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Introduction: The conventional 3-D point cloud-based deformation analysis
methods, such as the shortest distance (SD), cloud-to-cloud (C2C), and
multiscale model-to-model cloud comparison (M3C2), essentially regard the
closest distance between two periods of point cloud data as the deformation,
rather than the true position of the same point in 3-D space before and after
deformation.

Methods: This paper proposes amethod based on the ICP algorithm to calculate
the differences between the chunked multi-period point clouds to recognizes
the 3-D deformations.

Results and discussion: The results show that the obtained results are very
close to the GNSS data but with a much larger spatial monitoring range. The
accuracy is higher than that of the SD method. Moreover, we analyze the
statistical relationship between the point cloud block size and the deformation
vector error and determine the optimal block size. The aim of this article is to
optimize the deformation analysis method and improve its accuracy to provide
techniques and ideas for the wider surface deformation monitoring research
field. For instance, combining this method with data from contact methods
constructs a 3D overall deformation model of the mountain, enabling real-time
monitoring and early warning of debris flows.
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1 Introduction

Hydroelectric power plants are vital energy infrastructures (Yaseen et al., 2020;
Kan et al., 2022; Kumar and Saini, 2022; Zheng et al., 2023). The stability of the dam, as a
water retaining structure of a hydropower plant, is key to ensuring the operation of a plant
(Han et al., 2022; ICLD, 2023). Ensuring the stability of dams requires careful and thorough
deformation analyses. According to the INTERNATIONAL COMMISSION ON LARGE
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DAMS (ICOLD), the total number of dams worldwide, as of
April 2023, is approximately 61,988, of which 67% are earth dams
(Evers et al., 2020). However, the operational behavior of earth
dams is very complex, and the deployment of monitoring systems
can help to examine their service performance (Li et al., 2020;
Mai et al., 2023). For example, for earth dams, since the density
of the dam is always nonuniform, the consolidation deformation
of earth dams under the action of infiltration will be unevenly
distributed, leading to inconsistencies between the local and overall
deformation of the dam. In addition, in the case of ultrahigh earth
dams with such uneven deformations, the complete clarification of
the true deformation of the dam implies a significant investment in
equipment and labor costs. Therefore, the deformation monitoring
of dams is a complex and costly task (Chen et al., 2022; Li et al.,
2022; Ai et al., 2023).

Currently, the techniques for monitoring deformation in
earthen dams are mainly categorized into contact and noncontact
methods. Contact methods, including fracture gauges, Global
Navigation Satellite System (GNSS), and inclinometers, provide high
accuracies by measuring displacements or accelerations directly
on the dam surface, which truly reflect the displacements of the
points (Huang et al., 2017; Maltese et al., 2021; Xiao R. et al., 2022).
However, the shortcomings are also obvious because these devices
can only reflect the displacement or deformation of the point itself,
and are unable to identify deformations between points. Therefore,
the distribution of the monitoring sites needs to be thoughtfully
chosen to balance monitoring effectiveness and cost.

In contrast, noncontact methods, such as terrestrial laser
scanning (TLS), unmanned aerial vehicle (UAV) photogrammetry
and ground-based synthetic aperture radar (GB-SAR) facilitate
easier access to the measurements without physical interactions
with the structure (Li et al., 2019a; Li et al., 2019b; Kogut and
Pilecka, 2020; Papoutsis et al., 2020; Jiang et al., 2021a;Maltese et al.,
2021; Xiao P. et al., 2022; Zhou et al., 2024). Among them, TLS
is particularly valued for its accuracy, and is one of the more
mature remote sensing technologies. Using high-speed lasers,
the instrument is capable of acquiring information such as 3D
coordinate values, the reflectance and color of each point on the
surface of an object over a wide range, and quickly reproducing a
true-color “real-life replica” model with an equal scale (Alba et al.,
2006; Gonzalez-Aguilera et al., 2008; Liu et al., 2021).

TLSmonitoring of deformation is based on the spatial difference
between the point cloud to be matched and the target point cloud.
The analysis algorithms used include the point-to-pointmode (C2C)
(Girardeau-Montaut et al., 2005; Jafari et al., 2017; Mat Zam et al.,
2018; Ge et al., 2019), cloud-to-mesh/model (C2M) (Cignoni et al.,
1998; Monserrat and Crosetto, 2008; Olsen et al., 2010) and
multiscalemodel-to-model cloud comparison (M3C2) (Lague et al.,
2013; Kromer et al., 2015; Veit et al., 2021; Winiwarter et al.,
2021; Zahs et al., 2022). These methods are based on the shortest
distance (SD) method, which regards the distance of the point cloud
to bematched and the target point cloud as the deformation distance
of the surface. This makes the calculation results sensitive to the
point density, outliers and object surface roughness. Among them,
M3C2 selects a sampling point in the point cloud to be matched as
the center of the circle and fits a cylinder with radius R to intersect
the target point cloud. Then, the distribution mean of the point
cloud within the cylinder is calculated. The distance between the

mean values is taken as the distance from the sampling point to the
target point cloud.

However, these methods are still just at the stage of performing
simple calculations of displacement vectors, and the principal
method is still the SD method (Teng et al., 2022). For example,
when the point cloud is sparse, the deformation direction is not
orthogonal to the study surface, and there is a large misregistration
between the point cloud to be matched and the target point cloud.
All of the methods mentioned above can lead to large calculation
errors (Gojcic et al., 2021). This is because the deformation vectors
obtained by the SD method are usually far from their true
deformation directions.

To address these challenges, many researchers have made
attempts to create new methods. Among them, Gojcic et al., 2019
proposed Feature to Feature Supervoxel-based Spatial Smoothing
(F2S3), which leverages external points to characterize the object
geometry within a specified range. If appropriate parameters are
chosen, then the computational results will be close to the actual
3D deformation (Gojcic et al., 2020). However, the complexity of
the F2S3 method, and the need to choose accurate parameters,
limit its automation and require detailed knowledge of the
deformation process.

This article proposes a new analysis of the 3Ddeformation vector
using TLS and the iterative closest point (ICP) algorithm (Paul and
Neil, 1992). The core of the method is to use the ICP algorithm
to register the point cloud block after the point cloud stitching is
completed, and use the deformation matrix in the result of the ICP
algorithm to solve the displacement vector of the point cloud. We
analyzed the deformation of the earth dam in a hydropower station
over a period of 9 months using this method. The results show
that the accuracy of our proposed method is relatively high, and the
average computational error is controlledwithin 2.6 mm.Compared
with those of the SD method, the accuracies of the deformation
values calculated by the ICP algorithm in the x, y and z directions are
improved by 93.1%, 90.0%, and 90.5%, respectively. Moreover, we
analyzed the statistical relationship between the point cloud block
size and the deformation vector error and determined the optimal
block size. The aim of this article is to optimize the deformation
analysis method and improve its accuracy to provide techniques
and ideas for the wider surface deformation monitoring research
field (Jiang et al., 2020; Jiang et al., 2021b). For instance, combining
this method with data from contact methods constructs a 3D overall
deformation model of the mountain, enabling real-time monitoring
and early warning of debris flows (Li et al., 2019a; Li et al., 2019b;
Kogut and Pilecka, 2020; Papoutsis et al., 2020; Jiang et al., 2021a;
Maltese et al., 2021; Xiao P. et al., 2022; Zhou et al., 2024). TLS,
photogrammetry, ground observation technology, and sensing
technology are commonly used for monitoring rocky slopes.
By adopting suitable analysis algorithms and measurement
methods, landslides can be reconstructed and monitored, enabling
deep analysis of their dynamic evolution (Ye et al., 2022;
Fang et al., 2024).

2 Materials and methods

This paper is divided into two main parts. First, TLS is used to
acquire the dam’s point cloud data. Then, the preprocessed point
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FIGURE 1
Flowchart of data processing registration.

cloud is segmented and stitched. Finally, the point cloud is registered
using the ICP algorithm to determine the displacement vector. To
resize the point cloud block, computational errors were verified
using GNSS data (Figure 1).

2.1 Study area

Thehydropower station is located downstreamof the confluence
of the Yalong and Xianshui Rivers, approximately 3 km from the
confluence. The river’s elevation is about 2600 m during the dry
season, with a width of 40–60 m. The valley slopes steeply, with
heights ranging from 500 to 1,000 m. The stratum exposed in the
dam’s river section belongs to the Maduo-Maerkang stratigraphic
division, a shallow metamorphic rock series of the Upper Triassic
Xinduqiao and Lianghekou Formations in the Yajiang stratigraphic
area. The Xinduqiao and Lianghekou Formations can be divided
into upper, middle, and lower sections. The study focuses on the
upper section of the Xinduqiao Formation (T3xd

3) and the middle
and lower sections of the Lianghekou Formation (T3lh

1, T3lh
2). The

dam site’s geological structure consists of monoclinic strata on a
macro level, with a normal stratigraphic sequence and an overall
occurrence of N60-80ºW/SW∠50º-80°. The fold classification at the
dam site is below three levels, according to the surrounding regional
structure. The main structure of the dam’s river section includes
the Qingdahekou anticline with a steep dip to the southeast, the
longitudinal reverse fault f1 in the northwest steep wing of the
anticline, and fault f4 at the interface between T3lh

2(2) and T3lh
2(3).

The Qingdahekou anticline axis is located at the intersection of
the Qingda and Yalong Rivers. The basic structural outline and
characteristics of the dam’s river section, and the distribution of rock
strata, are influenced by these features.

2.2 Data acquisition and processing

TheGNSS arrangement of the earth dam in a hydropower station
in Southwest China is as follows (Figure 2).

In this study, a Riegl VZ-2000i instrument, which has a
maximum range of 2000 m, a maximum angular resolution of
0.001°, a maximum pitch angle of 60°, a maximum scanning
distance parameter of 1500 m and an angular resolution of
0.05°, was used for data acquisition. Two periods of data were
collected on 10 January 2023 and October 25 of the same
year (Figure 3).

TLS determines the distance from the surface of the target object
to the laser scanner is then determined by calculating the time delay
and optical path difference of the reflected beam.The horizontal and
vertical angles of the scan are also recorded to calculate the relative
coordinate difference between the scanning point and the scanning
station (Xu et al., 2020). In this study, 11 TLS scanning points were
deployed at suitable locations on the top and both sides of the dam.
Eachpointwas scannedmultiple times by continuously changing the
rotation direction and angle. The point spacing of the point cloud is
approximately 0.4 m.

Scanners operating in field environments face complex
challenges. These include the movement of construction machinery
and personnel, as well as environmental factors such as trees,
buildings and obstructions. Additionally, construction dust and
the variable reflective properties of the scanned targets contribute to
instability and noise in the point cloud data. To ensure quality,
it is imperative to preprocess the 3D laser scanning data. This
preprocessing involves verifying the data integrity and consistency,
normalizing the data formats and filtering the point cloud. During
the measurement of the earth dam, multistation scanning was
employed to capture comprehensive surface details. However,
this approach results in significant data overlap after registration,
leading to large datasets with considerable redundancy. To enhance
the efficiency and quality of surface reconstruction, it is crucial
to selectively sparsify the data based on the smoothness of
the dam surface. This process effectively reduces the overall
data volume.

After data preprocessing, segmentation, classification, and
registration of point cloud data are imperative for enhancing
accuracy. Given the scanner’s operation from multiple locations,
each dataset inherits a unique coordinate system. This necessitates
registration of point cloud to enable a comprehensive view of the
dam’s facade through data integration. Herein, the ICP algorithm
plays a pivotal role in the registration processes, beginning with
the identification of two point cloud models that share substantial
overlap.Thesemodels are thenmerged and alignedwithin a singular
coordinate system, forming a consolidated point cloudmodel via the
ICP algorithm. To enhance the efficiency and accuracy of the ICP
algorithm, manual selection of the dam’s point cloud data precedes
the sequential registration of data from other sites into the model
via the ICP algorithm. To verify registration accuracy, an initial
examination of the point cloud uses a co-linear monitoring station
along the y-axis as a reference for the profile line, extending from the
upstreammonitoring station to the downstream base, traversing the
entire structure. This procedure was replicated four times based on
the distribution of the monitoring stations across the dam surface.
The intercepted point clouds, lying within the overlapping scan
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FIGURE 2
UAV 3D model of the earth dam in a hydropower station.

FIGURE 3
On-site data acquisition using a Riegl-VZ 2000i.

areas of different stations, should ideally fully overlap. Consequently,
distinct layering within the intercepted point cloud may suggest
the need for reregistration. A preliminary inspection followed by
a quantitative accuracy analysis indicated that the majority of
paired points clustered around a zero error margin, suggesting
a minimal registration error (Figure 4). Positive values represent
the relative vertical uplift values, and negative values represent
the subsidence values. The horizontal coordinate represents the
amount of error, and the vertical coordinate corresponds to the

number of paired points. As the error increases from −0.278 m
to 0.265 m, the number of paired points first increases and
then decreases. When the error is approximately 0.015 m, the
corresponding paired points peak at approximately 32,500. When
the error approaches −0.278 m and 0.265 m, the number of paired
points is only a few hundred. It was concluded that there was
no significant delamination within the point cloud’s overlapping
region after stitching and registration, allowing progression to
subsequent stages.
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FIGURE 4
Precision analysis histogram.

FIGURE 5
TLS point cloud of the study area.

The following figure shows the point cloud data of the earth dam
in a hydropower station obtained on 25 October 2023, which were
sequentially subjected to noise reduction and stitching registration
to obtain a three-dimensional point cloud model of the dam
(Figure 5).

2.3 3D deformation analysis method

The ICP algorithm serves as a method for change detection by
matching point clouds, utilizing the coordinates of two point clouds
to create a cost function that looks for a rigid transformation to
minimize its residual error (Feng et al., 2019; An et al., 2024). The
accurate calculation between points in 3D space is accomplished
by calculating the rotations and translations generated during the
matching of point clouds. With the ICP algorithm, the spatial
rotationmatrixM, and the spatial translation vector ⃗t from the point
cloudP, to bematched to the reference point cloudQ, can be derived.

Q =MP+ ⃗t (1)

M =
[[[[

[

r11r12r13
r21r22r23
r31r32r33

]]]]

]

, ⃗t =
[[[[

[

tx
ty
tz

]]]]

]

(2)

The basic principle of the ICP algorithm is to separate
the point cloud to be matched in the P and the reference
point cloud Q. The basic principle of the ICP algorithm
is to find the nearest neighboring points (pi,qi), calculate
the distance between the corresponding pairs of points,
iterate the rotation matrix and translation vector by
minimizing this distance, and stop iterating if the convergence
condition is met.

Each iteration of the process yields a spatial rotation matrixMn
and a spatial translation vector ⃗t. To obtain the original matched
point cloud to the nth iteration, the transformation of the original
matching point cloud to the nth iteration can be obtained by
replacing Mn, and ⃗tn is unified into a 4 × 4 chi-square matrix
Rn and Tn:
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Tn =

[[[[[[[

[

1 0 0 tx
n

0 1 0 ty
n

0 0 1 tz
n

0 0 0 1

]]]]]]]

]

, Rn =

[[[[[[[

[

r11
n r12

n r13
n 0

r21
n r22

n r23
n 0

r31
n r32

n r33
n 0

0 0 0 1

]]]]]]]

]

(3)

Then, the spatial rotation matrix and the spatial translation
vector for each iteration can be combined into the same spatial
transformation matrixMRT

n:

MRT
n =

[[[[[[[

[

r11
n r12

n r13
n tx

n

r21
n r22

n r23
n ty

n

r31
n r32

n r33
n tz

n

0 0 0 1

]]]]]]]

]

(4)

Multiply each iteration MRT
n to obtain the original matching

point cloud to the nth iteration of the spatial transformation matrix:

MRT =∑
n
i=1

MRT
i (5)

In this study, an error analysis method based on the ICP
algorithm is proposed to analyze dam deformations by using TLS to
collect data and to compensate for the lack of accuracy of algorithms
such as the DoD method, the SD method and the M3C2 method.

The deformation values calculated by the ICP algorithm were
geometrically compared with the 3D surface model obtained using
the SD method. Although the SD method can quickly calculate the
surface deformation, it will also lead to a slight measurement error.
Since the SD method selects the nearest point on the reference
plane, the measurement error will increase as the point cloud data
become sparser. Since the point cloud data downstream of the
dam were acquired at a longer distance, and the point density
obtained was sparse, the ICP algorithm was used for the monitoring
points on the downstream dam face. The ICP algorithm is a change
detection method in which point clouds are matched, which is
accomplished by calculating the rotational translations generated
during the matching process of the point clouds. Compared to the
SD method, which can only calculate the shortest distance between
point clouds, the ICP algorithm can be aligned according to the
terrain surface characteristics, and can accurately derive the amount
of change on the slope surface even in complex situations.

However, the results of the ICP algorithm calculation cannot
be directly used for change detection. The ICP algorithm obtains
a transformation matrix after registration, deriving the amount of
translation and rotation in the process of registering the matched
point cloud to the target point cloud. However, if the ICP algorithm
uses the origin of the coordinates as the rotation center for the point
cloud to be matched, it will cause a translation in the center of mass
of the point cloud. At this point, the final translation amount of
the matched point cloud derived from the transformation matrix is
not equal to the true translation amount from the center of mass of
the matched point cloud to the center of mass of the point cloud
after registration (Figure 6A). Therefore, it is unreliable to use the
transformation matrix obtained by the ICP algorithm directly for
change detection.

To avoid translations in the centre of mass, when using the ICP
algorithm to register each point cloud block, the center of mass of
the point cloud block should be set as the center of rotation. In

this case, the rotations and translations of the point cloud do not
interfere with each other, and eventually, a transformation matrix
is derived during the ICP registration process. The translations and
rotations obtained from this transformation matrix can be regarded
as the exact displacement values of the point cloud blocks during
the registration process (Figure 6B), which can be used for change
detection.

In addition, at least three planes with different normal vectors
are required in the ICP algorithm computational object. Otherwise,
misregistration of the planes along one of the facesmay occur during
the stitching process, a phenomenon known as in-plane movements
(Figure 7). Since the GNSS monitoring sites are distributed on the
surface of the earth dam in the form of houses, each monitoring
house provides three planes with different normal vectors for the
ICP algorithm (Figure 8). The houses have a regular shape and
configuration, which facilitates the ICP algorithm calculations based
on these houses.Therefore, when manually intercepting point cloud
data from a dam prior to calculating the ICP algorithm, it was
necessary to ensure that each point cloud block had a monitoring
house.

3 Results

3.1 3D deformation analysis based on the
proposed method

The terrain occluded the monitoring houses at sites TPDB-49,
TPDB-54, TPDB-58 and TPDB-61, precluding a TLS and the ICP
algorithm analysis. Hence, these sites are omitted from the figures.
In the x-direction, positive and negative values indicate deformation
toward the left and right banks, respectively. Similarly, in the y-
direction, a positive value indicates that the deformation direction
of the dam is pointing upstream, and a negative value indicates that
the deformation direction of the dam is pointing downstream. In the
z-direction, positive and negative values correspond to vertical uplift
and subsidence, respectively.

Analysis of the dam deformation trends reveals a predominant
movement toward the right bank in the x-direction (Figure 9A),
downstream in the y-direction (Figure 9B)—with some upstream
exceptions—and an overall subsidence trend in the z-direction
(Figure 9C), with some areas exhibiting uplift. In other words, the
dam as a whole, while settling, also deforms toward the right bank
and slides downstream on the riverbed. The dam’s settlement is
primarily attributed to continuous water pressure on its upstream
side and its own weight. The rightward movement is influenced by
the topography, with the dam sliding downstream due to horizontal
water pressure, creating a larger contact area with the right bank.
At this point, this contact surface intersects the trend line of the
overall downstream sliding of the dam surface, which takes up
some of the force generated by the sliding of the dam. According
to the analysis of the data from each site, in the x-direction, the
absolute value of the deformation decreases with the increasing site
number and is negative. This indicates that the downstream dam
surface rotates toward the right bank with the bottom of the dam
at the center of the circle. In the y-direction, the larger downstream-
oriented deformation is distributed in the connection between the
dam face and the right bank. The middle part of the dam appears
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FIGURE 6
Schematic of point cloud rotation translation: (A) rotation around the coordinate origin and (B) rotation around the geometric center of a point cloud.

FIGURE 7
Schematic diagram of in-plane movements.

to have an upstream-oriented deformation trend parallel to that of
the right bank, which further confirms that the downstream dam
face underwent a “rotational” deformation. In addition, the top of
the dam is slightly compressed from the midpoint to the left bank.
In the z-direction, the dam settles downward, and the subsidence
of the dam face decreases with decreasing elevation. The whole
process resulted in a partial uplift of the dam face downstream of the
dam base due to extrusion, with a tendency for the dam face to be
inserted below the right bank.This asymmetric pressure distribution
necessitates focused maintenance on the areas of the downstream
dam face near the right bank and the left bank to prevent damage in
these stress concentration areas.

The calculation results were statistically analyzed. The ICP
algorithm demonstrates high accuracy, with mean error values
of 2.2 mm, 2.5 mm, and 3.1 mm in the x, y, and z directions,
respectively, and standard deviations of 23.3 mm, 3.7 mm, and
23.5 mm. The minimum and maximum errors of the algorithm’s
three-dimensional calculated values were 0 mm and 4.2 mm,

respectively, with an average error of 2.3 mm and a median of
2.6 mm (Table 1). These results indicate a tight clustering of errors
around the mean, especially in the y-direction. The algorithm’s
maximum error is 7.6 mm, with somemeasurements achieving zero
error and an average error maintained at 2.6 mm, suggesting strong
agreement with GNSS data and confirming the suitability of the
ICP algorithm for millimeter-level dam monitoring. In summary,
3D deformation analysis based on TLS and the ICP algorithm can
indeed be used to effectively identify the deformation vectors of dam
surfaces. For the areas where houses are not scanned, although the
displacement vectors of the dam face points cannot be accurately
calculated using the ICP algorithm, it is still possible to estimate
them based on the general trend.

3.2 Validation of data comparisons

The SD method was utilized to generate a 3D deformation
cloud map (Figure 10). In this graph, red represents uplift, and blue
represents subsidence.The color gradation from red to blue signifies
the deformation magnitude, with deeper hues indicating more
substantial deformations. The upstream and central portions of the
dam, which experience direct reservoir pressure andminimal lateral
restraint, are the most deformed and at greatest risk, necessitating
prioritized protection. The entire downstream face of the dam has
less stress in contrast to the upstream section and crest. Such
discrepancies in deformation distribution are likely due to uneven
stresses within the dam structure, drawing attention to the necessity
of monitoring the more deformed areas. In the mountainous and
alpine canyon regions, TLS scanning stations are often restricted to
river valleys, with steep terrain on either side causing significant
occlusions and a marked reduction in data completeness. Dense
vegetation further exacerbates this challenge. Consequently, the
isolated 50 mm bulges on the dam face can be attributed to
modeling inaccuracies caused by the sparse density of the point
cloud in January and shading by vegetation, highlighting the need
for thorough downstream face scans in future surveillance.
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FIGURE 8
Schematic diagram of the shape of the monitoring site: (A) the three-dimensional model and (B) the original point cloud.

By annotating ten points surrounding the monitoring station
in three-dimensional space, the average value is taken as the
deformation calculation result of the SD method and comparedwith
the GNSS data. The precision of the SD method was inconsistent,
with amaximum error of 110.8 mm and aminimum of 0.4 mm.The
substantial overall calculation error indicates that the SD method is
unsuitable for analyses requiring fine-scale deformationmonitoring.

To determine the most appropriate algorithm for analyzing
deformations in earth dams, a comparative error assessment of
the SD method and the ICP algorithm is performed. Consistent
with earlier findings, the data from stations TPDB-49, TPDB-54,
TPDB-58 and TPDB-61 were excluded. The maximum errors for
the SD method in the x (Figure 9D), y (Figure 9E) and z (Figure 9F)
directions were 79.6 mm, 109.4 mm and 100.2 mm, with average
errors of 32.1 mm, 25.4 mm and 32.9 mm, respectively. This is
because the limitations of the SD method stem from its inability
to accurately determine the displacement vector direction, which
relies instead on calculating the shortest distance between point
clouds. Furthermore, identifying identical points within two distinct
scans becomes increasingly challenging as the point cloud density
diminishes, leading to greater deviations in the displacement vector
direction from reality and the associated reference points from their
true locations. As a result, the errormagnitude escalates. In addition,
with increasing monitoring station serial number, the error tends to
decrease, especially in the x-direction. Notably, the error tends to
decrease with increasing monitoring station number, particularly in
the x-direction, where the error of the ICP algorithm distribution
tends to decrease.This could suggest a correlation between the actual
deformationmagnitudes and calculated error values, indicating that
the errors tend to decrease as the actual deformation decreases.

Compared with those of the SD method, the accuracies of
the ICP algorithm in determining the deformation values at
x (Figure 9D), y (Figure 9E) and z (Figure 9F) are significantly
improved by 93.1%, 90.0%, and 90.5%, respectively, showing
substantial consistency with the field measurement data. This is
because the ICP algorithm correctly identifies the direction of
displacement, resulting in a displacement vector calculated with
minimal error. It can be indicated that the computational errors
of the ICP algorithm are lower than those of the SD method, and
fall within an acceptable error margin. These findings demonstrate
the superiority of the ICP algorithm over the SD method, making

the results of the ICP algorithm a reliable foundation for dynamic
deformation analysis of dams.

3.3 Optimal block size

In this study, when point cloud deformation analysis is carried
out, the artificial segmentation method is used to divide the point
cloud, which introduces subjectivity. The shape, dimensions and
positioning of the point cloud segments partially influence the
calculation accuracy. Consequently, employing artificial intelligence
algorithms is essential for dividing point clouds to eliminate
subjective human factors, thereby minimizing subjective bias and
registering error estimates more closely to the actual values. The
algorithm designates each monitoring station as a circular subunit’s
center, divides the point cloud into circular subunits and determines
the radius of the circular point cloud subunits. The search radius
is incrementally increased to expand the point cloud blocks, and
the displacement of the same measurement point is calculated after
the registration of different block sizes of the point cloud. The
computational results are then compared against GNSS data, and the
computation errors of different block sizes are obtained.

The dimensions of the monitoring houses are approximately
6.6 m on the downstream-facing side and 4 m on the riparian-facing
side. To satisfy the ICP algorithm calculation conditions, each block
must encompass the monitoring house. Therefore, the initial search
radius for each site was set to 20 m, and the radius was increased
by 1 m for each calculation. Figures 11A–C show the block sizes
of 20 m, 30 m, and 40 m, respectively. However, excessively large
segments might encompass multiple monitoring sites. Since the
deformation of the dam surface is inhomogeneous, the deformation
around different monitoring stations is not consistent, precluding
their collective analysis. Consequently, the calculation ceases when
the radius expands to 100 m.Given the substantial data volume from
the results, the error values in three-dimensional space are sorted
out by mathematical statistics, and the error value corresponding
to each search radius is the average of the errors of the 54 stations,
underscoring its statistical relevance (Figure 12).

The results show that the computational accuracy of the ICP
algorithm is high, and the errors are all approximately 10 mm,which
meets the accuracy requirements of a small deformation analysis.
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FIGURE 9
Comparison of the GNSS data and calculated ICP algorithm values: (A) in the x-direction; (B) in the y-direction; (C) in the z-direction. Comparison of
the computational error between the SD method and the ICP algorithm: (D) in the x-direction; (E) in the y-direction; (F) in the z-direction.

Meanwhile, the error values in three-dimensional space show an
obvious V-shape with the gradual increase in the search radius,
the average error corresponding to the valley of the V-shape is the
smallest error searched for in this study, and the corresponding
search radius is the optimal search radius.

Point cloud registration involves adjusting one point cloud yi to
another point cloud xi passed through a spatial rotation matrix M

with a spatial translation vector ⃗t by calculating the computational
error of the ICP algorithm E(M, ⃗t).

E(M, ⃗t) = 1
Ni

N

∑
i=1
‖(Myi + t) − xi‖

2

(6)

Where Ni represents the number of point clouds. The matrices
yi and xi are the point sets of the two point clouds.
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TABLE 1 Three-dimensional calculation of the error statistics.

Error statistic (mm)

Methodology Minimum value Maximum values Average value Upper quartile

ICP 0.0 4.2 2.3 2.6

SD 0.4 82.5 29.1 29.1

FIGURE 10
Results of the SD method Bridle paths were analyzed next, numbering them in order of elevation from highest to lowest. A segment of bridle path I near
the left bank shows a deformation of approximately 300 mm, with the remainder of the path varying between 60 and 300 mm, as denoted by color
variations, and the local lifting amount even surpasses this range. Central bridle path II exhibits deformations greater than 300 mm, with areas near the
right bank ranging from 100 to 200 mm and localized depressions of approximately 100 mm. The left bank vicinity of bridle path II is characterized by
elevations of approximately 300 mm, with local deformations nearing 250 mm. This deformation pattern is largely attributed to the sustained vertical
pressure from vehicular traffic. When a bridleway’s deformation significantly hinders its function as a transit route, localized repairs are conducted to
restore its utility, resulting in the effect of localized lifting of the bridleway. Bridle paths III to VI display no significant deformation, while bridle paths VII
and VIII could not be modeled due to their location within the TLS scan’s blind spots. The abundance of stone cairns along these paths introduces
additional point cloud data that complicate the modeling process, leading to potential errors and deformations of up to 300 mm at the bridle paths.

The ICP algorithm seeks to optimize by minimizing E(M, ⃗t),
which requires that the number of points in each piece of the
point cloud block be appropriate. Significant errors are observed
in the point cloud blocks when the search radius is smaller than
the optimal radius due to the relatively limited number of point
cloud features within the included range. When the search radius
is larger than the optimal radius, the point cloud block is too large,
and one point cloud covers at least two monitoring houses. Due to
the uneven deformation of the dam surface, the deformation of the

two monitoring houses is different. If they are calculated as a whole,
the calculation error will increase with the increasing radius. This
shows that the “V-shaped” relationship between the search radius
and the computational error is generally consistent with reality, and
can be widely applied in other studies.

From the scanning results, the shortest distance between
two neighboring monitoring houses is approximately 66 m, and
the farthest distance is approximately 109 m. To minimize the
computational error of the point cloud block covering as many
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FIGURE 11
Point cloud block segmentation: (A) segmentation radius of 20 m; (B) segmentation radius of 30 m; (C) segmentation radius of 40 m.

FIGURE 12
Average deformation errors in the (A) x-direction, (B) y-direction and (C) z-direction.

points as possible with only one monitoring house, the optimal
radius should be less than 66 m. As shown in the figures, the optimal
search radii in the x, y and z directions are 40 m, 45 m, and 44 m,
respectively, and the computational error is minimized, and the
computational results are most reliable when the corresponding
optimal search radius is obtained in each direction. Therefore, in
subsequent deformation analyses, the optimal search radius can be
determined according to the method described in this study as the
basis of the point cloud block size to improve the accuracy and
credibility of the calculation results.

4 Discussion

Subject to its inherent gravitational and hydrostatic pressures,
an earth dam undergoes continuous deformation. Historically, the
SD method utilized for monitoring dam deformation has relied on

determining the shortest vector distance from a computation point
to a reference surface to represent displacement. This approach,
however, fails to accurately represent the deformation dynamics of
earth dams, which do not deform normally to the dam surface but
rather exhibit settlement and sliding motions. If a characteristic
point is taken on the dam surface, the point on the dam surface
after the deformation of the earth dam cannot be found correctly
using the SD method (Figure 13). As such, identifying accurate
matched feature points, postdeformation using the SD method,
is problematic. The mismatch between the calculated and actual
feature points leads to low accuracy in reflecting the dam’s dynamic
deformation.

In contrast to the SD method, the ICP algorithm not only
calculates the shortest distance to a reference for error determination
but also rotates and translates the point cloud to register with
the target cloud. By minimizing error through the distance
between identical feature points across point clouds, the ICP
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FIGURE 13
Reasons for errors in the SD method.

algorithm’s computational measurements closely approximate
the actual values. This study confirms the efficacy of the
ICP algorithm in various applications, including point cloud
analysis, 3D reconstruction and scene analysis. Through feature
extraction from point cloud data, the ICP algorithm facilitates
object detection, recognition and pose estimation and enhances
structural understanding by capturing detailed shape and geometric
information.

However, the algorithm’s computational accuracy can be
compromised by the absence or the low density of point clouds in
certain areas. For instance, the ICP algorithm struggles to deliver
accurate results in areas where the point cloud data are missing in
the scanning blind zone, or where the points at the edge of the point
cloud are relatively sparse. Consequently, in the actual calculation
process, some unavailable point cloud blocks are discarded, and
the error calculation is performed only in the relatively complete
region of the TLS point cloud, which affects the precision of the error
analysis. Moreover, in the process of the ICP algorithm registration
for the edge region of the point cloud, the actual operation does
not divide the blocks gradually until the displacement in the block
registration process is less than the threshold value. This is because
the point cloud at the edges is sparse, and if the block is too
small, it is difficult to accomplish the ICP algorithm registration.
As a result, larger blocks are retained in edge regions in the final
analysis. Therefore, future research should incorporate additional
TLS setups at various elevations and in various directions to ensure
comprehensive dam surface coverage.

5 Conclusion

This study focuses on the small-scale deformation monitoring
of dam surfaces. The accuracy and monitoring applicability of the

combined TLS and ICP algorithms were evaluated by analyzing the
deformation processes and triggering mechanisms of the dam. The
specifics are listed below:

1. The ICP algorithm is based on matching between point clouds
and is able to register dam and terrain surface features, which
makes it possible to accurately determine the amount of change
in the dam surface even in complex situations. The objective
is to estimate the rigid transformation matrix by minimizing
the error between the point cloud to be matched and the
target point cloud. The ICP algorithm continuously optimizes
the rigid transformation matrix through iterations until the
convergence condition is satisfied. Ultimately, the translations
and rotations obtained through this transformation
matrix can be considered the exact displacement values
for the point cloud block registration process. Dam
deformation monitoring can be performed based on this
displacement vector.

2. Although the SD method quickly calculates surface
deformation, it fails to accurately represent the deformation
dynamics of earth dams. This is because earth dam
deformation is not typical surface deformation butmanifests as
settlement and sliding motions. Conversely, the ICP algorithm
not only calculates the shortest distance to a reference for error
determination but also rotates and translates the point cloud
to register with the target cloud. Unlike the SD method, the
ICP algorithm significantly enhances computational accuracy
in three-dimensional space, demonstrating superior precision
and establishing a solid foundation for dynamic deformation
analysis of dams.

3. The study identified a distinct V-shaped trend in error values
across different block sizes, pinpointing an optimal block size
and search radius for minimizing the computational errors in
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subsequent analyses.Therefore, in the subsequent deformation
study, the optimal search radius can be searched according to
the method described in this study as the basis for the size of
the point cloud block to improve the accuracy and credibility
of the calculation results.

In conclusion, the use of the ICP algorithm markedly improves
terrain modeling accuracy, optimizes the dam deformation
error analysis algorithm and verifies the reliability of the ICP
algorithm for dam deformation analysis. The combination of
TLS and the ICP algorithm enables more accurate monitoring,
facilitating comprehensive and timely understanding of dam
deformations over extended periods. This approach offers
scientifically sound data and insights for ensuring dam safety,
guiding engineering practices and addressing potential risks,
underscoring its significance in both research and practical
applications.
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