Skip to main content

ORIGINAL RESEARCH article

Front. Earth Sci.
Sec. Geohazards and Georisks
Volume 12 - 2024 | doi: 10.3389/feart.2024.1429551

Frequency distribution of different joint slopes containing ceramic soil under seismic wave action

Provisionally accepted
Zhengqi Wei Zhengqi Wei 1Haiqing Cao Haiqing Cao 2TINGYAO WU TINGYAO WU 2*
  • 1 Fujian University of Technology, Fuzhou, China
  • 2 Chongqing University, Chongqing, China

The final, formatted version of the article will be published soon.

    The dynamic response characteristics of high and steep slopes under the action of earthquakes and blasting was focused on, especially the frequency distribution and propagation laws, which are crucial for slope stability assessment. Using stress wave theory as the theoretical basis and advanced FLAC3D numerical simulation technology, we systematically analyze the frequency response of slope under different joint conditions under seismic waves. The nonlinear characteristics of reflected P-wave coefficient and the significant sensitivity of joint to incident wave frequency are revealed when the Angle of incident P-wave changes. The results show that with the increase of the incidence Angle of the incident P-wave, the reflection coefficient of the reflected P-wave decreases slowly at first and then increases sharply to 1.0. The reflection coefficient of the wave at the joint is more sensitive to the frequency of the incident wave. In a biplanar rock mass, multiple reflections of waves between structural planes produce transmitted waves with different time differences.

    Keywords: slope, earthquake, Frequency, Dynamic response, seismic wave

    Received: 08 May 2024; Accepted: 27 Sep 2024.

    Copyright: © 2024 Wei, Cao and WU. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: TINGYAO WU, Chongqing University, Chongqing, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.