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Non-destructive testing
technology for corrosion wall
thickness reduction defects in
pipelines based on
electromagnetic ultrasound

Yifan Tian*, Alexander Grigorievich Palaev,
Ildar Ayratovich Shammazov and Yiqiang Ren

Saint-Petersburg Mining University, Saint Petersburg, Russia

Pipeline transportation is the main means of transportation of oil, natural gas
and other energy sources. During transportation, corrosive substances in oil
and natural gas can cause damage to the pipeline structure. A non-destructive
testing technology for pipeline corrosion based on electromagnetic ultrasound
technology was proposed to improve the stability and safety of energy pipeline
transportation systems. This technology utilized empirical mode decomposition
and singular spectrum analysis to denoise electromagnetic ultrasound signals.
The designed electromagnetic signal denoising algorithm completely removed
mild noise pollution. When using this method to detect pipeline corrosion, the
maximum calculation error of pipeline wall thickness was 0.1906 mm, and the
lowest was 0.0015 mm. When detecting small area corrosion deficiency, the
amplitude of the detection signal increased with the depth, up to a maximum of
around 24 V, which accurately reflected small area defects. This non-destructive
testing technology for pipelines can effectively detect the pipeline corrosion,
which is helpful for the regular maintenance of pipeline energy transmission
systems.

KEYWORDS

electromagnetic ultrasound, pipeline inner wall, non-destructive testing, empirical
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1 Introduction

Pipelines have the characteristics of low cost and high convenience in transporting
energy such as natural gas and oil, making them the main mode of energy transportation
(Sampath et al., 2021). Oil and natural gas energy pipelines are mostly made of alloys or
plastics, Natural gas and oil contain a large amount of substances such as carbon dioxide
and hydrogen sulfide, which can mix or react during transportation, causing corrosion to
the inner walls of pipelines (Marinina et al., 2022). Pipeline corrosion is a major threat
to the safe operation of pipelines. There are various forms of corrosion defects, including
localized pitting, which refers to strong corrosion in small areas of the material surface
(Islamov et al., 2019). Sedimentary corrosion is caused by sediment coverage (Litvinenko
et al., 2022b). Large area corrosion refers to uniform corrosion that covers a large surface
area (Da et al., 2020). The accumulation of corrosion on the inner wall of pipelines can lead
to a decrease in wall thickness and strength. This may ultimately lead to pipeline leakage
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or rupture, causing serious economic losses, or causing serious
environmental damage (Litvinenko et al., 2022a). Therefore, it is
crucial to regularly inspect and maintain the inner walls of
pipelines. Non-destructive testing technology can complete regular
inspections of corrosion on the inner walls of pipelines (Karyakina
et al., 2021). Electromagnetic ultrasonic non-destructive testing is a
commonly used non-destructive testing technique that is sensitive
to various defects in the detection target (Pryakhin and Azarov,
2024). However, this technology has low conversion efficiency
during the detection process and is susceptible to interference,
resulting in significant errors in the detection results (Fetisov et al.,
2023). Therefore, a noise suppression algorithm and different
defect feature recognition algorithm for electromagnetic ultrasonic
non-destructive testing are designed. Improvements are made to
improve the detection accuracy of electromagnetic ultrasonic non-
destructive testing (EUT) technology.

Non-destructive testing technology is widely applied in many
fields (Lucas et al., 2022). Olisa et al. proposed a non-destructive
evaluation method based on guided wave ultrasonic testing to
investigate the impact of composite damage on metal structures.
Guided wave ultrasonic testing had the ability to remotely
detect metal damage. However, parameter characteristics were
influenced by structure and environment (Ren et al., 2022). The
existing research had not fully explored the correlation between
composite damage and guided wave ultrasonic detection parameter
characteristics, and further research was needed (Olisa et al., 2021).
Garcia Marquez and Gomez Munoz proposed a new method based
on cross-correlation and wavelet transform to detect delamination
faults in wind turbine blades. This experiment was conducted on
real blades, using ultrasonic guided waves to analyze faulty and
non-faulty blades. This method effectively identified signal energy
mutations and locate faults (Garcia Marquez and Gomez Munoz,
2020). Chabot et al. proposed a multi-sensor monitoring method
based on phased array ultrasonic detection technology. This
overcame the challenge of lack of structural health control in direct
energy deposition processes in additive manufacturing. Phased
array ultrasonic testing could detect defects in directly deposited
energy manufactured components online and quantitatively predict
their size (Safiullin and Tian, 2023). This detection method
opened the way for in-situ control of direct energy deposition
(Chabot et al., 2020). Gupta et al. further explored the application
and advantages of non-destructive testing technology in various
industries. They conducted an investigation and analysis of various
commonly used non-destructive testing technologies. Most non-
destructive testing techniques could be used not only for structural
integrity testing, but also for quality analysis and casting process
improvement (Gupta et al., 2022). Chen et al. proposed a method
using nonlinear ultrasonic testing technology to accurately measure
fatigue cracks. Traditional C-scan imaging reduced accuracy when
crack directionality was poor or gaps were narrow. However,
finite amplitude nonlinear ultrasonic testing was sensitive to micro
damage at the optimal voltage and was not affected by macroscopic
crack states, which effectively tested fatigue damage (Chen et al.,
2020).

Pipeline transportation is currently the mainstream way of
transporting various types of energy (Korobov and Podoprigora,
2019). How to improve the quality and service life of pipelines
is also the main research direction of pipeline transportation at

present. Parlak et al. investigated and analyzed intelligent cleaning
devices used for steel pipelines to ensure the safety and integrity
of oil and gas pipelines. They classified and discussed its working
principle and application.They studiedmultiple sensor technologies
and compared their accuracy in anomaly detection. Intelligent
pipeline cleaners not only maintained pipeline safety, but also
had environmental benefits (Parlak and Yavasoglu, 2023). Karkoub
et al. proposed a new method for pipeline detection using small
mobile robots and a reflective omnidirectional vision system to
reduce maintenance costs for oil and gas pipelines. The system
parameters were optimized using simulated annealing optimization
method, proving the feasibility of this technology.This robot system
could be used for pre-scanning, reducing the need for expensive
tools, thereby reducing inspection time and cost (Karkoub et al.,
2020). Ma et al. explored non-destructive testing methods to ensure
the safe operation of pipelines in energy transportation. They
compared the advantages and disadvantages of non-destructive
testing technology and non-cleaning robot detection systems. In
addition, the application of data models and management in defect
quantification, classification, fault prediction, and maintenance was
studied. These results revealed the importance and development
trend of non-destructive testing technology in pipelinemaintenance
(Ma et al., 2021). Daniyan et al. designed a robot inspection system
for non-destructive testing of pipelines to improve pipeline quality
and reduce pipeline obsolescence caused by cracks, corrosion,
and other factors. The inspection robot used ultrasonic detection
technology and color perception to inspect pipelines. This robot
could not only determine the corrosion situation of pipelines,
but also detect the occurrence and growth of cracks in pipelines
(Daniyan et al., 2022). Elankavi et al. developed pipeline inspection
robots and classified them based on their movement types.
This overcame the inconvenience of manual intervention in the
internal repair and maintenance of pipelines. By designing and
validating different models, their performance was compared.
These different types of robots had different functions in pipeline
internal maintenance, providing important insights for selection,
development, and research (Elankavi et al., 2020). Wang et al.
proposed a new type of transducer that generates spiral Lamb
waves in pipelines to study the mechanism of transducer action in
electromagnetic ultrasonic testing, and established a finite element
model to simulate the wave generation and propagation of the
transducer. The results show that existing transducers with winding
coils are not suitable for generating spiral waves (Wang et al.,
2020). In order to solve the problems of poor accuracy and high
noise in electromagnetic ultrasonic testing technology in pipeline
inspection, Li et al. designed a pipeline crack quantitative detection
device consisting of three uniformly distributed probes on the
circumference. The results showed that the positioning error of the
crack was less than 6.75%. Based on the characteristic coefficient
method, the quantitative error of crack size is less than 8.75%
(Li et al., 2022).

In summary, the inner wall of the pipeline will come into direct
contact with the conveyed content. Corrosion or damage can easily
occur under the impact of conveyed content, leading to leakage and
loss of conveyed content. Regular inspection and maintenance of
the inner wall of pipelines can effectively improve their service life
and prevent losses in a timely manner. However, the inner wall of
the pipeline cannot be directly inspected. Non-destructive testing
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FIGURE 1
Principle of electromagnetic ultrasonic detection of pipeline inner wall.

technology can complete the detection of targets without causing
damage. Therefore, this study proposes to use ultrasonic testing
technology to detect and analyze the corrosion of the inner wall of
pipelines.

The innovation of this study lies in the design of a signal
denoisingmethod based on EmpiricalModeDecomposition (EMD)
and Singular Spectrum Analysis (SSA) to denoise EUT signals. This
study also proposes a defect signal feature extraction algorithm
based on signal envelope, which further improves the detection
accuracy of EUT. The main contribution of this study is to design a
new signal denoisingmethod and a signal feature extractionmethod
for processing detection signals. This improves the target of EUT
detection accuracy and enhances the stability and safety of energy
transportation.

2 Pipeline inner wall corrosion defect
detection technology based on
electromagnetic ultrasonic testing

The research on pipeline inner wall corrosion defect detection
technology based on EUT includes two parts. Section 1 is the study
of EUT from signal preprocessing and noise cancellation. Section 2
is the study of EUT based on defect signal feature recognition and
extraction.

2.1 Signal preprocessing of
electromagnetic ultrasonic testing based
on empirical mode decomposition

EUT combines the principles of electromagnetics and
ultrasound to detect defects, foreign objects, or other structural
issues in materials. This technology applies electromagnetic fields
to the tested material during detection and uses ultrasound to
detect changes in the internal structure of the target for structural
detection (Deepak et al., 2021; Nikolaev et al., 2018). The ultrasonic
excitation force mechanism of this method in detection will change
according to the material of the detection target. The mechanism of
electromagnetic ultrasonic excitation force includes Lorentz force,
magnetization force, and magnetostrictive force (Fetisov, 2024). Oil
and natural gas transmission pipelines are iron pipelines made of
ferromagnetic materials. The mechanisms of ultrasonic excitation
in these materials include Lorentz force, magnetization force, and
magnetostrictive force. Figure 1 shows the detection principle.

During EUT, the permanent magnet will generate a bias
magnetic field around it. This magnetic field will interact with the

FIGURE 2
The empirical mode decomposition and the echo signal processing.

excitation coil to generate an alternatingmagnetic field.Theparticles
on the pipe wall will begin to vibrate and form ultrasonic waves.
The echo signal is the key signal for EUT to achieve non-destructive
testing. However, the echo signal is susceptible to various types of
pollution interference, resulting in a significant decrease in detection
accuracy. EMD is a time series data processing technique used for
analyzing nonlinear and non-stationary signals (Zhou et al., 2021).
This technology can segment complex echo signal data into a series
of intrinsic mode functions. The number of extremes and zeros
in all intrinsic mode function signals is basically the same, with a
difference of no more than 1. At any position of the intrinsic mode
function signal, the mean of the maximum and minimum envelope
lines of the signal is 0. Figure 2 shows the EMD steps.

The steps for processing electromagnetic ultrasound
detection echo signals using EMD are as follows: Firstly, signal
preprocessing. Necessary preprocessing is performed on the
collected electromagnetic ultrasound detection echo signals, such
as filtering to remove noise (Shi et al., 2023a; Shi et al., 2023b; Shi
et al., 2023c). Secondly, EMD decomposition involves inputting
the preprocessed signal into the EMD algorithm and iteratively
decomposing the signal into several IMFs and residual signals (Wu
et al., 2020; Wu et al., 2022; Wu et al., 2024; Zheng et al., 2024).
Each IMF represents an inherent oscillation mode of the signal.
Thirdly, screen IMFs, analyze the obtained IMFs, identify which
ones contain useful signal features, and which ones may contain
noise or irrelevant information. Fourthly, signal reconstruction can
selectively reconstruct certain IMFs as needed to obtain signals that
remove noise or highlight specific features. Fifth, post-processing,
further processing of the reconstructed signal, such as wavelet
transform denoising, feature extraction, etc., to meet specific
analysis needs. Fifth, result analysis: Analyze the processed signal,
extract useful information such as defect size, position, etc., and
provide explanations (Towsyfyan et al., 2020; Stroykov et al., 2021).
This study assumes that the original signal is s(t) and solves for all
extreme points of s(t). The average envelope of the original signal is
calculated using a cubic spline function (Shammazov et al., 2022).
Cubic spline function is currently a commonly used interpolation
method. At this point, the intrinsic mode function can be calculated
according to Eq. 1 (Bolobov et al., 2022).

x1(t) = s(t) − a1(t) (1)
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In Eq. 1, x1(t) represents the first candidate intrinsic mode
function. a1(t) represents the average envelope of the original signal.
If x1(t) meets the two basic requirements of the intrinsic mode
function, it is defined as the first intrinsic mode function. If it does
not meet the requirements, the above steps are repeated using x1(t)
as the source signal, represented by Eq. 2.

x1k(t) = x1(k−1)(t) − a1k(t) (2)

In Eq. 2, k represents the repeated operations number. If the
candidate intrinsic mode function satisfies the standard deviation
condition in Eq. 3 after k operations, the first intrinsic mode
function component c1(t) can be decomposed.

SD =
T

∑
t=0

|x1(k−1)(t) − x1k(t)|

x21(k−1)(t)
≤ 0.3 (3)

In Eq. 3, T represents the duration of the source signal. c1(t)
is separated from s(t) to generate a new raw signal, represented by
Eq. 4.

r1(t) = s(t) − c1(t) (4)

In Eq. 4, r1(t) represents the original signal after removing the
first intrinsic mode function. After generating a new original signal
r1(t), the above steps are repeated by replacing s(t)with r1(t) until the
newly generated original signal can no longer extract the intrinsic
mode function. After completing EMD, the original signal s(t) can
be expressed as Eq. 5.

s(t) =
n

∑
i=1

ci + rn (5)

In Eq. 5, ci represents the intrinsic mode function component
of the decomposed signal. n represents the quantity of repetitions.
rn represents the residual component of the original signal. After
completing the EMD of the original signal, the original signal is
reconstructed based on these results. Based on the frequency of the
reconstructed signal, EMD can be considered as a high-pass, low-
pass, and band-pass filter. When reconstructing the high-frequency
intrinsic mode function components, it can be regarded as a high-
pass filter (Pshenin and Zakirova, 2023). When reconstructing
the low-frequency intrinsic mode function components, it can be
regarded as a low-pass filter, removing the high-frequency and low-
frequency intrinsic mode components. When only reconstructing
the intrinsicmode components of themiddle part, it can be regarded
as a band-pass filter (Kumavat et al., 2021; Aleksander et al., 2023).
The signal features obtained by different filtering methods are
different (Tian et al., 2024). In the echo signal, the energy of the
noise signal is significantly lower than that of the characteristic
signal. Therefore, the energy method can be used to screen the
intrinsic mode components of the signal. However, this method is
prone to losing a large amount of useful information during the
screening process. There is no correlation between the noise in
the echo signal, while the correlation between the feature signals
is strong. Therefore, this study proposes to use the signal feature
similarity method to screen the components of the intrinsic mode
function. The correlation evaluation method used is a similarity
comparison method. The similarity between different components
is calculated using Euclidean distance. The correlation between

FIGURE 3
Analysis of the signal singular spectrum detected by electromagnetic
ultrasound.

different components is judged.The similarity is represented byEq. 6
(Vasiliev et al., 2021).

D(i) = dist(IMEi,x(t)) = √
T

∑
t=1
(x(t) − IMEit)

2 (6)

In Eq. 6, D(i) represents the Euclidean distance of different
components.

2.2 Noise reduction processing of
electromagnetic ultrasound signals based
on singular spectrum analysis

After filtering and reconstructing the signal using EMD, it is
not possible to completely eliminate the noise in the original signal.
SSA is a non-parametric statistical method used for analyzing time
series data. This method can effectively extract trends, periodic
components, noise, etc. from time series. SSA also has good
processing ability for non-stationary and nonlinear data. Figure 3
shows the basic process of SSA (Nikolaev and Zaripova, 2021).

When performing SSA on EUT signals, it is necessary to
first convert the original sequence into a trajectory matrix. When
embedding the original sequence of ultrasound detection signals, it
is necessary to first decompose the original sequence number s(t)
into an L×K dimensional matrix, represented by Eq. 7.

X = (xij)
L,K
i,j=1
=
[[[[

[

x1 ⋯ xK
⋮ ⋱ ⋮

xL ⋯ xN

]]]]

]

(7)

In Eq. 7, L and K are parameters that determine the window
size in SSA. X represents the transformed trajectory matrix. After
converting the original time series into a trajectory matrix, singular
value decomposition is also required. The trajectory matrix is
decomposed into singular values and singular vectors, represented
by Eq. 8.

(XTX)Ui = λiUi (8)
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In Eq. 8, XT represents the transpose of matrix X. λi represents
the characteristic value. Ui represents the feature vector. It is
assumed the singular spectrum d of the original signal in the time
series and the right eigenvectorVi of the singular spectrum, denoted
by Eq. 9 (Nüßler and Jonuscheit, 2021).

{{{
{{{
{

d = diag(√λ1,√λ2,…,√λL)

Vi =
XTUi

di

(9)

Then, matrix X is represented by Eq. 10.

X =
L

∑
i=1

diUiV
T
i (10)

After completing singular value decomposition on the original
sequence, grouping can begin. Grouping is the process of dividing
the trajectory matrix into R different groups based on the different
characteristics of the signal. After completing the grouping, the
singular vectors after grouping can be converted into time series to
complete the SSA of the original signal sequence. When performing
SSA on the original signal, window size and reconstruction order
are two very important parameters. The window size is generally
determined by L and K, represented by Eq. 11.

{
{
{

1 < L ≤ N
2

K = N− L+ 1
(11)

In Eq. 11, N represents the length of the original signal. When
performing SSA on the original signal, the window must be large
enough to decompose subtle noise signals. When the window
size is too large, it can lead to a significant increase in the
computational cost of SSA (Baktizin et al., 2020).The reconstruction
order is selected through the singular spectral inflection point
method. Feature signals and noise are distinguished based on the
magnitude of singular values. The characteristic signal corresponds
to a large singular value and exhibits a curved variation. The noise
corresponds to small singular values and the curve is smooth.
The inflection point marks the transition from feature signals
to noise. When the difference in singular values is large, the
inflection point is obvious. The inflection point is not significant
when the difference is small. When selecting the window size of
SSA, it should first obtain the frequency domain characteristics of
the signal. However, electromagnetic ultrasound signals are time-
domain signals.Therefore, this study uses the fast Fourier transform
to perform time-frequency domain conversion on EUT signals,
which is represented by Eq. 12.

X(k) =
N−1

∑
n=0

x(n)e−j
2π
N
nk (12)

In Eq. 12, X(k) represents the discrete signal after fast Fourier
transform. x(n) represents the signal to be converted. j represents the
index of parameter K. In SSA, the single component corresponding
to each singular value is usually arranged according to frequency.
The first singular value usually corresponds to the main trend or
lowest frequency component of the time series. This means that the
components obtained through the first singular value reconstruction
canwell preserve themain features and trends of the entire sequence

FIGURE 4
Research on signal noise reduction treatment based on empirical
mode decomposition and singular spectrum analysis.

in both the time and frequency domains. Therefore, by analyzing
the performance of the first reconstruction component, it is possible
to evaluate whether the selected window size is reasonable (Abed
and de Brito, 2020).The Hurst exponent is a statistical index used to
analyze time series data, quantifying the long-termmemory or trend
regression of the data. Therefore, when selecting the reconstruction
order of SSA, this study uses the Hurst exponent as the evaluation
indicator, represented by Eq. 13 (Kruschwitz et al., 2023).

H =

ln(
max[

t
∑
i=1
(s(i)−s(N))]−min[

t
∑
i=1
(s(i)−s(N))]

√
N
∑
t=1
(s(t)−s(N))

N

)

ln (cN)
(13)

In Eq. 13, s(i) represents the cumulative value of the original
signal at time [1, t]. s(N) represents the mean of the original
signal. c is a constant usually taken as 0.5. After preprocessing
the electromagnetic supermarket detection data through EMD,
preliminary signal noise reduction can be achieved, but small noise
cannot be processed. Therefore, this study proposes to use SSA for
secondary processing of EUT signals. Figure 4 shows the designed
electromagnetic ultrasound signal denoising processing technology
based on EMD-SSA.

When using this technology to process EUT signals, it is
necessary to first use EMD to decompose the original signal.
Intrinsic mode components are extracted and qualified intrinsic
mode function components are selected for SSA, further eliminating
small noise in the original signal. After secondary noise reduction
processing, the intrinsic mode function component signal can be
reconstructed.

2.3 Identification and extraction of defect
signal features in electromagnetic
ultrasonic testing

After denoising the electromagnetic ultrasonic signal, the
changes in ultrasonic waveform under different degrees of corrosion
can be analyzed. Corresponding features can be extracted, and
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FIGURE 5
Detection of pipeline corrosion and waveform change.

the corrosion situation of pipelines can be determined. Pipeline
corrosion is usually divided into large area and small area corrosion
based on the corrosion area. The changes in ultrasonic waveform
under different corrosion areas are inconsistent. Figure 5 shows the
specific changes.

In Figure 5, T represents the head wave generated by
electromagnetic ultrasonic excitation pulse, F1 represents the
primary echo; F2, F2

′ and F2
″ represents the secondary echo

without corrosion, large area corrosion and small area corrosion;
F3 represents the tertiary echo of small area corrosion. When there
is no corrosion phenomenon in the pipeline, the time difference
between the primary echo formed by ultrasound on the inner side
of the pipeline wall and the secondary echo formed on the outer
wall of the pipeline is small. When large-scale corrosion occurs in
pipelines, the time difference between the primary and secondary
echoes will further decrease. When small-scale corrosion occurs in
pipelines, electromagnetic ultrasonic waves will form three echoes
between the pipe walls. The time difference between the first and
second echoes is consistent with the time differencewhen large-scale
corrosion occurs. The time difference between the second and third
echoes is extremely short. To identify the degree of corrosion on the
inner wall of the pipeline, it is necessary to extract and analyze
the features of the echo signals during detection. In corrosion
detection, the time difference of echo occurrence is the most direct
feature. Therefore, this study uses the arrival time of echoes as the
determination method. Common time difference analysis methods
include threshold method, peak envelope method, etc. The peak
envelope method is a technique used for analyzing and processing
signals. The core of this method is to identify and utilize the peak
value of the signal to construct an envelope and describe the main
characteristics of the signal. This method has a good processing
effect on nonlinear and non-stationary signals. Therefore, this study
analyzes the EUT echo signal using this method. When extracting
the features of EUT echo signals using this method, the analytical

signal of the real signal can be defined as Eq. 14.

â(t) = a(t) + a(t) (14)

In Eq. 14, a(t) represents the real signal. â(t) represents the
parsing signal. a(t) represents the Hilbert transform of the real
signal, represented by Eq. 15.

a(t) = a(t) ∗ 1
πt
= ∫ +∞−∞

s(τ)
t− τ

dτ (15)

In Eq. 15, τ represents the echo delay time. When using the
Hilbert transform to extract the features of the echo signal, the
amplitude and phase of the echo signal can be synchronously
understood. The peak envelope curve can be calculated by
amplitude. The signal frequency can be calculated based on the
phase. Signal energy spectrum can be drawn through energy
calculation. A three-dimensional time-frequencymap can be drawn
through the above three dimensions. The localization of pipeline
corrosion defects can be completed based on the three-dimensional
time-frequency map of the echo signal.

3 Experimental results analysis of
non-destructive testing technology
for corrosion defects on pipeline inner
walls

The experimental results analysis of non-destructive testing
technology for corrosion defects on pipeline inner walls includes
three parts. Firstly, an experimental platform for detecting corrosion
defects on the inner wall of pipelines was established. Secondly,
the feasibility of signal denoising processing technology was
verified. Finally, the effectiveness of pipeline corrosion detectionwas
analyzed.

3.1 Experimental setup and experimental
design

In this study, MATLAB was used to analyze the performance
of the model noise reduction algorithm, and to analyze the
treatment effect of different degrees of noise pollution. During the
experimental verification of the pipeline inner wall corrosion defect
detection technology, three experimental scenarios are designed.
The first is used for the simulation detection of large area corrosion
defects, the second is used for the simulation detection of small area
corrosion defects, and the third is the actual detection of the pipeline
inner wall. In the detection of large area corrosion defect, RAM-
5000-SNAP device was used for ultrasonic excitation and reception.
In the detection of small area corrosion defect, RAM-4000-SNAP
device was used for the experiment, and the actual detection of the
pipeline is the detection device in the pipeline. The experimental
devices of the three experiments are shown in Figure 6.

Figure 6A is a large area corrosion defect detection device,
including load ohm, oscilloscope, amplifier and impedance
matching equipment. Figure 6B is the actual detection device of
the pipeline, which consists of three parts, including the driving
section on both sides and the detection section of the intermediate
part. Figure 6C shows the in-line detector.
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FIGURE 6
Experimental platform and experimental setup. (A) Large area defect detection. (B) Small area defect detection. (C) Actual pipeline detection device.

FIGURE 7
Comparison of the noise signal processing effect. (A) Original noise signal. (B) Signal after noise reduction.

3.2 Analysis of the experimental results

3.2.1 Analysis of simulation test results for echo
signal noise elimination

Wavelet Soft Threshold (WST) and Wavelet Hard Threshold
(WDT) are two common techniques for denoising ultrasound
signals. To verify the feasibility of the EMD-SSAEUT signal
denoising algorithm designed, MATLAB was used as the
experimental platform to compare and analyze the denoising
processing effects of the three methods mentioned above. Figure 7
shows the signal processing effects of three methods.

Figure 7A shows the original noise signal. Figure 7B shows the
signal processed by WST. Figure 7 shows the signal processed by
WDT. Figure 7 shows the signal processed by EMD-SSA. After
WST processing, the fluctuation amplitude of the original noise
signal was significantly reduced. However, there were still significant
fluctuations in the stable signal region. The processing effect of
WDTmethod was worse than that of WST.The fluctuation in stable
areas was more significant. After being processed by EMD-SSA,
the original noise signal still had a certain noise interference at the
signal’s stable point. To further verify the signal denoising effect
of EMD-SSA, the Signal-to-noise Ratio (SNR) and Mean Squared
Error (MSE) processed by three processingmethods were compared
in Figure 8.

Figure 8A shows the SNR comparison results of three processing
methods. As the SNR of the original signal increased, the SNR of
the denoised signal also gradually increased.When the original SNR

was 0, the SNR of the signal processed by WST was about 5 dB. The
SNR processed by WDT and WST was consistent. The SNR after
EMD-SSA processing was approximately 12 dB. When the original
SNR increased to 20 dB, the SNR after WST processing was about
17 dB, the SNR after WDT processing was about 23 dB, and the
SNR after EMD-SSA processing was about 30 dB. Figure 8B shows
the MSE comparison results of three processing methods. With
the increase of MSE, the MSE processed by these three processing
methods was also increasing. The MSE after EMD-SSA treatment
was consistently lower than the other twomethods.When the initial
MSE was 0.005 dB, the MSE after EMD-SSA processing was about
0.5 dB, while the MSE after WST and WDT processing are both
above 1.0 dB. When the initial MSE was 0.007 dB, the MSE after
WST and WDT processing was basically the same. The MSE after
EMD-SSA treatment wasmuch lower than that afterWST andWDT
treatment.

3.2.2 The treatment effect of EMD-SSA on
different levels of pollution

In the detection of large-scale corrosion defects, firstly, this
study compared the effectiveness of this noise reduction method
on different noises under the same parameters. Figure 9 shows the
processing effect of mild noise.

Figure 9A shows the original noise signal with mild pollution.
The voltage amplitude of the original noise signal reached 4 V. The
amplitude fluctuation of the original noise signal was irregular, and
the signal was relatively chaotic, but the signal extremum could
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FIGURE 8
SNR and MSE comparison results. (A) SNR comparison results. (B) MSE comparison results.

FIGURE 9
Treatment effect of light noise pollution. (A) Mild noise pollution signal. (B) Mild noise pollution signal after processing.

FIGURE 10
Treatment effect of mild noise pollution. (A) Mild noise pollution signal. (B) Mild noise pollution signal after treatment.

still be observed. Figure 9B shows the noise signal after EMD-
SSA processing. After EMD-SSA processing, there was a very clear
pattern of signal fluctuations. There were three significant peaks
in a sampling length of 600. EMD-SSA effectively removed mild
noise pollution. Figure 10 shows the treatment effect of moderate
pollution.

Figure 10A shows the raw noise signal with mild noise
pollution. The original noise signal had no pattern. The

effective signal band was basically completely covered, and
the magnitude of the extreme value of the effective signal
could not be determined. Figure 10B shows the signal
after EMD-SSA denoising processing. After denoising, the
effective signal bands were completely separated. However, the
amplitude of the effective signal band was also significantly
reduced. Figure 11 shows the treatment effect of severe
noise pollution.
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FIGURE 11
Treatment effect of severe noise pollution. (A) Severe noise pollution signal. (B) Severe noise pollution signal after treatment.

TABLE 1 Treatment effect of large-area corrosion defects of different thickness steel plates.

Steel plate thickness (mm) Preprocessing SNR (dB) Processed SNR (dB) SNR gain

12 3.2754 14.3548 4.348

15 3.6458 14.8695 4.041

19 1.1846 16.1354 3.859

24 3.2786 15.6328 4.771

30 3.6054 14.3084 3.982

36 2.9784 12.6526 4.251

42 2.9152 13.4684 4.622

48 1.2515 15.0648 12.011

TABLE 2 Pipeline wall thickness calculation results and actual results of
the denoised signal.

Steel
plate
thickness
(mm)

The
thickness
of
the
pipeline
wall
(mm)

Error
(mm)

12 12.00 0.0015

15 15.02 0.0194

19 19.15 0.1452

24 24.13 0.1258

30 30.03 0.0284

36 36.02 0.0164

42 42.02 0.0218

48 47.81 0.1906

Figure 11A shows the original noise signal with severe
noise pollution. The effective band and noise signal in
the original noise signal completely covered each other,

making it difficult to distinguish them. Figure 11B shows
the signal after EMD-SSA denoising processing. EMD-SSA
can remove most of the noise in severe noise pollution,
completely distinguishing the effective band from the noise
signal. However, the noise removal effect near the effective
band was poor, and significant noise phenomena could still
be observed.

3.2.3 Detection of different corrosion defect
areas and practical application of pipelines

This study also compared the signal processing effects of large-
area corrosion defects under different thicknesses of steel plates
in Table 1.

In Table 1, when the thickness of the steel plate was 19 mm, the
SNR after signal processing reaches the highest value of 16.1354 dB.
The SNR gain at this time was 3.859. The SNR of the signal at
this thickness was also the lowest before denoising, only 1.1846 dB.
When the thickness of the steel plate was 48 mm, the SNR gain after
signal denoising was the highest, reaching 12.011. At this point, the
SNR of the signal before denoising was 1.2515 dB. The SNR after
signal denoising was 15.0648 dB. When the thickness of the steel
plate was 36 mm, the SNR after signal denoising was the lowest, only
12.6526 dB. The SNR before signal denoising at this thickness was
2.9784 dB, and the SNR gain was 4.251. This study also compared
the pipeline thickness values calculated from the processed signals
in Table 2.
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FIGURE 12
Time-domain envelope spectrum and energy spectrum changes of small-area defects. (A) Time domain envelope spectrum variation. (B) Changes in
energy spectrum.

TABLE 3 Test results of the pipeline detection device.

Probe
number

Detection
channel

Detection
of
pipeline
wall
thickness
(mm)

1

1 8.91

2 8.92

3 8.92

2

4 7.16

5 7.27

6 7.11

3

7 8.94

8 8.93

9 0.93

In Table 2, when the pipe wall thickness was 48 mm, the error
between the calculated pipe wall thickness and the actual thickness
based on the processed signal was the highest, reaching 0.1906 mm.
When the wall thickness was 12 mm, the calculated wall thickness
based on the processed signal had the smallest error with the actual
thickness, only 0.0015 mm. Among the 8 different thicknesses of
pipewalls, only three thicknesses had a calculation error greater than
0.1000 mm. When the thickness of the pipe wall was 19 mm, the
calculation error was 0.1452 mm. When the thickness of the pipe
wall was 24 mm, the calculation error was 0.1258 mm. Figure 12
shows the time-domain envelope spectrum and energy spectrum
changes when there is a small area of corrosion defect.

Figure 12A shows the variation of the time-domain envelope
spectrum of small area defects. As the depth of the defect
increased, the fluctuation and amplitude of the time-domain
envelope spectrum gradually increased. When the defect depth was

1.5 mm, the amplitude was about 4.5 V. When the defect depth was
3.0 mm, the voltage amplitude was about 5.2 mm. Figure 12B shows
the energy spectrum of small area defects. As the defect increased,
the signal energy value also continued to increase. When there was
no defect, the energy was about 14. After the defect depth increased
to 3.0 mm, the energy value rose to about 25. Table 3 shows the
pipeline’s actual inspection results.

In Table 3, the calculation results of the wall thickness of the
detection pipeline for probes 1 and 3 were basically consistent,
indicating that there were no corrosion defects on the wall of probes
1 and 3. In the detection channel of probe 2, the thickness of the
detection tube wall was about 7.0 mm, which was significantly lower
than the 9.0 mm thickness at probes 1 and 3. There was severe
corrosion on the pipe wall at probe 2 of the detection device. By
detecting the axial and circumferential positions of the device, the
location of pipeline corrosion defects could be determined.

4 Conclusion

A pipeline corrosion detection technology based on
electromagnetic ultrasonic non-destructive testing technology has
been studied and designed. This can improve the stability of the
energy delivery system and reduce the paralysis of the pipeline
energy delivery system caused by pipeline corrosion and damage.
This study utilized EMD and SSA to denoise EUT signals and
improve the accuracy of EUT in pipeline corrosion detection.
When the initial MSE was 0.005 dB, the MSE after EMD-SSA
processing was about 0.5 dB, while the MSE after WST and WDT
processing were both above 1.0 dB. The EMD-SSA signal denoising
method effectively removed mild noise pollution, completely
separating the effective signal band from noise pollution. When
the thickness of the pipe wall was 19 mm, the SNR difference
before and after processing of the electromagnetic ultrasound
signal was the largest, increasing by a total of 14.9508 dB. When
the thickness of the pipe wall was 48 mm, the error between the
calculated pipe wall thickness and the actual thickness based on the
processed signal was the highest, reaching 0.1906 mm. When the
wall thickness was 12 mm, the calculated wall thickness based on
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the processed signal had the smallest error with the actual thickness,
only 0.0015 mm. As the depth of small area defects increased, the
signal amplitude gradually increased. When there were no defects,
the maximum amplitude was only about 14 V. When the defect
depth increased to 3.0 mm, the amplitude increased to above 20 V.
The research and design of a pipeline corrosion defect detection
technology based on electromagnetic ultrasonic non-destructive
testing technology can accurately locate the location of corrosion
defects in pipelines and determine the degree of corrosion when
the pipe wall thickness is less than 48 mm. The design results
of the study contribute to improving the transportation safety of
energy sources such as oil and gas. The EUT signal denoising
technology designed can effectively eliminate noise interference
in pipeline detection. However, the signal denoising method
designed has a poor denoising effect on severe noise pollution,
resulting in the loss of effective signals. In the future, the noise
resistance of electromagnetic ultrasonic pipeline non-destructive
testing technology can be further improved to increase the corrosion
detection accuracy of pipeline non-destructive testing technology.
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