.962226 0.909975 0.791785 0.22265

2010–2015
q statistic 0.010589 0.019535 0.000163 0.080559

p-value 0.940342 0.785721 0.868396 0.003645

2015–2020
q statistic 0.045688 0.027092 0.015138 0.048812

p-value 0.569564 0.823105 0.126889 0.386354

deforestation and land development activities, marking a crucial
shift in the ecosystem dynamics. From 2015 to 2020, the correlations
among all factors showed a general increase, with the q-statistic
for P remaining at 0.192654, reaffirming its substantial influence
on the tropical rainforests. However, what is more concerning is
the significantly strengthened interactions between HAI and other
environmental factors, highlighting a more pronounced and urgent
interplay between human activities and both climatic and vegetative
aspects of the region (Supplementary Table 10).

We present the correlation and comparative differences
of habitat driving factors under different vegetation types
as follows: Figure 9.

5 Discussion

5.1 Regional variability in habitat quality
drivers

Between 2000 and 2020, the response to environmental and
anthropogenic factors across various regions exhibited specific
correlations with HQ (Zhang et al., 2023). T and P consistently
displayed low correlations with HQ in the desert region. However,
HAI had a pronounced impact on HQ, which was especially
notable from 2005 to 2010 and maintained its significance from
2010 to 2015. All factors in the alpine grassland region showed
significantly stronger correlations with HQ between 2005 and 2010
and 2010 and 2015. In contrast, these correlations were negligible
in other years (Wang et al., 2021). In the meadow region, P was
significantly correlated with HQ from 2000 to 2005, while other
factors showed no significant correlation. HAI was significantly
correlated between 2005 and 2010. In the broad-leaved forest region
between 2010 and 2015, T significantly correlated with HQ, and
HAI’s impact was highly significant. In the tender grassland region,
correlations from 2000 to 2005 were non-significant, though HAI
approached significance. HAI’s impact was notably significant from
2005 to 2010 and 2015 to 2020. In the tropical rainforest region,
P exhibited a very significant correlation with HQ from 2000
to 2005, and HAI’s impact was significant from 2010 to 2015. P

demonstrated significant effects in the desert and tropical rainforest
regions during 2000–2005, likely reflecting the critical role of
water resources as limiting factors impacting ecosystem health
directly (Matomela et al., 2022). T showed a significant correlation
only in the broad-leaved forest during 2010–2015, suggesting
that climatic fluctuations significantly affected forest ecology
(Supplementary Figure 2). Long-term climate change can lead to
shifts in the boundaries of vegetation zones. For instance, temperate
forests maymigrate northward due to rising temperatures, gradually
replacing the existing boreal vegetation. Similarly, the boundaries of
grasslands and deserts may extend into more humid areas, thereby
altering the local ecosystem structure and function. Simultaneously,
long-term climate change may result in the extinction of certain
sensitive species, thereby reducing ecosystem diversity and
functional redundancy. Additionally, climate change can impact
water retention, carbon storage, and soil conservation. Changes
in precipitation patterns may significantly affect the availability of
water resources, thereby influencing agricultural production and
human water use (Luo et al., 2024; Wu and Zhu, 2023).

From 2000 to 2020, synergistic relationships among various
environmental and anthropogenic factors impacting habitat quality
showed marked regional differences. HAI exhibited significant
correlations with HQ from 2005 to 2010 and 2010 to 2015,
while interactions with other factors remained less evident in the
desert region. Conversely, the correlations with HQ significantly
intensified in the alpine grassland region from 2005 to 2010
and 2010 to 2015. However, these interactions waned from 2015
to 2020, particularly concerning HAI, highlighting a dynamic
interplay over time. The meadow region experienced a pronounced
correlation between precipitation and HQ from 2000 to 2005 and
a notable influence of HAI on HQ from 2005 to 2010. In the
broad-leaved forest region, temperature andHAI showed significant
correlations with HQ from 2010 to 2015, a period marked by
heightened environmental sensitivity. In the tender grassland region,
HAI significantly influenced HQ from 2005 to 2010 and from
2015 to 2020 (Chen et al., 2016). In the tropical rainforest region,
precipitationmarkedly affectedHQ from 2000 to 2005, andHAI had
a significant role from2010 to 2015.These observations highlight the
complex and variable interactions among climatic variables, human
activities, and other ecological drivers across different ecosystems
and over distinct periods.

5.2 Ecological red line policy impacts on
QTP

The implementation of ecological red-line policies across
different vegetation zones on the QTP exhibits significant
regional variations (Figure 10). In the broad-leaved forest and
tropical rainforest areas, these policies have effectively curtailed
unsustainable land uses, such as excessive development and
illegal logging, which are critical for maintaining biodiversity and
preventing soil erosion. The ecological red-lines in these zones have
successfully preserved forest cover, providing crucial support for
ecosystem services, including carbon storage andwater preservation
(Chen et al., 2023b). Conversely, despite the enforcement of
ecological red-line policies, their effectiveness faces challenges in
the alpine grassland and meadow zones due to the inherent fragility
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FIGURE 9
Correlation analysis plot of habitat drivers.

of these ecosystems and their high sensitivity to climate change.
For example, issues like grassland degradation remain severe due to
overgrazing and reduced precipitation induced by climate change.
Moreover, the implementation of ecological red-lines in these areas
needs to pay greater attention to the livelihood needs of local
communities and traditional rights to ensure the socio-economic
sustainability of the policies. Ecological red-lines primarily aim to
prevent overuse and land degradation in desert regions (Li and
Song, 2022). In these arid areas, protective measures focus on
combating land desertification and preserving sparse vegetation
coverage. Although these actions somewhat mitigate ecological
degradation, they provide limited support for ecosystem restoration
and need to be integrated with other ecological recovery projects.
Applying ecological red-line policies on the QTP demonstrates
their adaptability and limitations across different ecosystems.
Future policy adjustments should consider regional ecological
characteristics, climate change trends, and community development
needs, adopting more flexible and diverse management strategies to
enhance the overall effectiveness and adaptability of the policies.

In the QTP, the establishment of the Changtang National Nature
Reserve signifies a forward-looking commitment to ecological
conservation. As the largest alpine grassland reserve in the region,
Changtang National Nature Reserve is dedicated to protecting
biodiversity and ecosystem services (Xu et al., 2018). However, the
reserve’s habitat quality has declined over the past decade, indicating
that current conservation measures and management strategies
must effectively keep pace with ecological degradation. Despite
expanding protected areas through the designation of ecological red
lines, which extend beyond the existing reserve boundaries to mark
priority areas for stricter management, the ongoing deterioration
of habitat quality reveals a complex reality: simply establishing
reserves is insufficient to halt ecological degradation (Liang et al.,
2016). The case of Changtang underscores the need to consider
additional influencing factors. Human activities, particularly illegal
hunting, mining, and improper land use, threaten the ecological
environment, even within the reserve’s confines (Hack et al, 2020).
Additionally, grazing intensity directly impacts the health and
productivity of grasslands; despite policies limiting grazing, practical
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FIGURE 10
Qinghai-Tibet Plateau ecological protection areas and ecological red-line distribution.

implementation faces challenges (Zhang et al., 2018). Climate
change also significantly affects the plateau, with global warming-
induced glacier melting and changes in precipitation patterns
impacting water distribution and biodiversity (Wang S. R. et al.,
2020). While the reserve provides some buffering against these
changes, the long-term maintenance of habitat quality relies on
comprehensive and integrated management strategies, including
effective climate adaptation measures such as vegetation restoration
and water resource management, as well as strategies to address
human disturbances. Therefore, enhancing the effectiveness of
conservationmeasures requires strengthening regional cooperation,
promoting data sharing, and exchanging best practices. Local
policy implementation must consider global climate patterns
and adopt flexible conservation strategies capable of adapting to
evolving ecological conditions. The habitat quality and ecological
protection of the QTP necessitate a multi-layered, multidimensional
management strategy that integrates scientific research, community
involvement, and policymaker cooperation to achieve the dual goals
of ecological preservation and sustainable development.

5.3 Drivers of habitat quality dynamics on
QTP

Changes in habitat quality, a pressing issue influenced by an
array of environmental and human-induced factors, are closely tied
to regional characteristics. Climate change andHAI are the principal
drivers affecting habitat quality on the QTP. Climatic elements,
mainly T and P (Bai et al.,2023), directly and indirectly impact

habitat quality. Due to the extreme and variable climate conditions,
high-altitude ecosystems are susceptible to climatic fluctuations.
For instance, rising temperatures may induce species migration to
higher altitudes, altering existing biological community structures
and habitat boundaries.

The impact of HAI across different vegetation zones starkly
illustrates that increased human utilization significantly deteriorates
habitat health. In alpine meadows and broad-leaved forest areas,
human land use changes, such as agricultural expansion and
urbanization, pose significant threats to habitat quality (Hadley and
Betts, 2016). Additionally, activities like grazing, while relatively
mild, can still stress ecosystems if mismanaged.

The linkage between theoretical and empirical studies
reveals the complexity and multidimensionality of changes in
habitat quality. Empirical results indicate that while ecological
red-line policies and the establishment of nature reserves
have mitigated human disturbances to some extent, single
protective measures are insufficient to fully address the trend of
declining habitat quality against the backdrop of global warming.
Therefore, future environmental management strategies must be
comprehensive (Weber et al., 2018), based on in-depth climate
change studies and human activity monitoring, to find a sustainable
balance between ecological protection and economic activities.

In summary, Over the past 2 decades, the average habitat
quality has shown significant fluctuations, decreasing from 0.52 to
0.46. Concerning different vegetation zones, habitat degradation
primarily manifests as the expansion of low-quality habitat areas.
This expansion extends from the desert areas in the northern
Qinghai-Tibet Plateau to the alpine grasslands in the central
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plateau and the tender grasslands in the southern plateau,
potentially indicating grassland desertification. In contrast, the
tropical rainforests and broadleaf forests in the southeastern plateau
exhibit relatively stable and superior habitat quality characteristics.
Moreover, urbanization in specific areas of the Qinghai-Tibet
Plateau may lead to intensified land development and pollution,
adversely affecting ecosystem quality. A profound understanding of
the drivers and mechanisms underlying changes in habitat quality is
crucial. Effective ecological conservation measures and sustainable
development on the QTP can only be achieved through the
combined efforts of policymakers, researchers, and local managers.
It necessitates a solid and united front in implementing scientifically
based ecological management and protection strategies.

5.4 Strategic policy directions for
ecological management

This study has elucidated the regional disparities in the impacts
of environmental and human-related factors on habitat quality
across various ecological zones of the QTP from 2000 to 2020,
providing vital guidance for future policy formulation (Wang et al.,
2023). The findings indicate that the primary drivers of habitat
quality in different regions include climate change, the human
activity intensity (HAI), and precipitation, with varying degrees of
influence across different areas and periods. This recognition of
variability underscores the importance of crafting region-specific
policies that address the predominant environmental challenges
faced by each area.

Conservation measures need to be tailored to each ecological
zone’s specific needs and environmental pressures to integrate
ecological conservation with regional development more effectively.
For instance, in alpine grasslands and broad-leaved forests,
intensifying human activity management, particularly in land use
and protected areamanagement, couldmitigate habitat degradation.
Furthermore, in regions where precipitation significantly impacts
habitat quality, such as tropical rainforests and meadows,
implementing water conservation and climate adaptation strategies
is crucial to maintaining ecosystem stability and biodiversity.

Considering the broader context of global climate change,
future policies should also enhance ecosystems' resilience and
adaptability (Yuke, 2019). Supporting these efforts with scientific
researchwill better elucidate the long-termeffectsof climate changeon
high-altitude ecosystems. Strengthening inter-regional cooperation,
sharing data, and management experiences are also vital steps to
enhancing the efficacy and impact of ecological protection.

6 Conclusions and prospects

(1) From 2000 to 2020, the habitat quality across six vegetative
ecological zones on the Qinghai-Tibet Plateau was influenced
by a complex interplay of human activities, climate change, and
grazing intensity, displaying significant regional variability and
temporal shifts, particularly pronounced between 2005 and
2010. Between 2000 and 2020, theHAI had themost significant
and consistent impact on habitat quality across various regions,
particularly from2005 to 2015, while P andT exhibited varying

levels of significance depending on the region and period, and
the GI showed significant effects only in specific areas.

(2) This study evaluated the applicability of the ecological red-
line policy across different ecosystems and proposed directions
for policy adjustments. This data-driven policy evaluation
method serves as a quantitative decision-support tool for
future environmental policy formulation, facilitating the
optimization of management and conservation measures in
protected areas.

(3) Looking ahead, it is crucial to continue exploring the
mechanisms by which climate change affects ecosystems,
particularly regarding adaptability and resilience in
high-altitude ecosystems—moreover, enhancing real-time
monitoring and long-term impact assessments of human
activities, especially regarding land use changes and the
efficiency of protected area management in ecologically
vulnerable zones.
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