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Following the earthquake, prompt evaluation of the distribution of coseismic
landslides and estimation of potential disaster losses are crucial for emergency
response and resettlement planning. The Luding earthquake of 2022 offers a
valuable opportunity to conduct a rapid assessment of coseismic landslides
using various models. In this study, we utilize the Logistic Regression (LR)-
based Xu2019 model, a new-generation model developed in China, alongside
the Newmark model to perform the rapid hazard assessment of coseismic
landslides. Assessing the accuracy and applicability of these two models
based on the coseismic landslides from the Luding earthquake, we find
that within intensity area of IX, the high probability area identified by the
Newmark model aligns closely with the actual distribution of landslides.
However, the Newmark model’s prediction is overestimated in the intensity
area of VIII. For the Xu2019 model, the prediction results are in good
agreement with the distribution of actual landslides. Most landslides are
located in high probability areas, such as Detuo town, Wandong, and Xingfu
villages, indicating that the model has a higher prediction accuracy. Overall,
two models have good practical utility in emergency hazard assessment
of coseismic landslides. However, the Newmark model requires multi-
input parameters and the assignment of these parameters will increase the
uncertainty and subjectivity in the practical application of the modeling
assessment.

KEYWORDS

2022 Ms6.8 luding earthquake, coseismic landslide, emergency assessment, newmark
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1 Introduction

Powerful earthquakes often trigger numerous seismic geological disasters in
mountainous regions. The casualties and property losses resulting from these catastrophes
significantly contribute to the overall earthquake risk (Gorum et al., 2013; Fan et al., 2019;
Havenith et al., 2022). Earthquake-induced landslides are significant secondary geological
disasters, often occurring during or shortly after an earthquake (Keefer, 1984; Xu et al.,
2016; Shao et al., 2023a). They are characterized by their large quantity and scale, wide
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distribution, complex mechanisms, resulting in severe casualties
and economic losses, and prolonged post-earthquake effects
(He et al., 2023; He et al., 2024).

Rapid and precise acquisition of the spatial distribution
and potential hazard assessment of coseismic landslides
following an earthquake is crucial for emergency rescue and
resettlement planning (Tanyas et al., 2019a; Tanyas et al., 2019b;
Nowicki Jessee et al., 2019). Currently, the coseismic landslide
hazard assessment methods included the machine learning
methods (Shao et al., 2019; Ma et al., 2020; Huang et al., 2022;
Shao and Xu, 2022; Wang et al., 2023) and the Newmark method
based on mechanics mechanism (Chen et al., 2014; Jin et al.,
2018; Liu et al., 2018; Huang et al., 2020). Machine learning
methods face a challenge: they require detailed co-seismic
landslide data for model training. However, visually interpreting
earthquake-induced landslides is difficult and time-consuming
due to issues such as collecting and processing satellite or
aerial images, cloud cover, and the slow speed of manually
identifying massive landslides (Robinson et al., 2017). As a result,
the assessment results based on data-driven methods frequently
lag behind the actual emergency response, rendering them
ineffective for the prevention and mitigation of seismic landslides
(Nowicki et al., 2014; He et al., 2021).

In recent years, near-real-time assessment models of coseismic
landslides based on data-driven approaches have emerged as
powerful tools for quickly estimating the spatial location of
landslides (Kritikos et al., 2015; Xu et al., 2019; He et al., 2021).
The goal of these models is to create a near real-time prediction
model of seismic landslides at a large regional scale (global
or national) by utilizing the existing landslide inventories and
machine learning methods. The model can then be applied in a
sudden earthquake event by combining with the ground motion,
and topographic and geological data of the quake-affected area
(Tanyas et al., 2019a; Nowicki Jessee et al., 2019). For example,
Nowicki et al. (2014) used the logistic regression (LR) method
to create a globally applicable near real-time assessment model
with a 1 km resolution based on four global coseismic landslide
databases. Subsequently, Nowicki Jessee et al. (2019) updated the
existing coseismic landslide inventories and established a new
evaluation model based on the 23 earthquake events. Tanyas et al.
(2019a) established a global slope unit-based model for the near
real-time prediction of earthquake-induced landslides based on
seven influencing variables and 25 coseismic landslide inventories
around the world. Allstadt et al. (2018) chose the 2016 Mw 7.8 New
Zealand earthquake as a test case to assess the performance and
applicability of three globally published near-real-time models. The
evaluation results show that the global empirical model for near-
real-time assessment of coseismic landslides has great potential in
emergency assessment. Meanwhile, Xu et al. (2019) introduced a
real probability prediction method for coseismic landslides using
the Bayesian probability method and LR model. They established a
new generation earthquake landslide hazard model in China based
on nine real earthquake cases. These studies suggest that data-
driven near-real-time prediction models have promising prospects
and significant potential for rapidly assessing regional earthquake-
induced landslides.

The physically-based Newmark displacement method fully
considers the mechanism of earthquake-induced landslides. It

utilizes slope instability results and seismic displacement to
quantitatively classify the hazard level of coseismic landslides. This
method is widely used globally for rapidly assessing earthquake-
induced landslides (Jibson, 2011; Wang et al., 2018). This method
has also been applied to the emergency assessment of coseismic
landslides in many regions, such as the 1979 ML 5.7 Coyote lake
earthquake (Wilson and Keefer, 1983), 1994 Mw6.7 Northridge
earthquake (Jibson et al., 2000), 2008 Mw7.9 Wenchuan earthquake
(Godt et al., 2008), 2013 Mw6.7Lushan earthquake (Ma and
Xu, 2019b; Jin et al., 2019), 2014 Mw6.1 Ludian earthquake
(Chen et al., 2018), 2015 Mw7.9 Nepal earthquake (Gallen et al.,
2017), 2017 Mw7.0 Jiuzhaigou earthquake (Yue et al., 2018), 2017
Ms 6.9 Milin earthquake (Du et al., 2022), 2021Mw7.4 Maduo
earthquake (Wei and Chen, 2022). These cases demonstrate
the reliability and timeliness of the physically-based Newmark
model in emergency assessments of regional earthquake-induced
landslides.

Overall, although both methods are widely used in the
rapid assessment of earthquake-induced landslides, there is
still a lack of quantitative comparative analysis regarding the
applicability of data-driven models and the Newmark model in
rapid emergency assessment of coseismic landslides, especially
in the Sichuan and Yunnan area with frequent earthquake. On
5 September 2022, an Ms6.8 earthquake struck Luding County,
Ganzi Tibetan Autonomous Prefecture, Sichuan Province, with
an epicenter reported at 102.08 E, 29.59 N and a focal depth
of 16 km by the China Earthquake Networks Center (CENC).
The earthquake-produced shaking by the China Earthquake
Administration (CEA) assigned a maximum seismic intensity
of IX on the Mercalli scale, which is determined by the degree
of damage to buildings during an earthquake, instrumentally
measured ground motion, engineering damage, human perception,
and other macroscopic phenomena. As of September 13, the
earthquake had resulted in 93 deaths and 25 individuals missing.
Otherwise, this event triggered massive coseismic landslides,
mainly including shallow debris flows, collapses, topples and
a few large-scale debris slides (Zhao et al., 2022; Dai et al.,
2023; Yang et al., 2023). Many residential houses and roads
were destroyed, resulting in greater personnel and property
losses. Among them, casualties directly caused by building’s
collapses account for about 20%, and more than 80% are
related to earthquake-induced landslides (Fan et al., 2022), which
provides an excellent opportunity for us to carry out different
evaluation models in the regional rapid assessment of earthquake-
induced landslides.

This study utilized the Xu2019 model, a new generation
Chinese seismic landslide hazard model, along with a simplified
Newmark model to perform a rapid emergency assessment of
landslides triggered by the 2022 Ms6.8 Luding earthquake. Then,
Based on the coseismic landslide inventory derived from the
visual interpretation of pre and post-quake Planet images with
3 m resolution, a detailed quantitative analysis of the emergency
evaluation results was performed to investigate the applicability of
the two models in this earthquake event. This study is expected
to be useful for rapid emergency response, optimizing emergency
deployment, and improving emergency rescue efficiency for a single
earthquake event.
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FIGURE 1
Map showing the active faults, historical earthquakes and topography distribution near the Xianshuihe fault. The active fault lines are from Deng (2007).

2 Study area

The Xianshuihe fault is an active and large-scale strike-slip fault
zone that controls the relative movement and extrusion of sub-
plates.This occurs against the backdrop of continued southeastward
squeezing of crustal materials at the southeast margin of the
Tibetan Plateau due to the convergence of the India-Eurasia plate
(Tapponnier et al., 2001). The Xianshuihe fault is situated at the
boundary between the Songpan-Ganze block and the Chuan-Dian
block on the eastern margin of the Tibetan Plateau. It intersects
with the Longmenshan fault and the Anninghe fault, forming the
well-known “Y-shaped” fault zone in western Sichuan (Figure 1).
Stretching 350 km from the northwest of Donggu to the south
of Moxi, the fault has a strike ranging from about 130° to 148°
(Bai et al., 2018). The 2022 Ms 6.8 Luding earthquake happened
close to theMoxi fault in the southeastern segment of theXianshuihe
fault zone. Since 1700, there have been 17 earthquakes with a
magnitude of seven or higher along the Xianshuihe fault zone, with
nine of them occurring in themiddle segment of the fault (Figure 1).

The Luding area is situated in the Hengduan Mountains on the
southeastern edge of the Tibetan Plateau, characterized by alpine
and canyon landforms. The Dadu River flows through the region
from north to south, featuring a significant drop in elevation.
The epicenter of the Luding earthquake, at 102.08°E, 29.59°N, is
located in the Hailuogou Glacier Forest Park of Gongga Mountain,
standing at 7,556 m above sea level with an altitude difference of

6,570 m. The study area experiences a typical subtropical monsoon
climate, with an average annual temperature of 15.5 C and annual
rainfall of 664.4 mm. The formation lithology in the area is mainly
Quaternary alluvial proluvial deposits (Qh2apl) and fluvioglacial
deposits (Qp3−lgfl), Permian dolomite, middle Devonian limestone
and magmatic rock (Figure 2). The extensive tectonic activity and
weathering in this region have led to the development of rock
mass joints and fragmentation, creating favorable conditions for
landslides to occur (Li et al., 2022).

3 Method and data

3.1 Coseismic landslide inventory of 2022
luding earthquake

The coseismic landslide database relies on visual interpretation
of satellite images taken before and after the earthquake (Shao et al.,
2024). The post-earthquake images are Planet images with a
resolution of 3 m, collected from September 8 to 30 December 2022.
In order to verify that any landslides present before the earthquake
were not mistaken for coseismic landslides, the pre-quake Planet
images in July and August of the study area were acquired. The
results reveal that the earthquake triggered approximately 12,600
landslides with a total landslide area of 36.0 km2 in areas above
VIII intensity zones on the Mercalli scale. The largest landslide area

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2024.1429421
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Lu et al. 10.3389/feart.2024.1429421

FIGURE 2
Geological map of the study area; the red line is the seismogenic fault of luding earthquake event; the coseismic landslide inventory of this event is
obtained from Shao et al. (2024).

measures 120,000 m2, while the smallest is 65 m2, with an average
area of 2,700 m2 (Figure 2). Coseismic landslides are mainly found
on both sides of theMoxi fault and the Dadu River and concentrated
in intensity IX areas like Moxi, Detuo, and Wanggangping town
(Figure 2). Among them, Wandong village is the most affected
area by landslides in this earthquake. Field photos illustrating the
development of coseismic landslides in the landslide-prone areas of
this earthquake event are shown in Figure 3.

3.2 Newmark method

The Newmark displacement method was initially
introduced by Newmark (1965) for analyzing the stability of
dams under earthquake conditions. It posits that the instability
of the dam is influenced by the deformation resulting from
the earthquake rather than the minimum safety factor. This
method considers that the permanent displacement is caused by
constantly accumulated displacement along the most dangerous
sliding surface after the instantaneous instability of the sliding

body under the ground action. In this method, the critical
(or yield) acceleration (ac) of the potential sliding body is
determined by the pseudo-static method, and the permanent
displacement can be calculated by quadratic integration of the
portion of the ground motion acceleration time history that
exceeds the ac.

The cumulative displacement based on the Newmark model is
calculated in three steps including slope safety factor (Fs), critical
acceleration (ac), and permanent displacement:

(1) Through geometric properties of the slope (thickness of rock
and soil mass (t), saturation degree of rock and soil mass (m),
the inclination angle of the sliding surface (α) and mechanical
properties of rock and soil mass ( effective cohesion (c,),
internal friction angle (φ), the weight of rock and soil (γ)
and groundwater weight (γw)), we can obtain the slope safety
factor (Fs) by Equation 1.

Fs = c,

γtsinα
+
tanφ
tanα
−
mγw tanφ
γtanα

(1)
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FIGURE 3
The field photos of coseismic landslides triggered by the Luding earthquake event; (A) Shallow debris flows in the west of Hailuogou Bridge; (B)
Group-occurring collapses near Moxi Platform; (C) Shallow landslides near Detuo town; (D) Shallow landslides and collapses near Xingfu village.

(2) Using the infinite slope method, we can derive the ac from
the above Fs (Equation 2).

 ac = (Fs− 1)gsinα (2)

where g is the gravitational acceleration, α is the inclination angle of
the sliding surface, which is approximated by the slope angle.

(3) The Newmark displacement (Dn) of the study area can be
determined using a simplified Newmark equation (Equation
3). In this study, we selected the empirical Newmark equation,
derived from a dataset of 2,270 strong-motion records from 30
earthquakes worldwide (Jibson, 2007).

logDn = 0.215+ log[(1− ac
PGA
)
2.341
×( ac

PGA
)
−1.438
] (3)

The probability of slope failure (Pf) in the study area can
be calculated based on the spatial distribution of the Newmark
displacement (Dn). This calculation is performed using the
failure probability curve, which is fitted using data from the
2008 Wenchuan earthquake-induced landslide inventory (Ma and
Xu , 2019b) (Equation 4). This formula enables the estimation of
the instability probability of earthquake-induced landslides in the
Wenchuan and surrounding areas

P(f) = 0.1005[1− exp (−0.2217Dn0.6511)] (4)

where p(f) represents the probability of failure (Pf); Dn is the
calculated Newmark displacement.

3.3 Logistic regression method

The logistic regression (LR) model is a regression analysis used
when the dependent variable is a binary categorical variable. It's
widely employed as a nonlinear multivariate statistical model in
landslide hazard assessment. Moreover, it’s the preferred method
for establishing near-real-time prediction models of earthquake-
induced landslides (Tanyas et al., 2019a; Nowicki Jessee et al., 2019;
Shao et al., 2020). The LR model transforms the dependent variable
into a binary categorical variable, where landslide occurrence is
denoted by one and non-occurrence by 0. The relationship between
the probability of landslide occurrence and potential influencing
factors can be expressed as (Equations 5, 6):

Z = β0 + β1χ1 + β2χ2 + β3χ3…βiχi (5)

P = 1/(1+ e−z) (6)

Among them, p represents the occurrence probability of
landslide. Z represents the sum of the linear weights after
the independent variables are superimposed; χ3 represents the
independent variable, and βi is the regression coefficient.

This study utilizes the Xu2019 model, a new seismic landslide
hazard model, as the near real-time evaluation tool for coseismic
landslides (Xu et al., 2019). The model utilizes nine earthquake-
induced landslide inventories from various regions in China as
training samples. It incorporates 13 influencing factors, including
elevation, relative elevation, slope angle, and aspect, to develop
a near real-time evaluation model for coseismic landslides using
the LR method. This model enables rapid assessment of coseismic
landslides following individual earthquake events based on the
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actual distribution of Peak Ground Acceleration (PGA). Further
details about the model are available in the previous study by
Xu et al. (2019).

3.4 Data

The elevation data utilized in this study is derived from the
ALOS PALSAR Digital Elevation Model (DEM), with a resolution
of 12.5 m, obtained from the Alaska Satellite Facility (https://vertex.
daac.asf.alaska.edu). The slope gradient across the study area was
calculated based on this DEM data. As illustrated in Figure 4A,
the spatial distribution of slope angles shows steeper slopes in the
western region and gentler slopes in the eastern region. For the
ground motion data, we utilized the Peak Ground Acceleration
(PGA) map provided by the Xuanmei Fan team from Chengdu
University of Technology. This map was generated by interpolating
strong motion records collected within 100 km from the epicenter
of the earthquake in Sichuan. According to Fan et al. (2022), the
seismic stations recorded a maximum PGA value of 644.4 cm/s2,
with the corresponding station located approximately 20 km away
from the epicenter. The PGA distribution map indicates that areas
with higher PGA values are situated to the south of the epicenter,
while the northern areas exhibit relatively lower PGA values (https://
mp.weixin.qq.com/s/I7lHKb6c7GeJ-Z83T9rJqw).

Based on 1:200,000 geological maps published by the China
Geological Survey (http://dcc.cgs.gov.cn/), the lithology of the study
area was classified into engineering geological rock types, drawing
upon previous studies (Zhang et al., 2017; Ma and Xu, 2019b;
Wang et al., 2021), and considering the classification of rock masses
engineering GB/T 50,218–2014 (Ministry of Water Resources of the
People’s Republic of China, 2014). Consequently, the lithology of
the study area was divided into five categories: hard rock, relatively
hard rock, soft rock, weak rock, and loose rock groups, with
corresponding mechanical parameters assigned for each rock group
(see Table 1). It is noteworthy that granite and intrusive dikes in
this area are significantly affected by tectonic activity, leading to
highly developed joints and fissures in the rock mass, resulting in
the actual strength of the rock mass being notably lower than that
of the rock itself. Based on previous studies (Ma and Xu , 2019a;
Ma et al., 2020; Wang et al., 2021), appropriate adjustments were
made to the mechanical values of the hard rock group, with
a reduction coefficient set at 0.8. Considering that the majority
of landslides triggered by this earthquake event are shallow
disrupted landslides, it is assumed that the sliding depth of
the landslide (t) is 3 m, and the saturation degree of the rock
mass (m) is 0, based on previous studies (Dreyfus et al., 2013;
Ma and Xu , 2019b).

4 Result

According to Formulas 1, 2 in the above-mentioned Newmark
model and the corresponding terrain data and mechanical
parameters of rock mass, we can calculate the ac distribution results
of the study area (Figure 5A).The ac is used to characterize coseismic
landslide susceptibility. In general, the higher the ac, the less prone to
slope failure in ground motion. The lower the ac, the more unstable

the slope and the easier the slope is to lose stability in ground
motion (Chen et al., 2014). The results show that the majority of
the areas with lower ac values are located in the steep slopes (that
is, slopes greater than 50°, and the ac values in these areas, i.e.,
red area are generally less than 0.15 (Figure 5A). The ac value of
the study area is relatively small in most areas on the west side
of the seismogenic fault, while the ac value in the east side of the
seismogenic fault is large. By combining the Newmark model and
the corresponding PGA distribution (Figure 4B), the Dn value of
the Luding earthquake can be calculated. The result shows that the
majority of the areas with large Dn values are concentrated on both
sides of the valley. In particular, the concentrated areas with large
Dn value (that is, the blue area) are distributed in the north of the
Luding epicenter such as the nearby area of Detuo town, the western
area of Wandong village and Xingfu village (Figure 5B).

Combined with the above Dn distribution result, the estimation
of failure probability of the Newmarkmodel can be calculated by the
probability curve of slope failure (Figure 6A). As for the LR model,
we can also use the Xu2019 model to calculate the probability map
of this event through the PGA distribution (Figure 6B). The results
indicate that most landslides are mainly distributed along both sides
of the seismogenic fault, especially concentratedwithin a 5 km range
on either side of the fault. The Newmark model’s high probability
areas align reasonably well with actual landslide distributions in
seismic intensity IX zones, primarily situated along both sides
of the Dadu River, indicating areas of elevated failure likelihood.
However, in regions with seismic intensity VIII, the Newmark
model tends to overestimate landslide occurrences. Specifically, it
predicts high failure probabilities in the northwest and southern
areas of the epicenter, but the actual landslide distribution in these
areas is relatively sparse. Conversely, the LR model demonstrates a
strong agreement between its prediction results and the observed
landslide distribution, with the majority of landslides occurring
in high-probability areas. Several landslide abundance areas such
as Detuo town, Wandong village, and Xingfu village have high
predicted probability which demonstrates that the model has high
predictive accuracy.

To compare the spatial distribution of slope failure probability
with actual landslides, we selected Wandong Village, the area
most affected by landslides in this earthquake. Figure 7 displays
a locally enlarged area showing the estimated failure probability
calculated by different prediction models near Wandong Village.
Overall, the predictions of both models align well with the actual
landslide distribution in this area. For the Newmark model, high-
probability areas are concentrated on both sides of the Dadu
River, which corresponds to the actual landslide distribution in this
area (Figure 7A). Conversely, the Xu2019 model indicates that the
majority of landslides are distributed in regions with middle to high
probabilities of instability, with only sporadic landslides occurring
in areas of low probability (Figure 7B)

To quantitatively analyze the prediction results of the two
models, we divided the study area into grids measuring 1 km by
1 km, and then calculated the predicted landslide area and the actual
area under each grid (Figure 8). We computed the actual landslide
area for each grid, revealing that the majority of landslides are
concentrated in areas with a seismic intensity of IX (Figure 8A).
Particularly, most landslides occur along both sides of the Dadu
River, with few coseismic landslides observed in regions with a
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FIGURE 4
Map showing the distribution of slope angle and ground motion (PGA); (A) The spatial distribution of slope angle; (B) The spatial distribution of PGA (g)
is obtained by open peak ground acceleration (PGA) distribution maps published by Xuanmei Fan team of the Chengdu University of Technology.

TABLE 1 Classification of engineering geological lithology formations for Luding earthquake.

Rock groups Lithology Weight (kN/m3) Internal friction angle (°) Cohesion, (Kpa)

Loose rock group Quaternary alluvial proluvial deposits
(Qh2apl) and fluvioglacial deposits

(Qp3-lgfl)

20 18 15

Weak rock group Middle lower jurassic mudstone mixed
with thin quartz sandstone of Ziliujing
formation; middle silurian mudstone
mixed with argillaceous siltstone of

luoreping formation

23 25 25

Soft rock group Lower sinian rhyolite; upper ordovician
shale of wufeng formation; upper

ordovician argillaceous limestone of
baota formation

25 28 30

Relatively hard rock group Upper triassic grey quartz sandstone of
xujiahe formation; middle devonian

limestone; permian dolomite

27 32 35

Hard rock group Yajiageng plagioclase granite; detuo
migmatite granite; moxi diorite; intrusive

dyke

30 32 32

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2024.1429421
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Lu et al. 10.3389/feart.2024.1429421

FIGURE 5
Map showing the distribution of ac and Dn of this Lushan earthquake; (A) Critical acceleration (ac); (B) Newmark displacement (Dn).

seismic intensity of VIII. The total coseismic landslide area is
36.0 km2, with the largest landslide area within a single grid of
0.5 km2, located near Xingfu Village (Figure 8A). Figure 8B displays
the predicted landslide area for each grid using theNewmarkmodel.
The results indicate that the maximum landslide area within a single
grid is 0.045 km2, with the total predicted area by the Newmark
model estimated at 8.57 km2. Notably, the predicted results in the
northwest and southern areas of the epicenter are significantly
overestimated. Figure 8C presents the predicted landslide area for
each grid using the Xu2019 model. The predicted areas with high
values are largely consistent with the distribution of landslide-
prone areas. For example, the areas surrounding Detuo town,
Wandong, and Xingfu village have highly developed landslides,
and the prediction results indicate that these areas are also high-
hazard areas. The total predicted landslide area of the Xu2019 model
is 8.17 km2 and the maximum landslide area of a single grid is
0.047 km2.

Additionally, the modeling accuracy is assessed using the ROC
curve. The receiver operating characteristic (ROC) curve provides
a comprehensive measure of continuous sensitivity and specificity
variables (Swets, 1988). The evaluation criteria are as follows: AUC
= 0.5 indicates a stochasticmodel; AUCbetween 0.5 and 0.7 suggests
low accuracy; AUC between 0.7 and 0.9 indicates high accuracy;
AUC > 0.9 indicates very high accuracy (Brenning, 2005). For this

study, ∼12,600 landslides within seismic intensity VIII are utilized as
landsliding positive samples. Non-sliding negative samples consist
of ∼12,600 randomly selected points outside the buffer zone of
landsliding samples (buffer radius = 100 m), resulting in a total of
∼25,200 sample points. Based on the SPSS software, the prediction
accuracy of different models is calculated based on these sample
points. The prediction results reveal that the Xu2019-based model
demonstrates significantly higher accuracy than the Newmark
model, with a prediction accuracy of 0.76, whereas the Newmark
model exhibits relatively lower accuracy, at only 0.63 (Figure 9).

5 Discussion

Timing is critical during the post-earthquake emergency
response phase. Swift emergency assessments can promptly identify
high-risk areas of coseismic landslides, laying the groundwork
for optimizing emergency deployment (Robinson et al., 2017;
Ma et al., 2020). In recent years, few achievements have emerged
in the construction of near-real-time assessment models based
on the abundant earthquake-induced landslides data, but the
application and accuracy of these models in actual quake events are
rare. Allstadt et al. (2018) compared three globally near-real-time
prediction models and calculated the predicted landslide area of the
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FIGURE 6
Estimation of slope failure probability calculated by different prediction models; (A) Newmark model; (B) Xu2019 model.

2016 Kaikoura earthquake by constantly updating PGA distribution
results published by the USGS at different times.The results indicate
a significant overestimation of the actual landslide distribution,
with the predicted landslide area being 6.5–55 times larger than
the observed area. To address these issues, a new seismic landslide
hazard model of Xu2019 model, was developed using the Bayesian
probability method and the LR model, and subsequently applied to
the Luding earthquake. The result shows that the Xu2019 model can
more accurately predict the spatial location of coseismic landslides,
with most high-susceptibility areas distributed on both sides of
the seismogenic fault. However, there are still some deviations in
local areas. For example, the model underestimates the occurrence
of coseismic landslides in the northwest region, where coseismic
landslides are most developed. Conversely, for the southwest region
on the left side of the seismogenic fault, the predicted results are
overestimated.We believe the possible reasons for this phenomenon
are, firstly, the base data resolution of Xu2019 model is 100 m,
which affects the model’s prediction accuracy to some extent,
causing spatial prediction errors at local scales. Secondly, the nine
earthquake cases selected for Xu2019 model are events that triggered
landslides in China and neighboring areas since 1999, occurring
in regions with varying topography and geological conditions.
Only three of these cases are located in the Sichuan region, which

may weaken the applicability of the Xu2019 model in the Luding
earthquake, Sichuan province (Xu et al., 2019). Additionally, due
to the relatively sparse seismic station records in the region, the
interpolated PGA distribution might be lower than the actual
situation, which is another potential reason for the underestimation
of the predicted area. Otherwise, it is important to note that the
total landslide area predicted by the Xu2019 model is lower than
the landslide area triggered by the Luding earthquake. We believe
that the main reason for this phenomenon is the unique high
mountain and canyon terrain of the Luding region. Furthermore, the
earthquake is located at the Y-shaped junction of three major active
tectonic faults, and the rock and soil masses are relatively fractured,
making this area prone to landsliding. Therefore, compared to
earthquakes of similarmagnitude, the Luding earthquake has amore
pronounced ability to trigger landslides (Shao et al., 2024).

Emergency hazard assessment using the Newmark model
involves multiple parameters, such as terrain, geotechnical
mechanics, groundwater, and ground motion. However, there
are numerous uncertainties associated with these parameters,
both in their inherent nature and in the process of obtaining
them (Wang et al., 2015; Bojadjieva et al., 2018). To achieve more
precise predicted displacement, the Newmarkmethod requires clear
physical and mechanical properties of rocks, as well as accurate
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FIGURE 7
Locally enlarged area of estimated slope failure probability calculated by different prediction models; (A) Newmark model; (B) Xu2019 model.

FIGURE 8
Map showing the distribution of predicted landslide area and actual landslide area (fishnet is 1 km∗ 1 km); (A) Actual landslide area; (B) Newmark model;
(C) Xu2019 model.
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FIGURE 9
ROC curves and AUC values calculated by different models.

ground motion parameters (Dreyfus et al., 2013). Therefore, for the
Newmark model, the set of input parameters may be the key point
to affect the evaluation results, especially the assignment of rock
mass parameters. The combination of different lithology is required
in the process of engineering geological rock groups. Although this
simplified treatment is easier to calculate, itmay obliterate the spatial
difference in rock mass strength distributions (Wang et al., 2015).
Moreover, the rock mass in the source area of coseismic landslides
predominantly consists of weathered jointed-cracked rock mass,
exhibiting mechanical properties that deviate from typical rocks.
Consequently, empirical or measured rock strength parameters may
inadequately represent the strength characteristics of the in-situ rock
mass. This discrepancy can lead to assignment results that diverge
from the actual conditions during the stage ofmechanical parameter
assignment, ultimately resulting in significant disparities between
the predicted and actual landslide distributions (Wang et al., 2015).

From the predicted results of the Newmark model, we can
observe that the area with high instability probability has a certain
degree of agreement with the actual landslide distribution. Most
source areas of the coseismic landslides are located in the area
on both sides of the Dadu River, of which this area is also a
high hazard area. However, in the region with a seismic intensity
of VIII, the prediction results based on the Newmark model are
overestimated. According to the actual distribution of the coseismic
landslides, there are few landslides in this area. However, this area
is predicted to be a high-hazard area based on the Newmark model.
We believe that this phenomenon is caused by an underestimation
of the mechanical parameters of the rock during the combination of
different lithology in engineering rock group groups. Furthermore,
it should be noted that the PGA map used in this study is based
on the interpolation of ground motion records by strong motion
instruments within 100 km from the epicenter which are provided
by the Sichuan earthquake administration. While the PGA result
can roughly characterize the distribution of ground motion in

this earthquake event, it does not account for the site effect of
ground motion propagation, specifically ignoring local topography,
slope structure, and the propagation direction of seismic waves.
Therefore, As a result, we may be unable to obtain accurate
seismic motion information and underestimate seismic amplitude
in the middle and upper parts of the mountain which result in
predicted landslide displacement being less than the actual situation
(Wang et al., 2015; Li and Su, 2021).

Prompt and accurate identification and prediction of landslide
risk areas following earthquakes can effectively guide the
deployment of rescue personnel and allocation of resources,
thereby minimizing casualties and property losses (Shao et al.,
2023b). In comparing two models, the Xu2019 model demonstrates
better capability in identifying high landslide hazard areas,
aligning well with hazard levels and distribution characteristics
of Luding-induced landslides. This can provide decision-makers
with scientific guidance for deploying emergency rescue teams
and assessing property and casualty impacts. In contrast, the
Newmark model exhibits deviations between predicted and actual
landslide distributions, potentially leading to misjudgments in
coseismic landslide hazard assessment. Furthermore, both models
underestimated the landslide area for the Luding earthquake
and consequently underestimates its destructive impact and
complicating rescue resource deployment, but the Xu2019 model
effectively distinguishes between low and high landslide hazard
areas that can offer valuable insights for emergency response and
rapid risk assessment.

6 Conclusion

The aim of this study is to conduct a quantitative analysis
of different assessment models in the rapid emergency evaluation
of coseismic landslides triggered by the 2022 Ms 6.8 Luding
earthquake. The data-driven Xu2019 model and the physically-
based Newmark model are selected for this purpose. Using the
coseismic landslide inventory of this event, the applicability and
accuracy of these two models are discussed.The findings reveal that
the Newmark model predicts high probability areas that somewhat
align with the actual landslide distribution, primarily concentrated
on both sides of the Dadu River where failure probability is high.
However, the Newmark model tends to overestimate landslide
occurrence in regions with a seismic intensity of VIII. Conversely,
the LR model closely matches the actual landslide distribution,
indicating high prediction accuracy. To assess model accuracy,
the ROC curve is employed. Results indicate that the Xu2019
model outperforms the Newmark model, achieving a prediction
accuracy of 0.76 compared to 0.63 for the Newmark model. Both
models demonstrate good timeliness in rapid hazard assessment
of earthquake-induced landslides. However, while the Newmark
model theoretically considers the occurrence mechanism of seismic
landslides and has broader applicability, it requires multiple input
parameters, leading to increased uncertainty and subjective factors
in practical application.

Overall, compared to the Newmark model, the Xu2019 model
has a higher predictive capability. However, since the Xu2019
model is primarily trained on the earthquake-induced landslide
database from the Sichuan-Yunnan region, its applicability to other
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regions still needs further validation.Therefore, establishing a high-
precision geospatial database of basic geomechanical parameters
is crucial to improving the accuracy of the Newmark model in
emergency evaluation. For the Xu2019 model, continual enrichment
of earthquake-induced landslide inventories in mainland China
can lead to the development of a near-real-time model tailored to
the area, enhancing forecast accuracy in emergency assessments of
coseismic landslides.
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