
TYPE Original Research
PUBLISHED 24 July 2024
DOI 10.3389/feart.2024.1421265

OPEN ACCESS

EDITED BY

Frédéric Frappart,
INRAE Nouvelle-Aquitaine Bordeaux, France

REVIEWED BY

Thomas Allen,
Old Dominion University, United States
Carmen Zarzuelo Romero,
Sevilla University, Spain
Ming Tang,
Shanghai University, China

*CORRESPONDENCE

Zeli Tan,
zeli.tan@pnnl.gov

RECEIVED 22 April 2024
ACCEPTED 02 July 2024
PUBLISHED 24 July 2024

CITATION

Tan Z, Leung LR, Liao C, Carniello L,
Rodríguez JF, Saco PM and Sandi SG (2024), A
multi-algorithm approach for modeling
coastal wetland eco-geomorphology.
Front. Earth Sci. 12:1421265.
doi: 10.3389/feart.2024.1421265

COPYRIGHT

© 2024 Tan, Leung, Liao, Carniello, Rodríguez,
Saco and Sandi. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

A multi-algorithm approach for
modeling coastal wetland
eco-geomorphology

Zeli Tan1*, L. Ruby Leung1, Chang Liao1, Luca Carniello2,
José F. Rodríguez3, Patricia M. Saco4 and Steven G. Sandi5

1Pacific Northwest National Laboratory, Richland, WA, United States, 2Department of Civil,
Environmental and Architectural Engineering, University of Padova, Padova, Italy, 3School of
Engineering, University of Newcastle, Callaghan, NSW, Australia, 4School of Civil and Environmental
Engineering, University of Technology Sydney, Sydney, NSW, Australia, 5School of Engineering, Deakin
University, Geelong, VIC, Australia

Coastal wetlands play an important role in the global water and biogeochemical
cycles. Climate change makes it more difficult for these ecosystems to adapt
to the fluctuation in sea levels and other environmental changes. Given the
importance of eco-geomorphological processes for coastal wetland resilience,
many eco-geomorphology models differing in complexity and numerical
schemes have been developed in recent decades. However, their divergent
estimates of the response of coastal wetlands to climate change indicate
that substantial structural uncertainties exist in these models. To investigate
the structural uncertainty of coastal wetland eco-geomorphology models,
we developed a multi-algorithm model framework of eco-geomorphological
processes, such as mineral accretion and organic matter accretion, within a
single hydrodynamics model. The framework is designed to explore possible
ways to represent coastal wetland eco-geomorphology in Earth systemmodels
and reduce the related uncertainties in global applications. We tested this model
framework at three representative coastal wetland sites: two saltmarsh wetlands
(Venice Lagoon and Plum Island Estuary) and a mangrove wetland (Hunter
Estuary). Through the model–data comparison, we showed the importance
of using a multi-algorithm ensemble approach for more robust predictions of
the evolution of coastal wetlands. We also found that more observations of
mineral and organic matter accretion at different elevations of coastal wetlands
and evaluation of the coastal wetland models at different sites in diverse
environments can help reduce the model uncertainty.

KEYWORDS

coastal wetland, eco-geomorphology, model uncertainty, mineral accretion, organic
matter accretion

1 Introduction

Coastal wetlands, such as tidal marshes and mangroves, are valued for providing many
important ecosystem services, including coastline protection, storm surge attenuation,
wildlife habitat, andwater quality improvement. In particular, they are observed to sequester
atmospheric carbon dioxide at a rate much higher than other ecosystems, thus offering
a potential nature-based solution for climate mitigation (Aburto-Oropeza et al., 2008;
Temmerman et al., 2013; Teuchies et al., 2013;Macreadie et al., 2019). Despite the resilience
of coastal wetlands to past fluctuations in sea level and climate over long periods of time

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2024.1421265
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2024.1421265&domain=pdf&date_stamp=2024-07-23
mailto:zeli.tan@pnnl.gov
mailto:zeli.tan@pnnl.gov
https://doi.org/10.3389/feart.2024.1421265
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2024.1421265/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1421265/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1421265/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Tan et al. 10.3389/feart.2024.1421265

(Cahoon et al., 2006; Saintilan et al., 2020; Törnqvist et al., 2020),
recent observations of local wetland loss raise concerns over their
acclimation to intensified natural and human-induced disturbances,
such as sea level rise (SLR), storm surge, sediment supply
reduction, eutrophication, and drought (Blum and Roberts, 2009;
Deegan et al., 2012; Kirwan and Megonigal, 2013; Crosby et al.,
2016; FitzGerald et al., 2021; Törnqvist et al., 2021).

Eco-geomorphological processes, such as mineral accretion
and organic matter (OM) accretion, play crucial roles in the
acclimation of coastal wetlands to natural and human-induced
disturbances (Craft et al., 2009; Howes et al., 2010; Kirwan et al.,
2016; Leonardi et al., 2016; Schuerch et al., 2018). Mineral accretion
is a process of mineral sediment accumulation on the soil bed
of coastal wetlands through either plant-mediated particle settling
or direct capture of sediment by plant stems (Kirwan and Mudd,
2012) and can help coastal wetlands build elevation against rising
sea levels (Cahoon et al., 2021). With the accumulation of plant
litter in the soil column, OM accretion can also help raise the
bed elevation of coastal wetlands (Kirwan and Mudd, 2012).
Due to the importance of these eco-geomorphologic processes,
many eco-geomorphology models with varying complexities and
parameterization methods have been developed in recent decades
(D'Alpaos et al., 2011; Fagherazzi et al., 2012; Kirwan et al., 2010;
Marani et al., 2007; Mcleod et al., 2010; Rodríguez et al., 2017). The
applications of these models at the regional, continental, and global
scales have greatly advanced our understanding of the evolution
of coastal wetlands under intensified environmental changes and
provided valuable insights into the management and conservation
of this ecosystem (Reyes et al., 2000; Mariotti and Fagherazzi, 2010;
Kirwan and Mudd, 2012; Leonardi et al., 2016).

However, substantial structural uncertainty exists in these
eco-geomorphology models, as indicated by their inconsistent
predictions on the fate of coastal wetlands under accelerated
SLR (Craft et al., 2009; Kirwan et al., 2010; Kirwan et al., 2016;
Rodríguez et al., 2017; Schuerch et al., 2018). For example,
using a model ignoring the adaptation of saltmarshes to SLR,
Craft et al. (2009) estimated that saltmarshes will decrease in
area by 45% by 2100 under the worst SLR scenario projected
by the Intergovernmental Panel on Climate Change (IPCC).
However, based on a saltmarsh with complex eco-geomorphological
processes, a more recent study demonstrated that marshes could
survive under a wide range of future SLR scenarios by building
elevations (Kirwan et al., 2016). The structural uncertainty of
the eco-geomorphology models has two sources. First, eco-
geomorphology models can implement different parameterization
schemes for the same process. For instance, there are at least seven
different mineral accretion schemes implemented in various eco-
geomorphology models (D’Alpaos et al., 2007; Fagherazzi et al.,
2007; French, 2006; Kirwan and Mudd, 2012; Morris et al., 2012;
Temmerman et al., 2003b; van de Koppel et al., 2005). Second, as
explained above, eco-geomorphology models differ in the included
processes.

Our understanding of the structural uncertainty of eco-
geomorphology models is still limited. A few studies have strived to
understand the uncertainty of coastal wetland eco-geomorphology
models through model comparison (Kirwan et al., 2010) or model
review (Mcleod et al., 2010; Fagherazzi et al., 2012). However,
unlike the state-of-the-art methods used to compare some other

Earth system processes (Huntzinger et al., 2013; Schellnhuber et al.,
2014; Jin et al., 2016; Tan et al., 2018; Guseva et al., 2020), model
comparison and review can only provide an incomplete evaluation
of model uncertainty (Fisher and Koven, 2020). For model
review, the related studies mostly focused on analyzing high-
level features of eco-geomorphology models, such as capability
and complexity, input requirements, spatial- and temporal-scale
accountability, and practical applicability, but did not consider the
real performance of the eco-geomorphology models in simulating
coastal wetland dynamics under diverse environmental conditions
(Mcleod et al., 2010; Fagherazzi et al., 2012). Formodel comparison,
previous studies usually compared eco-geomorphology models at
the ecosystem level with a focus on the overall response of coastal
wetlands to SLR, and the participant models were commonly not
configured under a consistent protocol. As a result, the model
uncertainty associated with individual processes cannot be isolated,
and not all estimated model uncertainties can be attributed to eco-
geomorphologic processes (Kirwan et al., 2010). In addition, these
model comparison studies were only conducted at specific or very
few sites (Kirwan et al., 2010). It is, thus, unclear how well the
knowledge gained at a specific site can be transferred to other
environmental conditions.

Algorithm-level model comparison approaches have
shown promising skills for assessing the uncertainty of a
particular process in large-scale models (Donatelli et al., 2014;
Jin et al., 2016; Tan et al., 2018). Motivated by these studies, we
developed an algorithm-level model comparison framework to
investigate the structural uncertainty of coastal wetland eco-
geomorphology models. The efficacy of the framework is evaluated
at coastal wetland sites under distinct environmental conditions.
Through this work, we aim to evaluate the algorithm-level
uncertainties of coastal wetland eco-geomorphology modeling
related to mineral and OM accretion and explore possible ways
to reduce the related uncertainties in global applications.

2 Materials and methods

2.1 Model description

We developed a multi-algorithm coastal wetland eco-
geomorphology simulator (MACES) model framework to assess the
structural uncertainty of eco-geomorphology models. The MACES
framework consists of two components (Supplementary Figure S1):
a one-dimensional (1D) transect-based hydrodynamic module
(MACES-hydro) and an algorithm-level model comparison module
that implements different eco-geomorphologic process algorithms
(MACES-geomor). MACES-hydro simulates water level, tide
velocity, significant wave height, bottom shear stress, suspended
sediment, and other hydrodynamic conditions along a 1D coastal
transect that varies from low-elevation open water at the ocean
side to high-elevation upland at the land side (Figure 1). All eco-
geomorphology algorithms in MACES-geomor (Table 1) use the
same hydrodynamic conditions simulated by MACES-hydro to
model eco-geomorphologic processes at each grid cell of the coastal
transect. At the end of each year, MACES updates the transect
elevation profile and land cover. A design feature of MACES is
that a new coastal wetland eco-geomorphology model can be
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FIGURE 1
Sketch of the coastal system and notations. L denotes the 1D transect domain of coastal landscapes, with Lf as the domain of tidal flats and Lw as the
domain of coastal wetland. MSL is the mean sea level, MHT is the mean high tide water level, and WL is the water level. H, h, and η represent the water
level relative to MSL, water depth, and bottom elevation relative to MSL, respectively. H0 is the water level at the seaward boundary, and η0 is the
bottom elevation at the seaward boundary.

TABLE 1 Summary of the MACES-geomor eco-geomorphology algorithms.

Eco-geomorphology Category Algorithm

Mineral accretion

Only sediment deposition F06 (French, 2006); T03 (Temmerman et al., 2003)

Both sediment deposition and vegetation trapping KM12 (Kirwan and Mudd, 2012)

Both sediment deposition and erosion F07 (Fagherazzi et al., 2007); VDK05 (van de Koppel et al., 2005)

Sediment deposition, vegetation trapping, and erosion DA07 (D’Alpaos et al., 2007); M12 (Morris et al., 2012)

OM accretion

No growth seasonality and static shoot:root ratio M12 (Morris et al., 2012)

Growth seasonality and static shoot:root ratio DA07 (D’Alpaos et al., 2007); K16 (Kakeh et al., 2016)

Growth seasonality, dynamic shoot:root ratio, and dynamic
carbon turnover

KM12 (Kirwan and Mudd, 2012)

easily created by configuring MACES-geomor with a different
combination of eco-geomorphologic algorithms. Although we focus
on mineral and OM accretion, the developed framework can be
extended to other eco-geomorphologic processes, such as landward
migration and wave-action erosion.

The 1D transect-based coastal hydrodynamic model MACES-
hydro was developed mainly based on the work by Tambroni
and Seminara (2012) and Carniello et al. (2005) for cross-section
averaged physical variables on the coastal landscape. It simulates
tide and storm surge propagation (Eqs 1, 2), wave generation and
propagation (Eq. 3), and particle transport (Eq. 7). Tide and storm
surge-driven water flows are governed by the 1D Saint-Venant
equations (Tambroni and Seminara, 2012):

∂h
∂t
+
∂(Uh)
∂x
= 0, (1)

∂U
∂t
+U∂U
∂x
+ g∂H
∂x
+ g

U|U|
C2
zh
= 0, (2)

where h is the water flow depth (m), U is the water flow velocity (m
s−1), H is the water surface elevation (m) relative to the mean sea
level (MSL), g is the acceleration due to gravity (m1/2 s−1), and Cz is
Chézy’s friction coefficient (m1/2 s−1). The friction coefficient Cz is
a function of bed roughness, vegetation stem size, and vegetation
density. Wave generation and propagation in shallow waters are
described by the conservation of the wave actionN, which is defined
as the ratio of wave energy E (J m−2) to the relative wave frequency
σ. By using the linear wave theory, the wave action conservation
equation can be simplified as follows (Carniello et al., 2005):

∂N
∂t
+
∂(cgN)
∂x
= S
σ
. (3)

The wave group celerity cg is given Eq. 4 as follows (Mariotti and
Fagherazzi, 2010):

cg =
σ
2k
(1+ 2kh

sinh (2kh)
), (4)
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where k is the wave number (k = 2π/λ, where λ is the wavelength).
The wave energy source term S (Eq. 5) is determined by the wind
wave generation Swg , wind wave dissipation through bottom friction
Sbf , white capping Swc, and depth-induced breaking Sbrk:

S = Swg − Sbf − Swc − Sbrk. (5)

Both tide and storm surge-induced water flow and wind-induced
waves contribute to the production of bottom shear stress τb,
which is important for the modeling of sediment deposition and
resuspension over the coastal landscape. As suggested by Soulsby
(1997), the nonlinear interaction between these two forces can be
evaluated using the below empirical formulation (Eq. 6):

τb = τwave + τcurr[1+ 1.2(
τwave

τcurr + τwave
)

3.2
], (6)

where τcurr is the bottom shear stress induced by water flow only
and τwave is the bottom shear stress induced by wave only. The
shear stress τcurr is a function of water flow velocity U and water
depth h, and the shear stress τwave is a function of significant wave
height Hw, water depth h, and wave period T. The transport of
the suspended sediment in the water column is governed by the
advection–dispersion continuity equation (Maan et al., 2015):

∂cssh
∂t
+
∂(Ucssh)
∂x
− ∂
∂x
(Kh
∂css
∂x
) = −Qm, (7)

where css is the depth-averaged suspended sediment concentration
(SSC) (kg m−3), K is the dispersion coefficient (m2 s−1), and
Qm is the net sediment deposition rate (kg m−2 s−1). The net
sediment deposition is defined as sediment deposition minus
sediment resuspension, and the long-term average of Qm equals
to mineral accretion. For salinity and nutrients, it is assumed
that their concentrations do not change during transport over the
coastal landscape, and thus, the dynamics are directly controlled by
inundation.

MACES-geomor implements seven widely used algorithms
for mineral accretion (D’Alpaos et al., 2007; Fagherazzi et al.,
2007; French, 2006; Kirwan and Mudd, 2012; Morris et al., 2012;
Temmerman et al., 2003b; van de Koppel et al., 2005) and four
algorithms for OM accretion (D’Alpaos et al., 2007; Kakeh et al.,
2016; Kirwan and Mudd, 2012; Morris et al., 2012) (Table 1).
Correspondingly, the change in transect elevation η (m) is calculated
using the Exner equation (Eq. 8):

(1− λ)
d(ρsη)
dt
= Qm +Qom, (8)

where λ is the sediment porosity, ρs is the sediment wet bulk density
(kg m−3), and Qom is the OM accretion rate (kg m−2 s−1). The
detailed descriptions of these eco-geomorphologic algorithms are
given in Supplementary Material. It should be noted that for OM
accretion, we included one more algorithm corresponding to the
null hypothesis that OM accretion is negligible for the transect
elevation change. Here, the algorithms of mineral and OM accretion
were selected based on three criteria through a literature review.
First, the selected algorithms must have been successfully applied
in multiple studies (ideally for coastal wetlands under different
environmental conditions). Second, the selected algorithms are
substantially different fromeach other inmathematical formulations

and conceptual understanding. Third, the selected algorithms
can be implemented using 1D hydrodynamics. Table 1 provides
all the MACES-geomor algorithms and their characteristics. The
free parameters of the mineral and OM accretion algorithms
are given in Supplementary Tables S1, S2, respectively.

2.2 Numerical methods

Weused a 1DGodunov-type central-upwind scheme (Kurganov
and Levy, 2002) to discretize the spatial domain of the Saint-Venant
equations, which include source terms due to bottom topography,
the wave equation, and the particle transport equation. This finite
volume scheme introduces a linear piecewise approximation to
each grid cell with the superbee slope limiter (Roe, 1986) to
achieve the solutions of both second-order accuracy in space
and diminishing total variation. Because this scheme is very
effective in suppressing spurious oscillation of the simulated water
level in periodically flooded areas, it has been widely used as a
numerical solver for coastal hydrodynamics (Liang and Marche,
2009). After spatial discretization, we used a fourth-order adaptive
Runge–Kutta–Fehlberg method to discretize the hydrodynamic
equations in the time domain to achieve second-order accuracy in
time (Burden et al., 1978). In addition, to avoid negative particle
concentrations, we incorporated a scheme described by Tan et al.
(2015) into the Runge–Kutta–Fehlberg method to recursively
curtail the running time step when large negative concentrations
occur until the negative values are small enough to be assigned
safely as zero.

One prominent feature of MACES is the use of a hybrid
FORTRAN and Python programming approach to balance
computational efficiency and software usability. The computational-
intensive hydrodynamic module was written in FORTRAN and
then converted to a Python package using f2py (Python Software
Foundation, Fredericksburg, VA, United States). All the other
modules, including eco-geomorphology, I/O, and settings, were
written in Python 3 directly. As such, new algorithms for eco-
geomorphology can be easily integrated into MACES in the future.
Model input and output files are written in the NetCDF and
Excel formats, and model settings are written in the user-friendly
Extensible Markup Language (XML) format.

Model calibration of different MACES-geomor algorithms is
conducted using the Python-version Parameter ESTimation tool
(PyPEST). The PyPEST tool was developed by Liao et al. (2019)
based on the model-independent parameter estimation code
PEST (Doherty et al., 1994). PyPEST carries out the calibration
process iteratively with six steps (parameter generation, model
configuration, input data generation, model run in parallel, output
extraction, and output post-processing) until the user-defined cost
function threshold criteria are met (Supplementary Figure S1).
It should be mentioned that only the parameters of MACES-
geomor (Supplementary Tables S1, S2) are calibrated. For the
parameters related to flow and waves (e.g., the reference Chézy’s
friction coefficient and the dispersion coefficient), default values are
used at all the sites. Depending on data availability at different sites,
different combinations of observed datasets are used to calibrate
different geomorphology module algorithms with the consideration
of module dependency. For example, the observed long-term
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mineral accretion rate and SSC are used to calibrate the mineral
accretion algorithms. The observed long-term OM accretion rates
and aboveground biomass are used to calibrate the OM accretion
algorithms.

2.3 Model input and evaluation

MACES-hydro is validated against the observed or benchmark
water level, significant wave height, and/or bottom shear stress
without calibration. In the experiments to validate MACES-hydro,
we configured the model with null mineral and OM accretion
algorithms and chose the method proposed by Morris et al. (2012)
to calculate the aboveground biomass. In the experiments to validate
the simulated suspended sediment, we only compared mineral
accretion algorithms and used only one OM accretion algorithm
at each site that simulated the most realistic aboveground biomass.
Because the related observations and benchmark estimates usually
cover only a few days, the related validation is only run for a few
weeks. For MACES-geomor, our analysis focuses on analyzing the
uncertainty of mineral and OM accretion algorithms across the 1D
wetland transects, which is important for explaining their divergent
predictions in coastal wetland evolution under SLR (Tambroni and
Seminara, 2012).

We evaluate the model at three representative coastal wetland
sites, with two located in midlatitude and one located in the
subtropics: Venice Lagoon, Plum Island Estuary, and Hunter
Estuary (Table 2). Venice Lagoon is a microtidal wetland with
a large central waterbody and extensive intertidal saltmarshes.
The dominant saltmarsh species include Limonium serotinum,
Puccinellia palustris, Arthrocnemum fruticosum, and Spartina
maritima. The long-term mineral and OM accretion rates of
the saltmarsh are 3.5 mm yr−1 and 132 gC m−2 yr−1, respectively
(Bellucci et al., 2007; Roner et al., 2016). Plum Island Estuary is a
macrotidal wetlandwith extensive areas of productive tidal marshes.
The dominant saltmarsh species include Spartina alterniflora at
lower elevations and Spartina patens at higher elevations. The long-
term mineral accretion rate can be as high as 6.9 ± 0.9 mm yr−1

(Wilson et al., 2014), and the long-term OM accretion rate is
69.9 ± 9.4 gC m−2 yr−1 (Wang et al., 2019). Hunter Estuary is a
microtidal wetland with gray mangrove (Avicennia marina) at lower
elevations and a Sporobolus virginicus–Sarcocornia quinqueflora-
mixed saltmarsh at higher elevations. The mineral accretion rates
of mangroves and saltmarsh are 3.66 mm yr−1 and 3.37 mm yr−1,
respectively (Howe et al., 2009). The OM accretion rates of
mangroves and saltmarsh are 105 gC m−2 yr−1 and 137 gC m−2 yr−1,
respectively (Howe et al., 2009).

For Venice Lagoon, we use the observed water level, SSC,
and significant wave height and benchmark bottom shear stress
estimates from a 2Dhydrodynamicmodel called the windwave tidal
model (WWTM) (Carniello et al., 2011) at two tidal flat stations
(1BF, 1.1 masl; 2BF, 2.1 masl) for model evaluation. For Plum Island
Estuary, we use the observed water level at the channel (−0.73 masl)
and marsh edge (1.25 masl) of Nelson Island, observed SSC at the
channel (−1.45 masl) and marsh interior (1.69 masl) of Law’s Point,
observed mineral accretion at three saltmarsh stations (LAC: a S.
alterniflora-dominated high saltmarsh with an elevation of 1.1 masl;
LPC: a S. patens-dominated high saltmarsh with an elevation of

1.4 masl; and MRS: a S. alterniflora-dominated high saltmarsh with
an elevation of 0.89 masl), and observed aboveground biomass at
LAC and MRS for model evaluation. For Hunter Estuary, we use
the benchmark estimates of water level and SSC at four stations
(channel: 0.22 mAHD; mangrove edge: 0.05 mAHD; mangrove
interior: 0.38 mAHD; and saltmarsh edge: 0.65 mAHD) of the
wetland formodel evaluation. For a specific site, when validating our
model over a station, we always choose the grid cell with the closest
elevation to the station for comparison.

To simulate the hydrodynamics and eco-geomorphology of
coastal wetlands, MACES is driven by the seaward-side water
level, SSC, and averaged wind speed and air temperature over
the coastal transect (Tan, 2023). We extracted the water level
and wind conditions from high-frequency (10-min or 15-min)
measurements for the three sites. The seaward boundary SSC was
set based on the high-frequency (15-min) analytical estimates
for Hunter Estuary and fixed values extracted from the global
coastal Database for Impact and Vulnerability Analysis (DIVA)
to sea level rise (Vafeidis et al., 2008; Schuerch et al., 2018) for
the other two sites. The daily air temperature was extracted from
measurements for Venice Lagoon and Plum Island Estuary and the
European Center for Medium-Range Weather Forecasts (ECMWF)
Interim Reanalysis (ERA-Interim) (Dee and Uppala, 2009) for
Hunter Estuary.

For each site, we constructed its 1D transect from a high-
resolution digital elevation model (DEM) and land cover maps
(Hawker et al, 2022; Hopkinson and Valentine, 2005; Tambroni
and Seminara, 2012; Ye and Pontius, 2016; Rodríguez et al., 2017)
by 1) dividing all grid cells into 17 elevation groups spanning
from −12.5 m to 16.5 m (some elevation groups can be empty);
2) calculating the average slope and land cover fractions of each
elevation group; and 3) calculating the transect length of each
elevation group based on its slope and elevation range. For the first
step, the elevation range of the 17 groups is the largest (i.e., 4 m)
near the land and sea edges and the smallest (i.e., 0.5 m) near the
sea level. For the third step, the slope of a grid cell is calculated by
dividing its elevation by its distance to the nearest channel network.
The constructed 1D transects of the three sites are shown in Figure 2.

3 Results

3.1 Simulated hydrodynamics

The MACES model can reproduce the observed hydrodynamics
at the three coastal wetland sites. The simulated hydrodynamics
at Venice Lagoon were validated into two periods of very
different tide and wind conditions: 12/10/2002–12/11/2002 and
4/2/2003–4/4/2003 (Figure 3). Specifically, the spring period in 2003
had a high tide of 64 cm asl and amaximumwind speed of 17.3 m s-1

(Supplementary Figure S3). In contrast, the winter period in 2002
had a much smaller high tide and maximum wind speed of only
38 cm asl and 11.6 m s-1, respectively (Supplementary Figure S3).
The 1D MACES-hydro performs reasonably well in capturing the
observed tide and wave dynamics in both periods (Figure 3), with
low root mean square errors (RMSEs) of simulated water depth
and significant wave height at the 1BF and 2BF stations. During
the low-wind and tide period when observations are available
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TABLE 2 Characteristics and observational data of the three coastal wetland sites.

Site name Location Tidal range (m) Wetland Evaluation data Data source

Venice Lagoon 45°33′N/12°27′E 0.84 Salt marshes Water level, significant wave
height, suspended sediment,
bottom shear stress,
long-term mineral accretion,
and long-term OM accretion

Bellucci et al. (2007),
Carniello et al. (2011),
Carniello et al. (2012), and
Roner et al. (2016)

Plum Island Estuary 42°49′N/70°49′W 4.45 Saltmarshes Water level, suspended
sediment, aboveground
biomass, long-term mineral
accretion, and long-term OM
accretion

Coleman and Kirwan (2020),
Giblin (2018), Giblin (2019),
Morris and Sundberg (2006),
Morris and Sundberg (2020),
Vallino (2018), Wang et al.
(2019), and Wilson et al.
(2014)

Hunter Estuary 32°55′S/151°48′E 1.11 Mangroves and saltmarshes Water level, suspended
sediment, long-term mineral
accretion, and long-term OM
accretion

Howe et al. (2009),
Sandi et al. (2018), and
Rodríguez et al. (2017)

FIGURE 2
Elevation of 1D MACES transects (solid lines) for Venice Lagoon, Plum Island Estuary, and Hunter Estuary. Horizontal dashed lines represent sea levels,
and vertical dashed lines represent the ocean edge of the coastal wetland.

(Figures 3A–D), the RMSEs of the simulated water depth at 1BF
and 2BF are 5.8 cm and 4.2 cm, respectively, which correspond to
only 5% and 2% of the observed mean water depth, and the RMSEs
of the simulated significant wave height at 1BF and 2BF are 4.7 cm

and 4.6 cm, respectively, which correspond to 35% and 19% of the
observed mean significant wave height. The error in simulating the
significant wave height at 1BF is higher than that at 2BF. Particularly,
the MACES-hydro substantially overestimates the significant wave
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height at 1BF on 10 December 2002. This is probably because 1BF is
a shallower and more inland station with denser vegetation covers,
and our model has large uncertainties in representing the effect of
vegetation on wave damping. Despite the larger error, given the
reducedwave energy at 1BF, the error of simulating the bottom shear
stress did not increase significantly. As shown in Figures 3K,L, the
model captures the temporal variability of the bottom shear stress
benchmark at 1BF and 2BF during the high-tide and wind periods,
with RMSE values of 0.13 Pa and 0.15 Pa, respectively. However, it
should be mentioned that as the simulated bottom shear stress is
compared to the WWTM benchmark instead of observations, the
evaluation could be marked by substantial uncertainty.

For both periods, the simulated significant wave height mainly
followed the wind dynamics (Figure 3). The wind-induced bottom
shear stress is also the dominant component of the total bottom
shear stress (Figure 4). On the morning of 12/10/2002, when
wind speed exceeded 11 m s-1, the simulated significant wave
height reached its peak value at the two stations: 22.6 cm and
39.4 cm, respectively. Correspondingly, the simulated bottom shear
stress also reached its peak value at the two stations, i.e., 0.19
and 0.31 Pa, respectively. On 3 April 2003, when wind speed
frequently exceeded 15 m s-1, the simulated significant wave height
reached its peak value at the two stations, i.e., 31.4 and 52.4 cm,
respectively. The contribution of the current-induced bottom
shear stress to the total bottom shear stress never exceeded
10% in both periods (Figures 3E,F, I–K), showing that wind
action dominates the generation of bottom shear stress. Both
the observations and simulations show that 2BF has larger, more
significant wave height values than 1BF. This difference could be
explained by the attenuation of wave energy by friction when the
wave moves toward land as 2BF is deeper and closer to the seaward
boundary than 1BF.

The simulated hydrodynamics at Plum Island Estuary were
validated in the summer and fall periods of 2017 (7/19–7/22
and 10/7–10/10, respectively) when tide and wind conditions
were different (Figure 4). In the summer period, the tide level
varied substantially, while the wind speed never exceeded 6 m s-1

(Supplementary Figure S4). In contrast, in the fall period, the wind
speed sometimes exceeded 8 m s-1, while the tide level varied
moderately (Supplementary Figure S4). For both periods, MACES-
hydro captures the observed dynamics of the water depth at a river
channel station (−0.73 masl) and a saltmarsh station (1.25 masl)
reasonably well (Figure 4). The RMSE values of the simulated water
depth at the river channel station were 9.1 cm and 7.5 cm for the
summer and fall periods, respectively. The RMSE values of the
simulated water depth at the saltmarsh station were 2.2 and 1.5 cm
for the summer and fall periods, respectively.

The simulated hydrodynamics at Hunter Estuary were validated
in the period of 9/28/2004–9/30/2004 for both low-elevation
locations where mangrove species reside and high-elevation
locations where saltmarsh species reside (Figure 5). MACES-
hydro well reproduced the water depth benchmark at four
representative locations: the river channel station (Figure 5A),
the mangrove-dominated station (Figure 5B), the mangrove-
dominated interior station (Figure 5C), and the saltmarsh-
dominated station (Figure 5D). The RMSE values of the simulated
water depth at the four stations were 4.6 cm, 5.4 cm, 2.7 cm, and
0.4 cm, respectively.

Importantly, as shown by our simulations, the water level across
a coastal wetland transect is far from being spatially uniform if
the seaward boundary is not extremely close to the shoreline. For
instance, at Venice Lagoon and Plum Island Estuary, where the
distance from the seaward boundary to the shoreline is more than
18 km and 0.7 km, respectively, the water level peaks in the wetland
interiors clearly lagged those at the boundary (Figures 3, 4), showing
the effect of bed roughness on water flow. In contrast, at Hunter
Estuary, where the seaward boundary is very close to the shoreline
(only 20 m in distance), the difference between the simulated water
level and the boundary condition is negligible (Figure 5).

3.2 Simulated suspended sediment
dynamics

The MACES model can capture the dynamics of the suspended
sediment at the three coastal wetland sites when appropriatemineral
accretion algorithms are selected. For Venice Lagoon, the observed
SSC at 1BF during the low-wind and tide period ranged from 7.3
to 92.0 mg L-1 (Figure 6), with one larger peak value occurring
on the windy morning of 12/10/2002 and one smaller peak value
occurring on the morning of 12/11/2002 (Figure 3). Three out
of the seven mineral accretion algorithms, including M12, F07,
and DA07, can reproduce the observed two SSC peaks (Figure 6).
Among the algorithms, the F07 algorithm has the lowest RMSE
of 12.0 mg l-1 and the lowest normalized RMSE (NRMSE) of 0.45.
However, even the three best-performing algorithms overestimated
the SSC at mid-day on 12/10/2002. A possible reason is that the
model does not reproduce the rapid decrease inwave energy after the
windy morning on 12/10/2002. The simulated SSC by F06, T03, and
KM12 is almost constant because these algorithms do not represent
sediment resuspension (Supplementary Material S1), and there is
limited sediment deposition at 1BF. As a result, the SSC is almost
entirely determined by the seaward boundary (9.4 mg L-1), which
was extracted from DIVA. It should be noted that the dynamics
of the suspended sediment in the coast are notoriously difficult
to model (Temmerman et al., 2003; Le Hir et al., 2007). Thus, the
performance achieved by our 1D model is satisfactory.

For Plum Island Estuary, the MACES model reproduces the
temporal variability in the SSC at the river channel station and
the decrease in SSC from the river channel to the saltmarsh
station in the summer period of 2017 reasonably well (Figure 7).
Because the river channel station is close to the model boundary
(Figure 2), its suspended sediment dynamics are strongly regulated
by the SSC boundary condition (Supplementary Figure S4), and the
difference between different algorithms is mainly caused by the
simulated sediment deposition rather than the simulated sediment
resuspension. Among the algorithms, the M12 algorithm has the
lowest RMSE of 7.4 mg l-1 and the lowest NRMSE of 0.57 at the river
channel station.There are several SSC peaks at the river channel that
our model fails to capture (Figure 7), which could be attributed to
the uncertainty in the boundary condition. For the saltmarsh station,
the performance of different algorithms is similar, implying that all
the algorithms predicted reasonable sediment deposition over the
saltmarsh platform.

The MACES model also captures the temporal variability
in the SSC along the elevation gradient of Hunter Estuary,
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FIGURE 3
Dynamics of the simulated (black solid line) and observed or benchmark (red solid line with dots) water level, significant wave height, and bottom shear
stress at the two stations (1BF and 2BF) of Venice Lagoon during two time periods: 12/10/2002–12/11/2002 and 4/2/2003–4/4/2003. Black dashed
lines in (A), (B), (G), and (H) represent the estimated water depth at the two stations by assuming that the water level is spatially uniform across the
transect. Blue dashed lines in (C), (D), (I), and (J) represent the measured wind speed. Black dashed lines in (E), (F), (K), and (L) represent the simulated
current-induced bottom shear stress.
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FIGURE 4
Comparison of the simulated (black solid line) and observed (red dashed line) water depth at the channel station at an elevation of −1.45 masl (A,B) and
the Spartina-dominated saltmarsh station at an elevation of 1.69 masl (C,D) in Plum Island Estuary during two time periods: 7/19/2017–7/22/2017 and
10/7/2017–10/10/2017. Black dashed lines represent the estimated water depth at the two stations by assuming that the water level is spatially uniform
across the transect.

spanning from the river channel, through the mangrove edge
and interior, to the saltmarsh edge (Figure 8). Because the river
channel station, in this case, is even closer to the model boundary
than in Plum Island Estuary (Figure 2), the dynamics of the
suspended sediment are strongly regulated by the boundary
condition (Supplementary Figure S5) before being fully deposited
at the saltmarsh edge. The four more complex algorithms, namely,
M12, F07, VDK05, and DA07, outperform the three simpler
algorithms (i.e., F06, T03, and KM12). Overall, the M12 algorithm
has the best performance at the four stations: an RMSE of 1.6 mg L-1

at the river channel, 0.9 mg L-1 at the mangrove edge, 2.8 mg L-1

at the mangrove interior, and 0.4 mg L-1 at the saltmarsh edge
(we removed data points in the comparison when the simulated
water depth was zero). These algorithms seem to underestimate the
sediment deposition in the mangrove wetland area. Possibly, the
mineral accretion algorithms we incorporated in the model were
mostly developed for saltmarshes; thus, they are less applicable to
mangrove wetlands.

3.3 Simulated mineral and OM accretion

By calibration, most of the MACES mineral and OM accretion
algorithms can reproduce the observed long-term mineral and OM

accretion rates at the three coastal wetland sites, especially when
the accretion rates are only measured at single locations. However,
different algorithms demonstrate remarkable variations in the
simulated mineral and OM accretion along the elevation gradient.
Moreover, our ensemble simulations show that the variations in the
simulated mineral and OM accretion along the elevation gradient
differ substantially among the coastal wetland sites.

For Venice Lagoon, all seven mineral accretion and four OM
accretion algorithms can predict the observed long-term mineral
accretion rate of 3.54 mm yr-1 and the observed long-term OM
accretion rate of 132 gC m-2 yr-1 at the observation station that is
approximately 0.2 km from the marsh shore edge (Figure 9). Good
model performance does not depend on which OM or mineral
accretion algorithm is combined. For example, the F06 mineral
accretion algorithm, when combined with the M12 OM accretion
algorithm, performs comparably to that combined with the DA07
OM accretion algorithm. Despite the convergence of different
algorithms at the observation station, the simulated summer
aboveground biomass, OM accretion, and mineral accretion along
the elevation gradient differ substantially among the algorithms
(Figure 9). For the summer aboveground biomass at the saltmarsh,
the M12 algorithm predicts an increasing trend with elevation,
while the other three algorithmspredict slight decreases (Figure 9A).
Furthermore, the marsh aboveground biomass simulated by M12

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2024.1421265
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Tan et al. 10.3389/feart.2024.1421265

FIGURE 5
Comparison of the simulated (black solid line) and benchmark (red dashed line) water depth at the channel station at an elevation of −0.22 mAHD (A),
the mangrove edge station at an elevation of 0.05 mAHD (B), the mangrove interior station at an elevation of 0.38 mAHD (C), and the saltmarsh edge
station at an elevation of 0.65 mAHD (D) of Hunter Estuary during 9/28/2004–9/30/2004. Black dashed lines represent the estimated water depth at
these stations by assuming that the water level is spatially uniform across the transect.

FIGURE 6
Comparison of the observed column-integrated suspended sediment
concentration (black) with the suspended sediment concentration
simulated by seven mineral accretion algorithms at the 1BF station of
Venice Lagoon during 12/10/2002–12/11/2002.

is much higher than that simulated by the other algorithms
(Figure 9A), even though the estimates are all within the reported
range of 1–3 kg m-2 (Tambroni and Seminara, 2012). Driven by

the change in aboveground biomass, the M12 algorithm predicts
an increase in OM accretion with elevation, while the DA07 and
K16 algorithms predict a decrease (Figure 9B). However, KM12
predicts an increase in OM accretion with elevation despite the
decrease in simulated aboveground biomass. It is because KM12
simulates a much larger increase in the root:shoot quotient along
the elevation gradient. For mineral accretion, the F06 and KM12
algorithms predict a moderate increase with elevation, the F07
and VDK05 algorithms predict a moderate decrease, and the
other algorithms predict a rapid decrease (Figure 9C). As a result,
the simulated mineral accretion differs remarkably at both the
marsh shore edge and the marsh–upland interface. For example,
at the saltmarsh edge, the estimate by T03 is over 6 mm yr-1,
but that by F06 is less than 4 mm yr-1. In contrast, at 1.5 km
to the edge, the estimate by T03 falls close to zero, but that
by F06 is over 4 mm yr-1. Importantly, our model can provide a
multi-algorithm ensemble estimate of mineral and OM accretion
over the saltmarsh, which shows that the total accretion gradually
decreases along the elevation gradient with the importance of
OM accretionmoderately increasing (Figure 9D). However, mineral
accretion is almost always the dominant source over the saltmarsh
platform, which is a more robust signal detected by our multi-
algorithm approach.
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FIGURE 7
Comparison of the observed column-integrated suspended sediment concentration (black) with the suspended sediment concentration simulated by
seven mineral accretion algorithms at the channel station at an elevation of −1.45 masl (A) and the Spartina-dominated saltmarsh station at an
elevation of 1.69 masl (B) in Plum Island Estuary during the period of 7/19/2017–7/22/2017.

For Plum Island Estuary, compared with more spatiotemporally
resolved validationdata, somemineral andOMaccretion algorithms
show better performance than others. For instance, while all the OM
accretion algorithms provide satisfactory simulations of the summer
aboveground biomass distribution along the elevation gradient,
M12 seems to capture the higher saltmarsh biomass at the edge
more reasonably (Figure 10A). In addition, the DA07 and KM12
algorithms can simulate the seasonality of the saltmarsh biomass
at the high-marsh station LAC (1.1 masl), while the M12 and K16
algorithms cannot simulate any seasonality (Figure 10C). All the
OM accretion algorithms successfully predict the observed long-
term OM accretion rate (69.9 ± 9.4 gC m-2 yr-1) within the elevation
range of 0–1.5 masl (Supplementary Figure S4). Furthermore, we
find that all the mineral accretion algorithms except F06 and
KM12 can reproduce the observed long-term mineral accretion
rates at the S. alterniflora-dominated low marsh station MRS
(6.9 ± 0.9 mm yr-1), the S. alterniflora-dominated high-saltmarsh
station LAC (5.3 ± 0.1 mm yr-1), and the S. patens-dominated high-
saltmarsh station LPC (2.3 ± 0.1 mm yr-1) (Figure 11D), which
shows the decrease inmineral accretion along the elevation gradient.
It implies that the use of F06 and KM12 at Plum Island Estuary
may lead to biased predictions of the resilience of the saltmarsh to
SLR. As in Venice Lagoon, the multi-algorithm ensemble estimate
indicates that the total accretion gradually decreases along the
elevation gradient with the importance of OM accretion increasing
(Figure 10E). However, different fromVenice Lagoon, OMaccretion
can dominate the total accretion in some high-marsh areas of
Plum Island Estuary. This is possibly because the platform of Plum
Island Estuary has a much larger elevation gradient than that of
Venice Lagoon (Figure 2), which impairs the landward transport of
suspended sediment.

For Hunter Estuary, different mineral and OM accretion
algorithms can also reproduce the observed long-term
mineral accretion rate (3.66 mm yr-1) and OM accretion rate
(105 gC m-2 yr-1) at the mangrove-dominated station (0.56 mAHD)

after calibration (Figure 11). All four OM accretion algorithms
predict the decrease in aboveground biomass along the elevation
gradient and from the mangrove-dominated area at low elevations
to the saltmarsh-dominated area at high elevations (Figure 11A).
The simulated aboveground biomass is consistent with the reported
values of 1,000 and 900 g m-2 for mangrove and saltmarsh,
respectively (Rodríguez et al., 2017). Driven by aboveground
biomass, the simulated OM accretion by M12, DA07, and K16
decreases along the elevation gradient (Figure 11B). The simulated
OM accretion by KM12 increases with elevation despite the
negative relationship between aboveground biomass and elevation.
As discussed for Venice Lagoon, it is caused by a much larger
increase in the root:shoot quotient along the elevation gradient
parameterized in KM12. The discontinuity of the simulated OM
accretion at the mangrove–saltmarsh boundary by DA07 is because
the root:shoot quotient of saltmarsh species in the DA07 is set to be
higher than that of mangrove species (Kakeh et al., 2016), but these
quotient ratios may also vary depending on the hydrodynamic
conditions and salinity gradient (Sandi et al., 2021). In Hunter
Estuary, the simulated mineral accretion on the platform shows
two spatial patterns: the nearly constant rate by the F06, T03, and
KM12 algorithms and the decreasing rate by other algorithms
(Figure 11C). Notably, in the latter group, the simulated mineral
accretion rate at the wetland shore edge is well above 10 mm yr-1,
which is much higher than that at Venice Lagoon and Plum
Island Estuary, but the variation in accretion across the section
follows a similar general pattern as observed in other recent
eco-geomorphic simulations in Hunter Estuary, which used a
simplified 2D domain (Breda et al., 2021). The multi-algorithm
ensemble estimates show that mineral accretion dominates the
total accretion in all areas of the platform except the area close
to the wetland–upland boundary (Figure 11D). As explained
for Plum Island Estuary, it is mainly because the large platform
slope at Hunter Estuary impairs the landward transport of the
suspended sediment (Figure 2).
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FIGURE 8
Comparison of the benchmark column-integrated suspended sediment concentration (black) with the suspended sediment concentration simulated
by seven mineral accretion algorithms at the channel station at an elevation of −0.22 mAHD (A), the mangrove edge station at an elevation of
0.05 mAHD (B), the mangrove interior station at an elevation of 0.38 mAHD (C), and the saltmarsh edge station at an elevation of 0.65 mAHD (D) in
Hunter Estuary during 9/28/2004–9/30/2004.

4 Discussion

4.1 Algorithm-level uncertainties in
modeling coastal wetland
eco-geomorphology

It is not surprising that significant algorithm-level uncertainties
exist in themodeled eco-geomorphology at the three coastal wetland
sites. However, our study shows that a multi-algorithm ensemble
simulation approach may provide more robust signals about the
evolution of coastal wetlands in different environments and, thus,
help reduce the prediction uncertainty. For example, the multi-
algorithm ensembles reveal that it is critical to represent OM
accretion in the coastal wetland eco-geomorphology models to
realistically predict coastal wetland resilience under future SLR.
This is because while OM accretion may only account for 10% of
the total accretion at low-elevation saltmarshes or mangroves, its
contribution to the higher-elevation areas is much larger and even

surpasses the contribution ofmineral accretion. As a result, ignoring
OM accretion would cause a significant underestimation of coastal
wetland survival (Lorenzo-Trueba et al., 2012; Morris et al., 2016;
Mariotti et al., 2020; Keogh et al., 2021).

To reduce the algorithm-level uncertainty in the simulation
of coastal wetland evolution, it is also important to constrain
mineral and OM accretion algorithms using observations from
at least two locations at different elevations of a coastal wetland
site. For example, if mineral accretion was only observed at the
S. patens-dominated high-saltmarsh station LPC and the F06 or
KM12 algorithm was chosen for modeling, the prediction of the
resilience of coastal wetlands to SLR would be severely biased. Thus,
new observations should be prioritized to capture the elevation
and vegetation gradients of mineral and OM accretion. Although
we focus on the model structural uncertainty and, thus, carefully
calibrate the model parameters for each algorithm in this study,
the use of multi-location observations at different elevations can
also help reduce the parameter uncertainty of eco-geomorphology
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FIGURE 9
Comparison of the simulated mean aboveground biomass in July 2002 by four MACES algorithms (A), comparison of the simulated long-term OM
accretion by four MACES algorithms (B), comparison of the simulated long-term mineral accretion by seven MACES algorithms (C), and the mean
(solid line) and standard deviation (shared area) of the simulated long-term total accretion and the contribution of OM accretion to total accretion (D)
over the saltmarsh of Venice Lagoon. Black stars in (B) and (C) represent the observed long-term OM and mineral accretion, respectively.

modeling. For instance, for Plum Island Estuary, if only the LPC
station is benchmarked, even those good algorithms (i.e., T03, M12,
F07, VDK05, andDA07), albeit reproducing the decrease inmineral
accretion with elevation, would produce widespread estimates of
mineral accretion at the low-marsh station MRS.

Although the existence of substantial algorithm-level
uncertainties in coastal wetland eco-geomorphology models is
expected, due to the variations in coastal wetland characteristics,
such as tidal range, SSC, topography, and vegetation species, they
cannot be fully learned by analyzing the mathematical formulations
alone. Instead, these uncertainties must be carefully evaluated
using a multi-algorithm approach like MACES. For example, as
the mineral accretion algorithms F06 and KM12 use spatially
constant SSC to derive sediment deposition, it would be expected
that the estimated mineral accretion by these two algorithms is
uniform over coastal wetland platforms. However, as simulated
bottom shear stress decreases with water depth along the elevation
gradient, the simulated force to resuspend the sediment decreases
in higher-elevation wetlands, and correspondingly, sediment
deposition is simulated to increase along the elevation gradient.
Furthermore, this effect varies among the coastal wetland sites

due to the differences in tidal range, topography, and vegetation
species (Figures 9–11). Similarly, while it is expected that the
simulated mineral accretion by M12, F07, VDK05, and DA07
would decrease with elevation because the modeled SSC in
the interior areas decreases due to deposition, and sediment
resuspension is weak over the vegetated platform, it is still
difficult to discern which algorithm simulates the strongest
decreasing effect without testing the algorithms in a united
hydrodynamics model.

4.2 Modeling coastal wetland
eco-geomorphology in diverse
environments

Coastal wetlands are an important type of ecosystem spanning
broad geographic regions, from tropical and subtropical mangroves
and mid-latitude saltmarshes to arctic coastal tundra (Keddy, 2000).
Through the application of a multi-algorithm model framework
developed in this study, we show that the uncertainties in coastal
wetland eco-geomorphology models should be evaluated for coastal
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FIGURE 10
Comparison of the simulated aboveground biomass in July 2018 at three elevation zones by four MACES algorithms (A), comparison of the simulated
long-term OM accretion by four MACES algorithms (B), comparison of the simulated monthly mean aboveground biomass during 2017–2018 at the
LAC station by four MACES algorithms (C), comparison of the simulated long-term mineral accretion by seven MACES algorithms (D), and the mean
(solid line) and standard deviation (shared area) of the simulated long-term total accretion and the contribution of OM accretion to total accretion (E)
over the Plum Island wetland. Gray bars in (A), (C), and (D) represent the mean and standard deviation of the observed summer aboveground biomass,
monthly mean aboveground biomass, and long-term mineral accretion, respectively.
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FIGURE 11
Comparison of the simulated mean aboveground biomass in July 2004 by four MACES algorithms (A), comparison of the simulated long-term OM
accretion by four MACES algorithms (B), comparison of the simulated long-term mineral accretion by seven MACES algorithms (C), and the mean
(solid line) and standard deviation (shared area) of the simulated long-term total accretion and the contribution of OM accretion to the total accretion
(D) over the Hunter Estuary wetland. Black stars in (B) and (C) represent the observed long-term OM and mineral accretion at the
mangrove-dominated station with an elevation of 0.56 mAHD, respectively.

wetlands in diverse environments. Previous studies that rely on the
knowledge of a single type of coastal wetlands for the prediction of
large-scale coastal wetland responses to SLR may lead to unreliable
conclusions. For example, while Venice Lagoon and Plum Island
Estuary are both saltmarshes, due to the difference in environments,
substantial distinctions exist between the simulated mineral and
OM accretion at the two sites, including the much more important
role of OM accretion in the rise of the saltmarsh bed against
SLR at Plum Island Estuary. Correspondingly, a multi-algorithm
approach that includes diverse eco-geomorphology algorithms can
be more capable of predicting large-scale coastal wetland evolution.
As demonstrated in the study,MACES includes themineral andOM
accretion algorithms that can be applied to the most common plant
species of coastal wetlands (Day Jr et al., 1999; Morris et al., 2002;
Temmerman et al., 2003b; Mudd et al., 2004; Kirwan and Mudd,
2012; Crase et al., 2013; Liu et al., 2020): S. alterniflora, S. patens,
P. palustris, S. maritima, and A. marina. Particularly, very few eco-
geomorphology modeling studies have included both saltmarsh and
mangrove. These algorithms can also be applied to different tidal

ranges (microtidal and macrotidal) and climates (Mediterranean
climate, humid continental climate, and humid subtropical climate).

As the algorithm-level uncertainties in eco-geomorphology
models are site-dependent, this multi-algorithm model framework
can also be used to select appropriate eco-geomorphology
algorithms for specific coastal wetland environment. For example,
our simulation indicates that it is better to avoid the use of F06
and KM12 to predict the evolution of coastal wetlands in an
environment like Plum Island Estuary, but these two mineral
accretion algorithms can still be useful for coastal wetlands like
Venice Lagoon. To extend this algorithm selection strategy to the
global scale, it would need related observations across diverse
environments. Currently, many published datasets of mineral
and OM accretion from coastal wetlands across broad regions
exist (Chmura et al., 2003; Breithaupt et al., 2012; Lovelock et al.,
2015; Crosby et al., 2016; Parkinson et al., 2017). The next step
would be to identify and survey geographic and ecological
factors that are crucial for the classification of coastal wetlands.
Nevertheless, the development of this multi-algorithm coastal
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wetland eco-geomorphology model will facilitate the reduction
of algorithm-level uncertainties in global applications.

4.3 Limitations

We chose to model coastal wetland eco-geomorphology on
a simplified 1D coastal transect for several reasons: 1) higher
computational efficiency; 2) consistency with large-scale land
surface models; and 3) the easy representation of suspended
sediment dynamics (Ward et al., 2020; Feng et al., 2022; Tan et al.,
2022). However, this simplification implies that the MACES
model cannot resolve the detailed spatial heterogeneity of coastal
wetland dynamics that are needed for decision-making and damage
mitigation. For instance, while the model can assess the overall
wetland vulnerability under SLR, it cannot be used to locate
specific areas for remedy as other more sophisticated models did
(Deltares, 2022). Additionally, because the simulated variables are
not linked to specific locations, the impact of SLR and other climate
extremes on the ecosystem services of coastal wetlands cannot
be reasonably evaluated using the current MACES framework. A
possible solution is to use the emergingmachine learning techniques
to downscale low-fidelity, high-efficiency hydrodynamics models
to emulate the high-fidelity, low-efficiency hydrodynamics models
(Feng et al., 2023; Fraehr et al., 2023). For example, Fraehr et al.
(2023) developed a hybrid low-fidelity, spatial analysis, andGaussian
process learning model to preserve the physics of 2D hydrodynamic
equations, and the convolutional long short-term memory model
(Tran et al., 2021) has been widely used to reduce the downscaling
bias for data that vary both spatially and temporally. It is thus
possible to map the 1D hydrodynamics simulated by MACES to
the 2D high-fidelity hydrodynamics simulated by an advanced
hydrodynamics model, such as Delft3D (Deltares, 2022), by
combining the two techniques.

Although we intend to drive all the mineral and OM accretion
algorithms under the same hydrodynamic conditions, particularly
water level and SSC, due to the impact of vegetation on the transect
surface roughness, the simulated hydrodynamics would be changed
by the choice of mineral and OM accretion algorithms. As a
result, the simulated differences between mineral and OM accretion
may not be fully caused by the algorithm-level uncertainties.
Furthermore, it should be noted that coastal wetland vegetation
does not always serve as a sediment trap and, in some cases,
can modify hydrodynamics to the extent that a dense plant
cover repels overbank flow and sediment delivery (Olliver et al.,
2020; Xu et al., 2022; Beltrán-Burgos et al., 2023). These nonlinear
processes have not been represented in our model.

Another limitation of the model is the simplified representation
of the biological and biogeochemical processes in MACES, which
could limit the prediction accuracy of OM accretion. Despite the
importance of macroclimatic drivers (particularly air temperature)
to the evolution of coastal wetlands under climate change
(Osland et al., 2016), the related effects are either neglected or only
simply parameterized in the MACES algorithms (D’Alpaos et al.,
2007; Kakeh et al., 2016; Kirwan and Mudd, 2012; Morris et al.,
2012), which would cause biased estimates of sediment deposition,
OM deposition, and coastal wetlands resilience (Schoutens et al.,
2019). It is thus necessary to adopt some advanced developments in

vegetation dynamics and biogeochemistry from more complex land
surface models (Oleson et al., 2013).

Additionally, many other factors that can drive the eco-
geomorphology of coastal wetlands have not been represented in
the MACES model. These include land subsidence (Hasan et al.,
2023), wave-driven coastal erosion (Leonardi et al., 2016), and
wetland landward migration (Schuerch et al., 2018). For instance,
the modeling of land subsidence needs to resolve the effects of
both natural (e.g., site history) and anthropogenic disturbances
(e.g., groundwater extraction). The modeling of wave-driven coastal
erosion needs to account for the change in wind regimes. For
wetland landward migration, both natural (e.g., steep slopes)
and human barriers (e.g., cities) must be considered. These
nonlinear factors will be included in future model development
and tested under different scenarios to evaluate their impact on
coastal wetlands.

5 Conclusion

We developed a multi-algorithm model framework, MACES,
to evaluate the algorithm-level uncertainties in mineral and OM
accretion modeling based on consistent hydrodynamic conditions.
The MACES model can reproduce the observed dynamics of water
depth, wave, and bottom shear stress, as well as the observed
long-term mineral and OM accretion at three representative
sites of coastal wetlands in diverse environments. As expected,
our approach reveals significant algorithm-level uncertainties in
coastal wetland eco-geomorphology modeling, which can lead to
divergent estimates of the vulnerability of coastal wetlands to
SLR. Importantly, we demonstrate that multi-algorithm ensemble
estimates can providemore robust signals on the evolution of coastal
wetlands. Thus, the approach should be more broadly explored in
the future. Our study also indicates that the model uncertainty can
be reduced by 1) including multiple observations of mineral and
OM accretion along the elevation gradient of coastal wetlands and
2) evaluating the eco-geomorphology models at different sites in
diverse environments. The MACES framework is a useful tool to
test and compare different algorithms for modeling coastal wetlands
and predict the fate of coastal wetlands under climate change at
large scales.
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