AUTHOR=Lu Hao , Cao Song , Dong Shaoqun , Lyu Wenya , Zeng Lianbo TITLE=Control of lamination on bedding-parallel fractures in tight sandstone reservoirs: the seventh member of the upper Triassic Yanchang Formation in the Ordos Basin, China JOURNAL=Frontiers in Earth Science VOLUME=12 YEAR=2024 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2024.1428316 DOI=10.3389/feart.2024.1428316 ISSN=2296-6463 ABSTRACT=

Tight sandstone reservoirs have extremely low porosity and permeability. Bedding-parallel fractures (BPFs) contribute prominently to the storage and seepage capability. However, the distribution of BPFs is remarkably heterogeneous, impeding the prediction and modeling of sweet spots. BPFs are controlled fundamentally by laminations, which are widely distributed in lacustrine tight reservoirs and provide most weakness planes. Based on core and thin section data, BPFs of the upper Triassic Chang 7 tight oil reservoir are characterized microscopically. The lamination combination unit, which is defined by distinctive lamination assemblage and relatively stable lamination thickness and space, is utilized as a homogeneous unit to measure the density of lamination and related BPFs. The influence of laminations on BPFs is discussed further. Results show that most bedding-parallel fractures are unfilled, with apertures generally <40 μm, mainly <10 μm. Larger apertures correlate with low filling degrees. The distribution of BPFs is intricately controlled by lamination type, density, and thickness. (1) BPFs tend to develop along different types by a priority sequence which reflects their mechanical strength. The development degree of BPFs also depends on the mechanical contrast with adjacent laminations; (2) When controlled by a single type of lamination, the density of BPFs increases with lamination density under a turning point and then decreases; (3) BPFs prefer to develop along the thinner lamination and are usually inside it, while controlled by thick lamination, BPFs tend to extend along the edge. The change in the thickness of laminations leads to a change in the development position of BPFs, indicating that the position of the weak plane controls the development position of BPFs; (4) When multiple types of lamination coexist, the type and thickness of laminations jointly influence the development of BPFs. Plastic thin laminations are conducive to the development of BPFs, while brittle thick laminations are not conducive. When the thickness of the plastic lamination is close to or less than that of the brittle, the influence of lamination type dominates BPFs, while the thickness of the plastic laminations is much larger than the brittle, the influence of lamination thickness will dominate.