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Instance segmentation models
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Quantifying the transport of floating macroplastic debris (FMPD) in waterways
is essential for understanding the plastic emission from land. However, no
robust tool has been developed to monitor FMPD. Here, to detect FMPD
on river surfaces, we developed five instance segmentation models based
on state-of-the-art You Only Look Once (YOLOv8) architecture using 7,356
training images collected via fixed-camera monitoring of seven rivers. Our
models could detect FMPD using object detection and image segmentation
approaches with accuracies similar to those of the pretrained YOLOv8 model.
Our model performances were tested using 3,802 images generated from 107
frames obtained by a novel camera system embedded in an ultrasonic water
level gauge (WLGCAM) installed in three rivers. Interestingly, the model with
intermediate weight parameters most accurately detected FMPD, whereas the
model with the most parameters exhibited poor performance due to overfitting.
Additionally, we assessed the dependence of the detection performance on
the ground sampling distance (GSD) and found that a smaller GSD for image
segmentation approach and larger GSD for object detection approach are
capable of accurately detecting FMPD. Based on the results fromour study,more
appropriate category selections need to be determined to improve the model
performance and reduce the number of false positives. Our study can aid in the
development of guidelines for monitoring FMPD and the establishment of an
algorithm for quantifying the transport of FMPD.

KEYWORDS

floating macroplastic debris, transport, YOLOv8, instance segmentation, river surface,
fixed camera, ultrasonic water level gauge

1 Introduction

Quantifying floating macroplastic debris (FMPD) on the surface of rivers is extremely
important for assessing the plastic emission from land to sea and for validating
existing estimates of global plastic emissions (Al-Zawaidah et al., 2021). However, to
date, efforts to accurately quantify plastic emissions from land have faced challenges
because FMPD in rivers is only sporadically monitored (van Emmerik et al., 2019a;
van Emmerik et al., 2019b; González-Fernández et al., 2023; van Emmerik et al., 2023). For
example, van Emmerik et al. (2019b) quantified the FMPD from bridges in the Seine River
through visual observation and reported significant spatiotemporal variation in FMPD
transport with increasing river discharge. These visual observations could enable the
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robust quantification of FMPD transport and clarify the temporal
dynamics of FMPD, even in tidal reaches (van Emmerik et al.,
2018) and during floods (van Emmerik et al., 2023); however,
obtaining long-term data has been more difficult because
of the large amount of labor involved and the high cost of
continual surveying. In addition, observer bias, which depends
on observer skill and level of experience, increases the uncertainty
of the data (Hurley et al., 2023).

To address the challenges in FMPD monitoring, several
techniques for quantifying FMPD transport via fixed cameras
have been established (Kataoka and Nihei, 2020; van Lieshout et al.,
2020). Kataoka and Nihei (2020) established a novel algorithm
for evaluating the transport of floating debris on river surfaces by
combining image analysis and a template matching technique; here,
image analysis was used to detect the debris and convert the RGB
color information in images to CIELUV color information, and the
template matching was used to evaluate the transport between the
frames of river surface videos.These authors suggested that themass
flux of floating riverine debris could be evaluated through image
analysis by multiplying the average weight per unit pixel by the area
of floating riverine debris. However, these methods do not enable
the detection of FMPD from the RGB images. van Lieshout et al.
(2020) attempted to develop an automated method for monitoring
FMPD via deep learning. They demonstrated that the automated
monitoring method incorporating the deep learning approach
could reliably quantify FMPD, which was reasonable with manual
methods. Several studies have subsequently incorporated deep
learning for detecting FMPD on river surfaces and riverbanks
(Lin et al., 2021; Jia et al., 2023b).

Although deep learning models for detecting FMPD on river
surfaces have been developed, their applicability has been limited
and insufficiently discussed. For example, one of the methodologies
for monitoring the FMPD is to use a camera fixed to a bridge to view
the river surface vertically downward (Kataoka and Nihei, 2020;
van Lieshout et al., 2020). When monitoring the FMPD during
floods, the resolution of the recorded video varied according to
the water level change. This could impose a limitation in detecting
FMPD from the recorded video. Morevoer, Redmon and Farhadi
(2018) compared the detection accuracies according to the object
size for the evaluation of the performance of You Only Look
Once version 3 (YOLOv3) using the Common Objects in Context
(COCO) image dataset; they reported a significant difference in
accuracy for detecting small objects (< 322 pixels) and large objects
(> 962 pixels), and the former was significantly lower than the
latter. Their results indicated that the detection accuracy of the
FMPD varied with water level; this insight is essential for developing
a technique for quantifying FMPD transport. Furthermore, an
object detection (OD) approach has often been applied to quantify
the FMPD on river surfaces. This can count FMPD individually
with a bounding box (van Lieshout et al., 2020); however, the
FMPD is equivalently quantified even if its size and shape are
different, which causes uncertainty in the evaluation of FMPD
mass transport (Jia et al., 2023a). Thus, an image segmentation (IS)
approach can be used to quantify those features of FMPD and
is essential for reducing the uncertainty in the evaluation of the
FMPD mass transport. For this reason, segmentation is a useful
approach for quantifying the FMPD mass transport because FMPD
can be detected via both object detection and image segmentation

approaches. However, the instance segmentation approach has not
yet been incorporated into the detection of FMPD on river surfaces.

Here, we develop five instance segmentation models for
detecting FMPD on rivers by training a cutting-edge deep learning
architecture called YOLO (i.e., YOLOv8), which is commonly used
in many studies (e.g., Ahmed et al., 2023; Fan et al., 2024). We
then compare these five models. In addition, we examine the
dependence of the detection accuracy on the changes in the water
level and category selection and then discuss a technical issue for
quantifying FMPD transport using river surface images. In addition
to providing a new technique for monitoring FMPD transport using
fixed cameras, our results can contribute to the development of
guidelines for monitoring FMPD transport and for synchronizing
FMPD monitoring practices internationally.

2 Materials and methods

YOLOv8 segment models were adopted for detecting FMPD on
river surfaces. There are five YOLOv8 segmentation models that
differ in terms of accuracy and inference speed. To develop the
models, we collected many images from seven rivers in Japan. Next,
the images were segmented into seven categories via open-source
software. The five YOLOv8 segment models were trained on these
training data.

2.1 Collection of vertically shot videos of
the river surface

To prepare training image data, we collected videos of
river/waterway surfaces viewed perpendicularly downward from
bridges at 11 sites on the seven rivers (Table 1). An overview of
the camera specifications is provided in Supplementary Table S1.
The video cameras were fixed on a bridge rail, with the exception
of the Edo and Hikiji Rivers sites; at these sites, the cameras were
held by hand.The cameras were installed to monitor floating plastic
debris for long-term monitoring (longer than 1 month) at 8 sites,
and videos at the Edo River were temporally collected during a flood
event. Then, 301 videos in which plastic objects were visible were
visually extracted (Table 1).

2.2 Image segmentation training dataset

The training data for detecting FMPD were created using
the 301 videos (Table 1) compiled in the efficient interactive
segmentation tool [EISeg: Hao et al. (2022)]. EISeg is an efficient
and intelligent interactive segmentation annotation software built
around interactive segmentation algorithms enabled by Baidu’s
PaddlePaddle deep learning framework (Hao et al., 2022). EISeg can
accurately and efficiently generate segmentation masks.

First, each of the 301 collected videoswas divided into numerous
frames (i.e., original images), and then, 7,356 frames with target
objects were selected (Table 1). The target objects found from all
frames were categorized into seven debris types that are common
in the seven rivers; these included drink bottles, other bottles,
food containers, shopping bags, other bags, other plastics, and
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8 aluminum/steel cans. “Drink bottles” are widely discarded waste

objects and are a typical item in aquatic environments (Opfer et al.,
2012; JRC, 2013). “Other bottles” refers to plastic bottles other
than drink bottles, such as cleaner or cosmetics bottles. “Food
containers” include lunch boxes and fast-food containers. “Shopping
bags” are also typical disposal waste in aquatic environments.
“Other bags” refer to plastic bags other than shopping bags
and include food packages and snack bags. In addition to these
categories, “other plastics” refer to other types of plastic waste.
Finally, “aluminum/steel cans” are single-use containers/bottles for
packaging made primarily of aluminum or steel. Although they
are not a type of plastic waste, aluminum/steel cans were included
in training as target objects to avoid misidentification because
their shapes are similar to those of “drink bottles.” The target
objects in all images were segmented with EISeg to create training
data, and then all the annotation data were exported in Microsoft
COCO format (Lin et al., 2014).

Preprocessing was used to improve the performance and
efficiency of the model (Krizhevsky et al., 2017); here, the size
of each training image was unified by cropping the original
frame to several tile images with 1,024 px ×1,024 px in which
target objects were randomly located. Note that the number of
tile images generated from each frame depended on the location
of the target objects. Furthermore, to improve the robustness
of the models (Krizhevsky et al., 2017), the training data were
augmented by applying several techniques to the created data: flip
(horizontal or vertical), 90° rotation (clockwise, counterclockwise,
upside down), cropping (up to 20% zoom), rotation (±15°), shear
(±10° horizontal, ±10° vertical), grayscale (±15% of images), hue
(±20°), saturation (±25%), brightness (±15%), exposure (±10%),
blur (up to 2%), and noise (up to 0.3% of pixels). These techniques
were randomly applied, and 27,214 augmented images were
generated. A total of 25,743 and 1,471 images were used for training
and validation, respectively.

2.3 Training the YOLOv8 models

Using this training dataset, we developed a detection model
for these target objects on river surfaces via YOLOv8, which was
developed by Ultralytics (https://github.com/ultralytics/ultralytics).
YOLOv8 is a state-of-the-art (SOTA) architecture that has improved
performance, accuracy, and flexibility. The YOLO architecture
consists of three essential blocks (i.e., backbone, neck, and head).
The backbone is responsible for extracting the meaningful features
from the input image. The neck is a bridge between the backbone
and the head and aggregates and refines the features extracted
by the backbone; it often focuses on enhancing the spatial and
semantic information across the different scales. The neck includes
additional convolutional layers and C2f modules (the cross-stage
partial bottleneck with two convolutions). These C2f modules are
connected to two heads (Terven et al., 2023). The head is the final
part of the network and is responsible for generating the output. To
improve detection accuracy, CSPDarknet53, a modified version of
DarkNet-53, was utilized as theYOLOv8 backbone andwas followed
by the C2f module (Terven et al., 2023). In addition, YOLOv8 uses
anchor-free detection with a decoupled head to independently
process objectness, classification, and regression tasks, which speeds
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TABLE 3 Validation results of the five YOLOv8 segment models.

Models
Params (M)

Object detection (OD) Image segmentation (IS)

mAP50-95 mAP50 mAP50-95 mAP50

YOLOv8n 3.4 60.2 79.4 47.1 78.6

YOLOv8s 11.8 66.1 87.6 52.6 86.9

YOLOv8m 27.3 68.6 89.3 53.8 87.8

YOLOv8l 46.0 68.6 88.9 54.1 87.6

YOLOv8x 71.8 69.4 89.1 55.0 87.8

up non-maximum suppression (Hosang et al., 2017). Furthermore,
YOLOv8 can be applied to a wide range of instance segmentation,
tracking, and pose estimation, as well as object detection, which
builds upon the success of previous YOLO versions.

In the present study, the semantic segmentation extension of
YOLOv8 was retrained to detect and categorize the seven debris
types without transfer learning using the 25,743 training images
from the training platform shown in Supplementary Table S2.
The C2f module is followed by two segmentation heads, which
learn to predict the semantic segmentation masks for the input
image. There are five YOLOv8 segment architectures with different
scales [e.g., network size, the number of blocks, parameters and
layers; see Terven et al. (2023)]: YOLOv8n (nano), YOLOv8s
(small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x
(extralarge). YOLOv8n has the fastest speed, fewest parameters,
and lowest accuracy, whereas YOLOv8x has the slowest speed,
largest quantity of parameters, and highest accuracy (https://
github.com/ultralytics/ultralytics). The applicability of these
architectures was investigated. Each architecture was trained using
100 epochs.

2.4 Data collection for validating the
accuracy of target object detection

The dependence of the accuracy of FMPD detection on
changes in the water level was evaluated using video data
collected from a custom camera system with an ultrasonic water
level gauge (WLGCAM; Clealink Technology Co., Ltd., Japan;
Supplementary Table S3) installed in three rivers/waterways (i.e.,
the Nakasuka Waterway, Shigenobu River, and Ishite River)
(Supplementary Figure S1). The sequential monitoring of the river
surface began at the Nakasuka Pump Station on 20 June 2023,
and monitoring of the other two rivers began on 13 July 2023.
The aim of the WLGCAM installation was to determine the flow
of FMPD in the catchment area of the Shigenobu River and the
drainage area of the Nakasuka Pump Station. The Ishite River is
the largest tributary of the Shigenobu River. The WLGCAMs were
installed in front of and behind the confluence. Several studies
have indicated that FMPD transport dramatically fluctuates under
flood conditions (Kataoka and Nihei, 2020; van Emmerik et al.,
2023). To grasp the significant fluctuations, monitoring FMPD

transport with high temporal resolution is needed; however,
recording river surface videos at short-term intervals is unrealistic
because a large amount of data must be stored. To resolve this
tradeoff, the WLGCAM was used to collect image data under flood
conditions.

The WLGCAM could be automatically operated according to
river conditions by supplying electrical power via a built-in solar
system. Its specifications are listed in Supplementary Table S3. The
WLGCAM was controlled by a Rasberry-Pi-based control device
that was connected to a solar system, an IP camera, and an ultrasonic
water level gauge (WLG). The water level was always measured
at 10-min intervals by the WLG. The measured water level data
were used as a trigger to switch recording modes from normal to
flood modes and vice versa. Under normal conditions (the “normal
mode”), the IP camera recorded river surface videos with 4 K (3,840
px × 2,160 px) at 60 min intervals. When the water level exceeded
a certain threshold value, which was 50 cm higher than that under
normal conditions, the recording mode was switched to “flood
mode” by the control device. After switching to flood mode, the
river surface video was recorded at 10-min intervals. Regardless of
the river state, the recording duration was one minute, which was
determined by considering the limitation of the communication
volume (50 GB per month). All water level and river surface video
data were transmitted toGoogleDrive, whichwas remotely available
anytime and anywhere.

From 61 video data during flood mode, 107 frames in which
target objects existed on the river surface were selected (Table 2) and
then annotated with EISeg (see Section 2.2). Numerous FMPDs flow
down thewater surface of each river during floods, while FMPDs are
rarely found in frames under normal conditions. In addition, the
Shigenobu and Ishite Rivers were dried under normal conditions.
Thus, we evaluated the model performance just by using the frames
in flood mode without the data in normal mode.

Furthermore, the test data were expanded by magnifying the
frames by four ratios (i.e., ×0.5, ×1.0, ×1.5 and×2.0) to determine the
dependence of model performance on the water level changes. The
viewing distances from the WLG sensor to the river surface under
normal conditions at the Nakasuka Waterway, Shigenobu River
and Ishite River were 3.850 m, 8.760 m, and 7.560 m, respectively.
At the water level, the ground sampling distances (GSDs) of the
Nakasuka Waterway, Shigenobu River and Ishite River were 0.88,
3.72, and 3.22mm/px, respectively.TheGSD linearly decreased with
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FIGURE 1
Examples of the detection of three single-use plastics (drink bottles, food containers and shopping bags), other plastics, and non-plastic objects by the
five YOLOv8 segment models. The ground truth is shown in the 1st column. The images in the 1st, 2nd, 3rd, 4th and 5th rows were recorded in the
Ishite River at the following days and times: 19:23, 23 July 2023; 16:53 7 August 2023; 11:03, 8 August 2023; 14:04 19 February 2024; and 13:03, 31
August 2023, respectively.

decreasing viewing distance between theWLG sensor and the water
surface (i.e., increasing water level) (Supplementary Figure S2). By
substituting the viewing distance when the 61 videos were recorded
to these fitting lines, we identified the GSD at each recording
time. Since the variety of the GSDs was limited, we expanded 107
frames by magnifying them by ×0.5 (i.e., 1920 px × 1,080 px of
image size), ×1.5 (i.e., 5,760 px × 3,240 px) and ×2.0 (i.e., 7,680
px × 4,320 px), as well as the original image size (i.e., ×1.0 (3,840
px × 2,160 px)). The magnified image was equally divided into
1,024 px × 1,024 px tile images; this process generated one, six,
fifteen, and twenty-eight tile images from the ×0.5, ×1.0, ×1.5 and
×2.0 magnified images, respectively. Note that only ×0.5 and ×1.0
images of the Nakasuka waterway were used because the viewing
distance was approximately half that of the distance at the other
sites (Supplementary Figure S2). Ultimately, 3,802 tile images were
augmented for test tasks, and then, 808 target objects were annotated
by EISeg (Table 2).The 808 annotated objects corresponding to 10%
of the training dataset (i.e., 8,022 objects; Table 1) were used to
validate the model performance and evaluate the dependence of the
accuracy on the water level change.

2.5 Evaluation metrics for the model
performance

The performance in detecting and classifying the target objects
was examined using the 107 annotated images.The average precision

(AP) was used to evaluate the model performance and is defined as
follows (Redmon and Farhadi, 2018):

AP =
1

∫
0

p(r)dr (1)

where p(r) denotes the precision‒recall curve, and the AP
is calculated by integrating the precision (p) with the recall
(r) (Equation 1). The precision and recall are defined as follows
and are always between 0 and 1:

p = TP
TP+ FP

(2)

r = TP
TP+ FN

(3)

For evaluating the detection performance of plastic debris, true-
positive (TP) indicates that the actual and predicted categories
of an object are plastic, false-positive (FP) indicates that a non-
plastic object is unexpectedly predicted to be positive, and false-
negative (FN) means that a plastic object is predicted to be negative
(Equations 2, 3). Moreover, when evaluating the classification
performance of the target objects, TP means that the target category
is consistent with the predicted category, FN means that the former
is predicted as another category or is not detected, and FP means
that the nontarget category is misclassified into the target category
(Jia et al., 2024). To evaluate the precision and recall (Equations
2, 3), the intersection over union (IoU), which is the overlap of
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FIGURE 2
Detection and classification performances (i.e., AP50-95) of each category according to the five YOLOv8 models. The 1st row shows the detection
performance for OD (A) and IS (B), and the 2nd row shows the classification performance for OD (C) and IS (D). The value in each box is the percentage
of AP50-95, and the color scale is shown on the right side of each panel.

the predicted bounding box (segmentation pixels), is measured
as follows.

IoU =
Area of overlap
Area of union

(4)

The IoU indicates how much the predicted area of each category
overlaps with the ground truth (Equation 4).

On the basis of the COCO competition, AP50-95 is the average
over 10 IoU levels, which range from 0.5 to 0.95 with a step size
of 0.05 (Redmon and Farhadi, 2018). We used the AP50-95 as a
representative metric to evaluate the performance. In addition, five
additional metrics (AP50, AP75, APS, APM, and APL) were also
calculated for performance evaluation. AP50 (AP75) is a metric
for which the IoU >0.5 (IoU >0.75). APS, APM, and APL are the
AP50-95 values for small (mask area < 322), medium (322 ≤ mask
area < 642), and large (mask area ≥ 642) objects, respectively.
These three metrics were calculated using the mask area of the
annotated objects in the dataset for testing. To evaluate the

classification performance, these metrics were averaged over the
target categories; for example, mAP50-95 is the average AP50-95 of the
target categories (Jia et al., 2024).

3 Results

On the basis of the predictions of the instance segmentation
models, the accuracies were calculated using the OD and IS
approaches. The OD approach corresponds to evaluating the
accuracy of predictions of the location and size of the target
object. Moreover, the IS approach can be used to evaluate the
accuracy of predicting the shapes of the target object as well as its
location and size. For both approaches, we show the dependence
of the accuracies on the changes in the scaling of the target
object. This factor is essential to maintain the detection accuracy
when monitoring the FMPD on river surfaces because the water
level can rise in a flood state.
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FIGURE 3
Detection performance dependence of OD (A) and IS (B) on the image resolution. The values above each panel denote the number of images at each
resolution. The value in each box is the percentage of AP50-95, and the color scale is shown on the right side of each panel.

TABLE 5 Comparison of the detection/classification performance among the models with different categories.

OD IS

Case 0
(seven
categories)

Case 1
(four
categories)

Case 2
(single
category)

Case 0
(seven
categories)

Case 1
(four
categories)

Case 2
(single
category)

Detection performance

AP50-95 55.3 56.0 58.1 45.2 45.5 48.8

Classification performance

mAP50-95 18.1 23.3 58.1 15.3 19.5 48.8

AP50-95 (Drink
bottles)

38.2 41.7 n/a 30.1 33.2 n/a

AP50-95 (Other
bottles)

0.0 n/a n/a 0.0 n/a n/a

AP50-95 (Food
containers)

13.7 14.2 n/a 12.8 13.1 n/a

AP50-95 (Shopping
bags)

38.8 23.2 n/a 33.6 20.9 n/a

AP50-95 (Other bags) 6.7 n/a n/a 7.4 n/a n/a

AP50-95 (Other
plastics)

11.0 14.0 n/a 8.0 10.9 n/a

3.1 Training results from the five YOLOv8
segment models

The five YOLOv8 segment models were trained with 25,743
training images and then evaluated with 1,471 validation images

to fine-tune the model parameters. The validation results are
summarized in Table 3. The mAP50-95 and mAP50 denote the
averages of AP50-95 and AP50 of each category (Redmon and
Farhadi, 2018); these were evaluated for both the OD and IS
as the classification performance. The mAP50-95 for the OD (IS)
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TABLE 6 False-positive rates (objects/1,000 images) in three cases.

False-positive rate

Case 0 Case 1 Case 2

Drink bottles 8.7 11.6 n/a

Other bottles 0.3 n/a n/a

Food containers 2.6 3.2 n/a

Shopping bags 1.8 2.1 n/a

Other bags 16.6 n/a n/a

Other plastics 98.9 99.2 n/a

Aluminum/steel cans 5.8 n/a n/a

Total 134.7 116.0 123.9

ranged between 60.2% and 69.4% (47.1% and 55.0%), indicating
that YOLOv8x was the most accurate depending on the number of
weight parameters (Table 3). In addition, we found that the accuracy
for IS was slightly lower than that for OD because the strictness
of masking the category was considered in the evaluation of the
former. For the validation dataset, the classification performance
of our model was equivalent to that of the YOLOv8 models
pretrained on the COCO val2017 dataset (https://docs.ultralytics.
com/tasks/segment).

3.2 Testing our models using the new data
obtained via the WLGCAM

To compare the applicability of our models when they are
applied at new sites, the detection and classification performances
of the five models were evaluated using 107 images obtained by
the WLGCAM in the Nakasuka Waterway, Shigenobu River, and
Ishite River (Table 2).

Significant differences in the detection performance among our
models were found. The AP50-95 of YOLOv8l was the highest for
both the OD and IS approaches, whereas that of YOLOv8x was the
lowest despite having the most weight parameters (Table 4). On the
other hand, several metrics of YOLOv8n (i.e., AP50 for OD and IS
and AP75 for IS) were slightly better than those of YOLOv8l. In
particular, the detection performance of the YOLOv8 architecture
with fewer weight parameters (e.g., YOLOv8n, YOLOv8s and
YOLOv8m) was relatively greater than that with more weight
parameters (e.g., YOLOv8l and YOLOv8x) in detecting smaller
objects (mask area < 322) (see APS in Table 3). These results
indicated that the detection of smaller objects was not necessary
because of their similarity in color and shape. In contrast, YOLOv8l
and YOLOv8x had advantages in accurately detecting larger objects
(mask area ≥ 642) (see APL in Table 3). However, YOLOv8x did
not provide the best architecture even if it has the most weight
parameters among the YOLOv8 architectures. Thus, the numerous
weight parameters of a large model, such as YOLOv8x, caused

overfitting to larger objects with various shapes and colors in the
training images (see Section 4.2) and numerous parameters (e.g.,
YOLOv8x) had a disadvantage in detecting smaller FMPDs from
river surface images.

Nevertheless, the five models effectively detected major single-
use plastic debris (Figure 1). The AP50-95 values of six categories
(“drink bottles,” “other bottles,” “food containers,” “shopping bags,”
“other bags” and “other plastics”) determined by the five models are
shown in the upper panels of Figure 2; the results revealed that the
AP50-95 was significantly dependent on the category of target items.
The debris from the categories “drink bottles,” “food containers”
and “shopping bags” was more accurately detected than the debris
from the other categories. This occurred because these objects
have distinctive shapes (Figure 1). Moreover, the other categories
of “other bottles,” “other bags” and “other plastics” were shaped
differently according to the floating state. In fact, the detection
performance was unstable according to YOLOv8 architectures, and
some non-plastic objects were misidentified as “other plastics” by
our models (Figure 1).

On the other hand, the classification performance of the five
models was poor compared with the detection performance and
varied according to the YOLOv8 architecture (Table 4). As shown in
Figure 1, “food containers” were misclassified into another category
according to YOLOv8 architectures. Nevertheless, YOLOv8l had
the best classification performance in several metrics (i.e., five
metrics except mAPM for OD and four metrics except mAP50
and mAPS for IS; Table 4). These results clearly indicated that
more parameters were necessary to classify the category of plastic
debris. The AP50-95 of each category is shown in the lower
panels of Figure 2. Similar to the detection performance, the
categories “drink bottles,” “food containers” and “shopping bags”
were more accurately predicted than the other categories. The
current models had difficulty recognizing the category “other bottle”
because of the visual ambiguity among the categories. Therefore,
to improve the performance of classifying the object category,
the number of categories could be reduced. These aspects are
discussed in Section 4.2.The classification performance of YOLOv8l
was higher than those of the other architectures, whereas that
of YOLOv8n was the lowest regardless of its good detection
performance. Therefore, YOLOv8n was not sufficient to accurately
predict the category of plastic debris, and more weight parameters
needed to be used, as in YOLOv8l.

3.3 Dependence of the model
performance on the image resolution

Next, we examined the dependence of the detection
performance on the GSD to address the change in the water level.
The GSD ranged between 0.62 and 7.2 mm/px; thus, the AP50-95 was
evaluated at 7 levels. Interestingly, the AP50-95 fluctuated according
to the GSD (Figure 3). The detection performance of FMPD for OD
was optimal at the GSD level of >4.0 mm/px, with the exception
of YOLOv8x; YOLOv8x was slightly more accurate at the GSD
level of 2.5–3.0 mm/px. Moreover, the detection performance for
IS was optimal at the GSD level of 1.0–1.5 mm/px regardless of
the YOLOv8 architecture; these results indicated that the current
models performed better at the 1.0–1.5 mm/px GSD level.
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FIGURE 4
Differences in the categorization of single-use plastics [shopping bags (A), drink bottles (B), and food containers and other plastics (C)] among the
different GSDs. The YOLOv8l model was applied to the ×1.0 (1st row), ×1.5 (2nd row) and ×2.0 (3rd row) images. The GSDs are shown at the upper right
of each panel.

The difference in detection performance among the GSD levels
was caused by the quality of the training images. Unfortunately, since
information on the GSD of the training images was not obtained,
we were unable to explore the reason that a certain GSD level
was optimal among each YOLOv8 architecture. However, our result
indicated that the dependence of the detection performance on
the GSD needed to be addressed for monitoring FMPD on river
surfaces. To improve the variance of the detection performance due
to the GSD, magnification of the training images could be added as
image augmentation. This strategy could reduce the variance of the
detection performance due to the GSD. Interestingly, the detection
performance for OD, except for YOLOv8x, was optimal at a GSD
level of > 4.0 mm/px, regardless of the larger GSD level (Figure 3A),
whereas the detection performance for IS was optimal at a GSD level
of 1.0–1.5 mm/px (Figure 3B). Thus, a smaller GSD was needed to
improve the IS detection performance. Specifically, theODapproach
could accurately detect FMPD at even a larger GSD.

4 Discussion

4.1 Dependence of the model performance
on category selection

As shown in Figures 2C, D, the classification performances
of the three other categories (i.e., “other bottles,” “other bags”
and “other plastics”) were worse than those of the three single-
use plastic categories (i.e., “drink bottles,” “food containers” and
“shopping bags”). These categories clearly decreased the mAP50-95.
Thus, an experiment to investigate the effect of category selection

was performed and consisted of two cases. For Case 1, all of
the target objects except “aluminum/steel cans” were categorized
into four object types (i.e., “drink bottles,” “food containers,”
“shopping bags” and “other plastics”), and the objects belonging
to “other bottles” and “other bags” were reannotated as “other
plastics.” For Case 2, all plastic objects were reannotated as a
single class called “plastics.” The YOLOv8l architecture was selected
because its classification performance was optimal. YOLOv8l was
retrained by using the reannotated data in both cases, and then, the
detection and classification performances were evaluated using the
test dataset (see Section 3.3).

The aggregation of the other categories effectively
improved both the detection performance and the classification
performance (Table 5). Note that the results of the seven categories
are referred to as Case 0. For detection performance, compared
with those in Cases 0 and 1, the AP50-95 in Case 2 was highest
in the OD and IS approaches and slightly improved. Moreover,
the aggregation of the other categories was more effective in
improving the classification performance than in improving the
detection performance. For the OD (IS), compared with that in
Case 0, the mAP50-95 in Case 1 increased by 5.2% (4.2%). The
classification performance of “drink bottles,” “food containers,”
and “other plastics” for both approaches increased, whereas that of
“shopping bags” decreased. Note that the classification performance
in Case 2 is the same as the detection performance because of the
single category.

Furthermore, the aggregation of the other categories
significantly reduced the frequency with which non-plastic objects
(e.g., water surfaces or natural debris) were misidentified as FMPDs
(i.e., false positives; see Figure 1). The numbers of false-positive
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objects per 1,000 tile images (hereinafter referred to as the FP rate)
are listed in Table 6. The total FP rates in Cases 0, 1 and 2 were
134.7, 116.0, and 123.9 objects/1,000 images, respectively. The FP
rate in Case 1 was significantly lower than that in Case 0, and the
aggregation of the other categories had little effect on the FP rates.
In particular, the FP rates of “other bags” and “aluminum/steel
cans” in Case 0 were relatively high among the seven categories.
Removing these categories effectively weeded out false-positive
results. Interestingly, the FP rate in Case 1 was lower than that in
Case 2; these results indicated that category selection needed to be
considered to reduce the FP rates.

4.2 Technical issues and future work for
improving model performance

We identified three technical issues to improve the robustness of
the YOLOv8 segment model for detecting FMPD on river surfaces.
First, YOLOv8l, which had intermediate weight parameters, had
the best detection and classification performance (Table 4); this
result indicated that the model with fewer parameters had difficulty
predicting the object and segmentation mask, whereas the model
with more parameters experienced a decrease in accuracy due to
overfitting. Ying (2019) proposed four strategies to address these
causes: “early stopping,” “network reduction,” “data expansion,”
and “regularization.” The “early stopping” strategy stops training
before too much fitting to the training data and is used to
prevent the learning speed from slowing. Moreover, underfitting
provides an insufficient fit for the training data. If we use “early
stopping,” we need to determine the optimal timing to obtain
a perfect fit between underfitting and overfitting. The “network-
reduction” method involves learning the noise from the training
dataset. For this strategy, pruning is a significant theory for
reducing classification complexity. Moreover, the YOLOv8 model
has been used to apply pruning techniques (e.g., Ahmed et al.,
2023; Fan et al., 2024). Another way to reduce complexity is to use
a simple model. “Data expansion” is a fundamental strategy for
avoiding overfitting. To prevent overfitting, image augmentation
through several techniques was applied in the present study (see
Section 2.2). Based on our findings, magnification of the training
images could be added as an image augmentation to reduce the
variance in detection performance depending on the GSD (see
Section 3.3). Sensitivity analyses could be useful for identifying a
strategy for increasing the effect of image augmentation; however,
this aspect is beyond the scope of the present study. Finally, to
prevent overfitting, the weights of the features that have little
influence on the final classification can be minimized, such as
using “L2 regularization” (Ying, 2019). Our results demonstrate
the capability of the “L2 regularization” strategy using YOLOv8n;
YOLOv8n has the fewest parameters and could accurately detect
FMPD from river surfaces with several metrics (Table 4). Moreover,
YOLOv8x had themost parameters and exhibited poor performance
for classification compared with YOLOv8l (Table 4). In addition,
aggregating some categories that are difficult to distinguish can
improve the classification performance (Table 5) and reduce the
occurrence of false-positive results (Table 6). Due to these factors,
our model can be more robust and accurate in the future.

Furthermore, the accuracy of FMPD detection depends on
the GSD (Figure 3). Our strategy for quantifying FMPD was to
use perpendicularly viewed river surface images. The resolution
of these images becomes increasingly unclear, particularly for
flood events with a significant increase in water level. To resolve
this issue, the WLGCAM was used to capture the variability
in the water level (Supplementary Figure S2). Moreover, through
visual observation, van Emmerik et al. (2023) demonstrated that the
amount of FMPD significantly increased during extreme floods,
which indicated the importance of quantifying FMPD during floods
to clarify its transport. Therefore, this is a critical factor in the
quantification of FMPD on river surfaces. To resolve this issue,
images with various resolutions can be used in a “data-expansion”
strategy. However, improving the models might be limited.

Thus, we recommend identifying the GSD when quantifying
FMPD. If water level data can be obtained when videos such as
with WLGCAM are recorded, the GSD can be set to detect/identify
FMPD (Figure 4). For example, the original resolution was 3.03
mm/px (Figure 4A). The image size was magnified by× 1.5 and ×
2.0 times, resulting in the conversion to images with 1.97 and 1.48
mm/px of theGSD (the 2nd and 3rd rows in Figure 4A, respectively).
Large-sized plastic objects, such as shopping bags (Figure 4A), were
successfully detected and classified regardless of the GSD, whereas
medium-sized plastic objects, such as drink bottles (Figure 4B),
were inaccurately classified by lowering the GSD. In contrast,
small-sized plastic objects, such as other fragmented plastic objects
(the arrows in Figure 4C), were detected by the lower GSD. As such,
themodel performance depends on the GSD according to the object
size.This result indicated that we should identify the GSD tomanage
model performance.

4.3 Establishment of an application to
quantify FMPD transport

Our ultimate goal is to develop an algorithm for quantifying
FMPD transport. In our previous work, we developed an algorithm
for quantifying the transport of floating debris, including natural
debris, via an image processing approach (Kataoka andNihei, 2020).
In that algorithm, the floating debris was identified using the color
information in the RGB images. In the future, the image technique
for identifying floating debris will be replaced with our instance
segmentation models for detecting/classifying FMPD.

Nevertheless, to develop real-world applications, our model
needs to undergo fine tuning to avoid the occurrence of false
positives. In actuality, several natural objects were misidentified as
plastic objects since their shapes and colors were similar to those of
the trained plastic objects, and the FP rates were approximately 100
objects/1,000 images (Table 6). If the frequency of false positives is
high and if many natural objects, such as trained objects, exist in the
images, the number of false positives need to be reduced by fine-
tuning them using those images; this factor is a common concern
with any model used to implement deep learning models. As a next
step, we will develop an application to quantify the plastic transport
by incorporating our deep learning models for plastic detection and
a template matching algorithm for computing flow velocity using
river surface videos (Kataoka and Nihei, 2020).
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5 Conclusion

To develop an algorithm for quantifying the transport of floating
macroplastic debris (FMPD) from river surface images viewed
perpendicularly, we trained five YOLOv8 models; here, an instance
segmentation architecture was implemented, and 7,356 training
datasets collected by fixed-camera monitoring of seven rivers were
used. Our models could detect the FPMD via object detection
(OD) and image segmentation (IS) approacheswith similar accuracy
to that of the pretrained model. Our model performances were
tested using 3,802 images generated from 107 frames obtained
using a novel camera system with an ultrasonic water level gauge
(WLGCAM) installed in three rivers (i.e., the Nakasuka Waterway,
Shigenobu River and Ishite River). Interestingly, the model with
intermediate parameters (i.e., YOLOv8l) most accurately detected
and classified FMPD, whereas the model with the largest number
of parameters (i.e., YOLOv8x) exhibited poor performance due to
overfitting. Furthermore, we determined the dependence of the
detection performance on the ground sampling distances (GSDs);
our results indicated that a smaller GSD for IS and larger GSD
for OD were capable of accurately detecting FMPD. Furthermore,
our results demonstrated that more appropriate category selection
needed to be determined, and the four categories (i.e., drink bottles,
food containers, shopping bags and other plastics) exhibited the
best classification performance. The findings of the present study
can aid in the development of guidelines for monitoring FMPD. To
note, some false positives (approximately 100 objects/1,000 images)
were found from our test dataset; however, our model can be
fined tuned using additional datasets if instances of false positives
increase. Our instance segmentation model is a major step for the
establishment of an application for quantifying FMPD transport in
the future.
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