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The Paleogene-Neogene strata in the Western Depression of the Qaidam
Basin represent a primary focus for oil and gas exploration and development.
Influenced by both terrigenous clastic influx and endogenic carbonate
deposition, these strata exhibit significant variation in sedimentary systems and
reservoir characteristics. This study comprehensively examines the depositional
patterns and reservoir properties of the Paleogene-Neogene sequence across
the inner, middle, and outer belts of the basin, employing core analysis,
thin section petrography, and physical property assessment of reservoirs. Key
findings include 1) The development of a concentric sedimentary system in the
Western Depression during the Paleogene-Neogene period, characterized by
increased carbonate mineral content and decreased clastic material from the
periphery to the center of the basin. 2) Varied sedimentary facies associations
across different zones, with the outer belt dominated by fan delta and braided
river delta deposits, and the middle and inner belts characterized by near-
shore shallow lacustrine carbonates and algal mat deposits, and offshore
semi-to deep-lacustrine fine sediments, respectively. 3) The outer belt exhibits
reservoirs with favorable physical properties and connectivity, while the inner
and middle belts show high heterogeneity, indicating potential for lithological
traps and shale oil exploration. These insights offer scientific guidance for further
investigation into the depositional systems of lacustrine basins in the Western
Depression of the Qaidam Basin and for identifying promising reservoirs.

KEYWORDS

ring-shaped, QaidamBasin, sedimentary system, lacustrine basin filling, favorable facies
zone

1 Introduction

The Qaidam Basin, situated at a high altitude on the northeastern Tibetan Plateau, is
distinguished by its substantial petroleum and natural gas reserves (Bailey and Anderson,
1982; Guo et al., 2017a). This endorheic basin has garnered considerable attention through
comprehensive geological and geophysical research efforts, which aim to elucidate the
intricate processes underlying its formation and evolution (Hanson et al., 2001). Such

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2024.1427994
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2024.1427994&domain=pdf&date_stamp=2024-07-04
mailto:XueJQ_petrochina@163.com
mailto:XueJQ_petrochina@163.com
https://doi.org/10.3389/feart.2024.1427994
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2024.1427994/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1427994/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1427994/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1427994/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1427994/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2024.1427994

research, particularly on lacustrine sedimentary patterns, is pivotal
for refining oil and gas exploration and development strategies in the
basin (Fang et al., 2016; Yang et al., 2020; Liu et al., 2021).

An analysis of the existing body of research on the Qaidam
Basin, perched at a high altitude on the northeastern Tibetan
Plateau, indicates a significant focus on its discrete depressions
(Metivier et al., 1998; Karplus et al., 2011). These investigations
shed light on the localized sedimentary processes, depositional
environments, and hydrocarbon potential, contributing to a
nuanced understanding of this crucial oil exploration and
development zone. Specifically, the western depression of the basin
features a distinctive sedimentary system, influenced by a variety
of physical, chemical, and biological processes, predominantly
showcasing a saline lacustrine environment driven by terrigenous
clastic contributions and endogenic carbonate formation (Li, 2004;
Guo et al., 2019). The hydrologically closed lakes and playas in the
western depression of theQaidamBasin develop high-quality source
rocks (Lowenstein et al., 1989; Phillips et al., 1993; Vengosh et al.,
1995). Detailed seismic data and heavy mineral analyses have
delineated a sedimentary structure of alluvial fans, deltas, and
shallow lacustrine prevalent in the Paleogene of the Qigequan-
Hongliuquan-Gasi area (Schubel and Lowenstein, 1997; Owen et al.,
2006; Zhao, 2006), while petrological, grain size and core data
from the Kunbei region highlight a retrogradational delta system
(Tan et al., 2016; Liu et al., 2018). Recent exploratory efforts in
the Zhahaquan, Youquanzi, and Kaitemilike areas have uncovered
various tight reservoir types in the lacustrine facies, attributed to
Paleogene terrestrial material supply variations (Rieser et al., 2006;
Bush et al., 2016; Wei et al., 2019). The Yingxi and Ganchaigou
area, influenced by ancient landforms, harbor large-scale reservoirs
of semi-deep lacustrine shale and near-shallow lacustrine algal
limestone (Zhu et al., 2022; Li et al., 2023a), underpinning a shale oil
accumulation model characterized by source-reservoir integration
and large-scale distribution, alongside a lateral accumulation
model emphasizing vertical communication and multi-layer system
enrichment (Shi et al., 2020). The Neogene period, marked by
global cooling, the retreat of the Paratethys Sea, and multi-stage
tectonic movement, saw a reduction in the basin and lacustrine
basin extent due to diminished water vapor, favoring a fan and
braided river deltas, and shallow lacustrine sedimentary system
in the Western Depression of the Qaidam Basin (Sun et al., 2020;
Zheng et al., 2023). This era’s depositional patterns, particularly in
the southwestern regions, exhibit an oblique distribution of beach
and bar sand bodies (Wang et al., 2023). While in the northwest
region of Dafengshan, Nanyishan, and Xiaoliangshan, multiple algal
limestone sets extend from the lacustrine basin edge to shallow
lacustrine areas (Wang et al., 2020). Despite the wealth of detail
provided by these studies, a comprehensive synthesis integrating
these insights into a unified model of the basin’s sedimentary
patterns is lacking (Li et al., 2022). This fragmented approach
constrains our understanding of basin-wide processes and the
interconnection between various depositional systems, a challenge
compounded by the basin’s vastness and geological diversity
(Li et al., 2022). Moreover, the existing study often inadequately
clarifies the relationship between source rocks and high-quality
reservoirs (Wang et al., 2020; He et al., 2021), obstructing lithologic
trap identification and complicating the optimization of oil and gas
exploration and development on a large scale.

Through meticulous core observation and analysis, alongside
thin section petrography and comprehensive evaluation of
reservoir characteristics, this study methodically investigates the
Paleogene-Neogene depositional patterns within the Western
Depression of the Qaidam Basin. It introduces and delineates the
concept of a “ring-shaped” sedimentary model, and scrutinizes
reservoir attributes across various depositional belts. The
outcomes of this research aim to offer robust scientific insights
for enhancing oil and gas exploration efforts in the Western
Depression.

2 Geologic setting and stratigraphy

The Qaidam Basin, a vast inland intermountain basin on
the northern Tibetan Plateau, is delineated by the Altun strike-
slip fault to the west, the Qilian thrust fault belt to the north,
and the East Kunlun mountain strike-slip belt to the south
(Arnaud et al., 2003; Cowgill et al., 2003; Xia et al., 2021; Tang et al.,
2021a). Its Cenozoic evolution is linked to convergent tectonic
forces along the plateau’s northern margin, a process intimately
connected with the Indo-Asian collision that prompted ongoing
uplift, thickening, shortening, and lateral compression of the
Tibetan Plateau (Tapponnier et al., 2001; Dupont-Nivet et al., 2002;
Bao et al., 2017; Zhang et al., 2018a; Sun et al., 2019; Jian et al.,
2023). This tectonic activity fostered the development of NW-SE-
oriented thrust fold belts along the basin’s edges (Cheng et al., 2021).
Structural analysis reveals the basin’s division into three major
tectonic units: theWestern Depression, the SanhuDepression, and a
fault block belt along the basin’s northern edge (Figure 1; Guo et al.,
2017b). In Qaidam Basin, the climate also controls sedimentation
and erosion, forming a potential Martian environmental analogue
(Pullen et al., 2011; Heermance et al., 2013; Rohrmann et al., 2013;
Angles and Li, 2017). The Western Depression, lying near the
Kunlun and Altun Mountains, emerged during the Paleogene-
Neogene under compressional forces. This depression houses a
sedimentary sequence of Paleogene-Neogene strata, accumulating
to a depth of approximately 6–7 km, and primarily consists of
terrestrial to lacustrine deposits, spanning follow stratigraphic
layers (Lu et al., 2019; Li et al., 2022; Zhang et al., 2020): 1) Lulehe
Formation (∼56–∼42.8 Ma) consists of siltstone and sandstone,
2) Lower Member of Xianganchaigou Formation (∼42.8–∼38 Ma)
consists of dolomitic mudstone and siltstone, 3) Upper Member
of Xianganchaigou Formation (∼38–∼22 Ma) consists of limestone,
argillaceous limestone, gypsum bearing mudstone and salt, 4)
Shangganchaigou Formation (∼22–∼14.9 Ma) consists of limestone,
argillaceous limestone and algal limestone, 5) Xiayoushashan
Formation (∼14.9–∼8.2 Ma) consists of mudstone, siltstone and
sandstone (Figure 2). These formations comprise primarily fine-
grained lacustrine deposits, dividing into five short cycles, and are
noted for their hydrocarbon potential (Guo et al., 2019; Guo et al.,
2020; Liu et al., 2021).

3 Materials and methods

This study utilizes a comprehensive exploration dataset
provided by Qinghai Oilfield, China National Petroleum
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FIGURE 1
(A) Structural unit division map of Qaidam Basin (Modified from Tang et al., 2021a). The pink area delineates the Western Depression, which is the
basin’s primary region for oil and gas production, consisting predominantly of Cenozoic strata. The cyan area marks the northern margin fault block
belt of the Qaidam Basin, recognized as the main region for Mesozoic gas production. The flesh-colored area represents the basin’s Quaternary
biogenic gas production zone. The two lines with arrows show the approximate locations of the two cross-well sections (NW-SE and SW-NE). (B) The
diagram in the up right corner depicts the geographical location of the Qaidam Basin.

Corporation, comprising drill cores and wire-line logs. From
this dataset, 20 representative well cross-sections across the
Western Depression were compiled, based on over 100 wire-line
logs. Detailed observations and descriptions were performed on
40 drill cores, exceeding a cumulative length of 1,000 m, that
penetrated the Paleogene-Neogene strata within the Western
Depression of the Qaidam Basin. These analyses were augmented
by sedimentary structure and gamma-ray logs, calibrated
at the cored wells, to conduct detailed sedimentary facies
analysis for individual wells (Tang et al., 2021b; Kane et al.,
2023). For the analysis, two typical cross sections were
selected, one transverse and one parallel to the tectonic units
(Figure 1).

Analysis of sedimentary facies offers an in-depth understanding
of the sedimentary infill processes from the Paleogene to Neogene
periods and the spatial distribution of various facies zones. This
study examines the petrology, pore structure types, and physical
properties of reservoirs across different facies zones to elucidate
the temporal and spatial distribution of high-potential reservoirs.
The relevant experiments were completed at Qinghai Provincial
Key Laboratory of Plateau Saline-Lacustrine Basinal Oil & Gas
Geology, with the ultimate aimof forming a sedimentation-reservoir
exploration theory in the study area and laying the foundation for
guiding oil and gas exploration in the Western depression of the
Qaidam Basin.

4 Results

4.1 Sedimentary facies analysis

Based on comprehensive core observations and descriptions,
various lithofacies have been classified. This classification,
in conjunction with gamma-ray (GR) log characteristics,
facilitates a facies association analysis. Within the study area,
the lithofacies are categorized into braided river delta, near-
shore shallow lacustrine, and offshore semi-deep to deep
lacustrine facies.

4.1.1 Braided river delta and/or fan delta
The facies association of the braided river and/or fan delta

plain is not present, and the distinction between pre-delta and
lacustrine facies is challenging. Conversely, the braided river and/or
fan delta front facies association is marked by the presence of
low-angle cross-bedding in cores and a directional arrangement
of gravel, indicative of bottomset deposits. Suspended gravels
are occasionally visible at the base of relatively coarse-grained
sandstone. The gamma-ray (GR) log exhibits box-type signatures
and a positive grain sequence, both suggestive of sedimentary
processes within subaqueous distributary channels (Figure 3A).
Siltstone and argillaceous siltstone fill between these channels, where
mouth bars are absent.
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FIGURE 2
Stratigraphic column map of the Western Depression (Modified from Li et al., 2022). The abbreviations are used for stratigraphy in the figure, as follows:
Lulehe Formation (LLH), Lower Member of Xiaganchaigou Formation (LXG), Upper Member of Xiaganchaigou Formation (UXG), Shangganchaigou
Formation (SG), Xiayoushashan Formation (XYSS).
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FIGURE 3
Typical log-sedimentary facies of outer belt (A,B) and middle belt (C,D). (A) Delta front channel facies, the natural gamma is bell-shaped, and
cross-bedding can be seen in the core. (B) Shallow lacustrine beach bar facies, natural gamma is funnel-shaped, and low-angle cross-bedding can be
seen in the core. (C) Algae mound/algae mat facies, the natural curve is a low-amplitude box-shaped, and the lithology is mainly algal limestone. (D)
The limy dolomite flat facies, the natural gamma is a low-amplitude toothed funnel shape, and the lithology is mainly limy dolomite.

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2024.1427994
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2024.1427994

FIGURE 4
Sedimentary sequence diagram of the middle belt.

4.1.2 Lacustrine
In the Western Depression’s near-shore shallow lacustrine

environment, distinct zones such as beach and bar, algal limestone,
and calcite dolomite are identified based on the proportion of
terrigenous clastic rocks and carbonate minerals. The beach and
bar zone is characterized by massive coarse-grained sandstone,
exhibiting an inverse grain sequence and appears funnel-shaped
on the gamma-ray (GR) log (Figure 3B). Algal limestone is marked
by sedimentary structures associated with algal mats, alongside a
high concentration of carbonate and clay minerals, presenting a
smaller funnel-shaped GR log curve compared to the beach and
bar, different shape features associated with biological processes
can be seen in the core sequence (Figure 3C). Calcite dolomite,
primarily formed under conditions of strong evaporation and
located at the periphery of the saline lacustrine basin, features
laminar structures and horizontal bedding (Figure 3D), with
its GR log shape mirroring that of algal limestone. Beyond
these zones, the mudflat area, characterized by fine sediments,
predominantly consists of terrigenous clastic materials such as
blocky silty sandstone, argillaceous siltstone, sandy mudstone, and
bedded calcareous siltstone. Meanwhile, internal deposits comprise
bedded limestone, blocky chalky limestone, and algal mounds,

encapsulating a full lacustrine transgressive to regressive sequence
(Figure 4).

In offshore semi-deep to deep lacustrine environments,
black shale predominates within the transgressive sequences,
where the content of clay minerals significantly exceeds that of
carbonate minerals, featuring either weakly horizontal lamination
or massive structures. During periods of intense evaporation
in these semi-deep to deep lacustrine settings, a diverse
assemblage of sediments forms, including heterogeneous sandstone,
blocky muddy sandstone, argillaceous siltstone, and laminated
calcareous shale from terrigenous clastic origins. Additionally,
endogenous formations such as laminated dolomitic shale,
lamellar mud-crystalline-pellet dolomite, and nodular gypsum-
bearing dolomite contribute to a complete sedimentary cycle
(Figure 5).

4.1.3 Cross-well sections
The northwest-southeast (NW-SE) profile indicates that

terrigenous clasts predominantly originate from the mountain
system along the northwest margin, diminishing in abundance
from NW to SE (Figure 6; Rieser et al., 2005; Zhao et al., 2020). The
lacustrine basin features two depocenters located between Xian

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1427994
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2024.1427994

FIGURE 5
Sedimentary sequence diagram of the inner belt.

FIGURE 6
Sedimentary profile of NW-SE cross-well in the Western Depression.

8 and You 21, and Dun 5 and JX 1, respectively, with an uplift
occurring in the region spanning You 21 to Dun 5 via You 8 and
Kai 2. In the basin’s center, the frequency of transitions between
near-shore shallow lacustrine and offshore semi-deep to deep
lacustrine facies associations results in aggradational sequences. In
the southeast of this profile, the influx of terrigenous clastic material
is minimal.

The southwest-northeast (SW-NE) profile reveals a
progradational sedimentary sequence in the terrigenous coarse
braided river delta, with the depocenter shifting from SX 58-Shi 60

to the Xian 8-Gou 5 area, influenced by the activity of the southwest
Kunlun Mountain (Figure 7; Yuan et al., 2006). The section along
SX 58-Chai 14 transitions from an offshore semi-deep to deep
lacustrine at the base to a near-shore shallow lacustrine facies
association at the surface. Both near the basin margin’s near-shore
shallow lacustrine and in the depocenter’s offshore semi-deep to
deep lacustrine facies associations exhibit aggradational sequences.
Closer to the northeast provenance area, a fan delta forms,
supported by the substantial input of terrigenous clastic material
(Bush et al., 2016).
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FIGURE 7
Sedimentary profile of SW-NE cross-well in the Western Depression.

FIGURE 8
XRD diffraction pattern of a typical well in the outer belt (AT1).

FIGURE 9
XRD diffraction pattern of a typical well in the middle belt (Qi 302).

4.2 Reservoir analysis

4.2.1 Petrology
Samples Qi 302 and Chai 2-4, representing near-shore shallow

lacustrine and offshore semi-deep to deep lacustrine environments,
respectively, were subjected to X-ray diffraction (XRD) analysis.The
subaqueous distributary channel sandstone in the outer belt shows
that the components aremainly quartz, clayminerals, and carbonate

FIGURE 10
XRD diffraction pattern of a typical well in the inner belt (Chai 2-4).

minerals, and the percentage of carbonate and clay minerals
decreases with the increase of quartz (Figure 8). The analysis
revealed that carbonate rocks in the near-shore shallow lacustrine
environment exhibit the highest mineral content, predominantly
comprising calcite, dolomite, and siderite, accounting for over
50% of the mineral composition. This is followed by felsic
and clay minerals (Figure 9). Conversely, in the offshore semi-
deep to deep lacustrine settings, the proportion of carbonate
minerals significantly decreases, whereas clay minerals, anhydrite,
and pyrite show a marked increase (Figure 10). Furthermore,
the mineral composition within different lithofacies shales in
the offshore semi-deep to deep lacustrine environment exhibits
considerable variability. Endogenous calcareous shales are primarily
composed of carbonate minerals, with a relatively low presence
of felsic minerals. In contrast, felsic shales are characterized by
a high concentration of felsic minerals and a reduced content of
carbonate minerals.

4.2.2 Pore structure and type
Significant variations exist in the pore structure and types

across reservoirs situated in different sedimentary facies. In
the subaqueous distributary channels of the braided river delta
front, sandstone cementation is notably weak, leading to the
widespread development of intergranular pores with diameters
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FIGURE 11
Typical reservoir characteristics of different ring-belt. (A,B): Outer belt, delta front, subaqueous distributary channel sandstone. (C,D): Middle belt, limy
dolomite of the limy dolomite flat facies. (E,F): Inner belt, laminated shale.

reaching up to 200 μm (Figures 11A, B). These pores typically
exhibit lamellar and bundle throat types, demonstrating high
connectivity. Conversely, the dominant pore types within near-
shore shallow lacustrine limy dolomites are irregularly shaped
dolomite intercrystalline pores, predominantly less than 3 μm
in size (Figures 11C, D). Offshore semi-deep to deep lacustrine
lamellar calcareous shales showcase irregular calcite-dissolved pores

and intercrystalline pores, with sizes varying from 1 to 30 μm
(Figures 11E, F). Notably, pores are absent in the argillaceous
siltstone layers.

4.2.3 Porosity and permeability
The porosity and permeability of subaqueous distributary

channel sandstones in the braided river delta front of the outer
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FIGURE 12
Comprehensive histogram of deposition and reservoirs of typical well in the outer belt. (A) Core description; (B) GR; (C) Porosity; (D) Permeability; (E)
Microfacies.

belt exhibit favorable characteristics, with ranges of 5%–20%
for porosity and 0.01–1,000 millidarcies (mD) for permeability,
respectively. The average values for these properties are 15.8%
and 547 mD, respectively, markedly surpassing those of sheet
sand and mouth bar sandstones (Figure 12). Conversely, the
porosity and permeability of near-shore shallow lacustrine limy
dolomites of the middle belt display considerable heterogeneity,
spanning 0%–12% and 0.01–10 mD, respectively (Figure 13).
Notably, intervals of argillaceous limy dolomite and argillaceous
limestone flat microfacies exhibit relatively higher porosity and
permeability than beach and algal mat microfacies (Figure 13),
alongside significant hydrocarbon indications. In the inner belt,
the main distribution interval of porosity is 0%–5%, followed by
5%–7%, 7%–9%, and >9% and more than 90% of the samples have
permeability less than 0.1 mD (Figure 14). In general, the reservoir
property of outer belt is better than that of the middle belt, and the
inner belt is worst.

5 Discussion

Detailed sedimentary facies and reservoir analyses are pivotal for
predicting hydrocarbon-rich zones. A large number of provenance
analysis studies have been carried out in the northwest margin
of Qaidam Basin, which is located in the northern margin of
the Tibet Plateau, and the provenance area has been confirmed,
which provides convenience for the paleogeographic reconstruction
in this paper (Rieser et al., 2005; Yuan et al., 2006; Zhao et al.,
2020). Through comprehensive sedimentary facies analysis, the
sedimentary infill processes, sediment dispersal patterns, and
paleogeography of the Western Depression of the Qaidam Basin
from the Paleogene to Neogene periods are elucidated (Figure 15).
Sediment dispersal exhibits a ring-shaped distribution, originating
from the outer belt’s braided river and fan deltas, which are
sourced from the Kunlun Mountains in the southwest and the
Altun Mountains in the northwest, extending to the middle
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FIGURE 13
Comprehensive histogram of deposition and reservoirs of typical well in the middle belt. (A) Core description; (B) GR; (C) Porosity; (D) Permeability; (E)
Microfacies.

FIGURE 14
Comprehensive histogram of porosity and permeability of typical well in the inner belt.
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FIGURE 15
Ring-Zone depositional model diagram of the multi-type reservoir in Western Qaidam Basin (Modified from Li et al., 2023b).

belt characterized by beach and bars, algal mounds, and algal
mats, and culminating in the inner belt with lamellar shales and
bedded greywacke (Chen et al., 2015; Bao et al., 2017; He et al.,
2021; Hou et al., 2022). Well and cross-section analyses reveal that
the Kunlun Mountains’ continuous uplift significantly influenced
depositional patterns and the northwestern migration of the
depocenter (Figure 7). The lake level fluctuation revealed by
the sedimentary facies changes may be related to the tectonic
and climatic controls (Rieser et al., 2009; Heermance et al., 2013;
Herb et al., 2015). This regional interplay between source rocks and
high-quality reservoirs outlines the spatial and temporal distribution
relationships essential for exploration. The outer belt’s coarse
clastic reservoir, notable for its excellent porosity and permeability,
emerges as the principal exploration target, achieving significant
breakthroughs in structural trap exploration (Guo et al., 2017a;
Liu et al., 2017). While porosity and permeability in the middle
and inner belts do not match the outer belt’s standards, their
proximity to the source rock system presents a unique advantage.
Despite heterogeneity, exploration efforts have identified the middle
belt as having potential for lithologic trap exploration due to its
relatively high porosity and permeability. In contrast, the inner belt
shows promise for “source-reservoir matching” shale oil exploration
(Zhang et al., 2018b; Li et al., 2022). Lacustrine level fluctuations
facilitate lithologic trap formation, connecting source rocks in the
inner belt to premium reservoirs of algal limestone and beach and
bar facies in the middle belt (Figure 6). In the inner belt, carbonate
rock layers and felsic silty shales with lamellar structures undergo
dissolution by organic acids during hydrocarbon generation and
expulsion, creating high-quality reservoirs and delineating key shale
oil sweet spots (Figures 10, 11E).

Leveraging detailed sedimentological analysis and evaluating
variations in petrology, pore structures, and the porosity and
permeability across the outer, middle, and inner belts’ reservoirs
(Figures 8–14), this study elucidates the spatial and temporal
distribution characteristics of high-quality reservoirs within the
middle and inner belts (Figure 15). The high-quality reservoirs in
the outer belt are mainly located in the subaqueous distributary

channel sandstone of the braided river delta front near the Kunlun
Mountains in the southwest margin of the Western Depression. The
high-quality reservoirs in the middle belt are concentrated in algal
mounds in the northeast margin of the Western Depression, with a
continuous band shape.The high-quality reservoirs in the inner belt
are distributed in the center of the lacustrine basin in a point shape
because of their strong heterogeneity. This offers fresh insights for
directing future oil and gas exploration endeavors in the Western
Depression of the Qaidam Basin. It should be noted that the analysis
of reservoir diagenesis and the origins of high-quality reservoirs has
not been conducted in this study, representing a primary avenue for
further research.

6 Conclusion

A detailed sedimentological analysis of the western depression
of the Qaidam Basin reveals that it is composed of three
sedimentary facies types: 1) Braided river and fan delta subaqueous
distributary channels in the outer belt; 2) near-shore shallow
lacustrine in the middle belt; 3) offshore semi-deep to deep
lacustrine in the inner belt. The inner belt is the main area
for shale oil exploration, including terrigenous sandstone, blocky
muddy sandstone, argillaceous siltstone, laminated calcareous shale,
endogenous laminated dolomitic shale, lamellar mud-crystalline-
pellet dolomite, and nodular gypsum-bearing dolomite. Based on
the spatial and temporal distribution characteristics of sedimentary
facies and reservoirs, the ring-shaped exploration model is finally
innovatively established.
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