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On 8 June 2017, a heavy storm struck the parallel ridge-valley area of
western Chongqing, resulting in serious urban waterlogging and landslides,
which led to severe impacts on infrastructure and damage to private property.
Based on high-resolution optical satellite images, this paper comprehensively
identified the landslides triggered by this rainfall event, and established a
corresponding landslide database. The database takes the landslide area density
and landslide number density as themain indicators, and combines the lithology
characteristics to analyze the spatial distribution of landslides. The results show
that this event triggered 487 landslides in an area of 583 km2, involving an
area of about 485,587 m2, accounting for about 0.083% of the study area.
The average landslide number density is 0.84 num/km2, the highest value of
landslide number density can reach 55.6 num/km2, and the maximum landslide
area density is about 6.4%. These landslides are mainly distributed in the
southern foothills of the Huaying Mountain, especially in the weak interlayer
lithology area. The database provides scientific reference and data support for
exploring the mechanism of landslides in western Chongqing and reducing
the risk of landslide disasters under the background of rapid development of
local society.
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rainfall-triggered landslides, database, parallel range-valley area, satellite imagery,
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1 Introduction

Landslide disasters occur frequently, drawing extensive research from numerous
scholars (Huang et al., 2022; Huang et al., 2023), with the aim of better addressing this
challenge. Particularly in the current scenario of severe global climate change, the impact
of climate change on the frequency of landslides has become a matter of great concern
(Patton et al., 2019; Kirschbaum et al., 2020). The frequent incidence of extreme events
such as heavy rainfall and droughts, caused by climate change, aggravates the erosion
and loosening of the earth surface and increases the possibility of landslides occurrence.
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As a natural disaster, landslides are extremely destructive, posing
a serious threat to both human society and the environment.
Between 1 January 2004, and 31 December 2010, there were 2,620
fatal landslide events globally (excluding co-seismic landslides),
resulting in a total of 32,322 deaths, with the number of recorded
landslides showing an increasing trend each year (Petley, 2012).
Landslide disasters can cause direct or indirect damage to local
communities (e.g., destruction of infrastructure, power outages,
and water supply interruptions), significantly impacting the local
economy and social stability. The post-disaster reconstruction
costs are enormous, encompassing clearance and reconstruction
of facilities, imposing a heavy burden on local governments and
social resources (Vranken et al., 2013). Moreover, landslide disasters
can change the local landscape. Large-magnitude landslides may
result in drastic changes in topography, including collapses,
river diversion, etc., bringing profound impacts on surrounding
environments and ecosystems (Thapa et al., 2024). Compared
to post-disaster remedies, preventive measures beforehand are
particularly crucial (World Bank and United Nations, 2010).
By upgrading monitoring and warning systems, adjusting land
use plans, enhancing infrastructure resilience, etc., thereby the
frequency of landslides and the resulting losses and impacts can
be effectively reduced.

In recent years, the prominent geographic advantage of the
northwest part of Chongqing has garnered attention due to
the development of the Chengdu-Chongqing economic circle.
Positioned at the intersection of the Belt and Road and the Yangtze
River Economic Belt, this region holds a unique geographical
advantage in connecting the southwest and northwest of China
domestically, and bridging East Asia, Southeast Asia, and South
Asia internationally. Not only does this area boast abundant
ecological resources and energy, including mineral deposits, but
it also features densely populated urban areas and picturesque
landscapes. It stands as one of the most densely populated regions
in western China, with robust industrial foundations, strong
innovative capabilities, broad market potential, and high levels
of openness, playing a crucial strategic role in the country’s
overall development. However, the rapid development of the
Chengdu-Chongqing region also brings a series of challenges
and risks, including frequent landslide disasters. For instance, an
extreme rainfall event could trigger widespread landslides, severely
impacting the local socioeconomic and ecological environment.
Previous research in the region mainly focused on slope stability
assessment (Wang L. et al., 2019; Wu et al., 2023), landslide
susceptibility (Sun et al., 2020; Wei et al., 2021) and landslide
movement processes (Zhang et al., 2014; Guo et al., 2020), while
there is little research on the database of landslide triggered by a
single rainfall event.

Compiling a landslide inventory serves as a crucial data
foundation for further landslide studies, driven by multiple
factors. Firstly, it marks the spatial and temporal occurrences
of landslides (Shao et al., 2023a; Chen et al., 2023), providing
fundamental data for subsequent research. Through landslide
inventory, the mechanism, morphology, and mode controlled
by the lithology or geology can be deeply understood (Zhang,
2020; Li et al., 2021). Conducting susceptibility (Ciurleo et al.,
2021; Razavi-Termeh et al., 2021) and hazard assessments

(Thiery et al., 2020; Lin et al., 2021) are of significant importance
for geological disaster management. Developing landslide
early warning systems (Lagomarsino et al., 2013; Calvello and
Piciullo, 2016; Magrì et al., 2024) and taking proactive measures
aids in reducing economic losses and casualties caused by
landslides.

The advancement of science leads to technological innovations,
offering various methods for landslide detection and inventory
compilation. For instance, SAR data, characterized by all-weather
capability and low cost, is utilized for landslide identification
and displacementmonitoring (Handwerger et al., 2022; Zhang et al.,
2023). However, rapid deformation rates can lead to decorrelation,
rendering it unsuitable for detecting landslides triggered by
extreme rainfall events. Field surveys are commonly employed
for individual landslides and on-site verification of landslide
databases, but with high time and economic costs. Text mining
based on big data extracts landslide event locations and times
from social media (Franceschini et al., 2022), yielding abundant
but potentially redundant and incomplete landslide-related data,
posing huge challenges to researchers. Rapid development in
optical satellite technology, with high precision, wide coverage,
low cost, and multi-temporal, has received extensive attention.
Using high-resolution optical satellite images, Sun et al. (2024a)
identified 10,968 landslide traces in the Yinshan area; He et al.
(2021) found 167 landslides triggered by the Qiaojia Mw5.1
earthquake on 18 May 2020 in Yunnan, China; Huang et al.
(2021) established a database of earthquake-triggered landslides
in Milin, Tibet, including 3,130 co-seismic landslides. Xie et al.
(2023) took an extreme rainfall event in Jiexi County, Guangdong
Province in August 2018 as the research subject, and established
a database containing 1,844 landslides. Compared with the great
progress in earthquake-triggered landslide database construction,
the establishment of a rainfall-triggered landslide database using
optical satellite images is relatively slow. As of 2022, there are only
16 public databases (Ma et al., 2022) of heavy rainfall-triggered
landslides worldwide. Primarily because optical satellites are often
hindered by cloud cover during adverse weather conditions, making
it challenging to extract rainfall-triggered landslides occurring on
cloudy days.

The parallel ridge-valley region in Chongqing, being one
of the world’s three major fold mountain systems, provides a
unique setting for examining how rainfall initiates landslides
within its geological context. The area’s pronounced geological
features greatly intensify the need for research into a database
on rainfall-triggered landslide occurrences in this region and its
vicinity. This study focused on a localized heavy storm event
that occurred in the Huaying Mountains (in the parallel ridge-
valley region of western Chongqing) on 8 June 2017. It revealed
the spatiotemporal characteristics of this rainfall event. Using
satellite images, we extracted landslides triggered by this event to
establish a landslide database. This work not only enriches the
landslide database of the Chongqing, but also provides accurate
data support for subsequent analysis of landslides triggered by
the event. It will also directly contribute to the protection of
residents’ lives and property, reduce potential losses caused by
landslide disasters, and thereby ensure the long-term stability
and development of the community.
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FIGURE 1
Overview of the study area.

2 Study area

The study area is located in the northwest of Chongqing
(Figure 1). The coordinates of the study area’s corners are: 106.396°
E, 30.075° N; 106.192° E, 29.917° N; 106.321° E, 29.75° N; 106.525°
E, 29.909° N. The study area covers approximately 583 km2.
The climate in the region is subtropical humid monsoon. It’s
characterized by early springs, hot summers, rainy autumns, and
mild winters. The average annual temperature is 18.2°C. The
average annual precipitation is 1156.8 mm, concentrated from
May to September each year. The study area is situated at the
southern foothills of the Huaying Mountain, which lies within
the parallel ridge-valley region adjacent to the eastern Sichuan
Basin. The study area exhibits a terrain marked by anticlines
forming hills and synclines forming valleys, with elevations ranging
from 120 to 1,000 m. Flowing through the heart of the area,
the Jialing River provides abundant water resources. The strata
of the study area span a wide range from the Jurassic to the
Quaternary. Jurassic covers over 50% of the total area, mainly
distributed in flat valleys. These areas are composed of mudstone
interbedded with siltstone and feldspathic sandstone. In the
mountainous regions, the main underlying strata are Triassic,
accounting for over 30%, consisting of quartz sandstone, shale, and
limestone (Figure 2).

3 Data and method

From June 8th to 10th, 2017, Chongqing experienced an
unprecedented rainfall event, resulting in significant economic
losses for the region. The severely affected Hechuan District has
become the focus of media attention (CCTV, 2017; Lin and
Wu, 2017). In response, we utilized the GPM IMERG Final
Run product (Huffman et al., 2023) to analyze the precipitation
patterns during these three days in Chongqing. Through spatial
analysis, we identified the region with the highest precipitation.
According to the rainfall distribution, media attention, terrain
characteristics, and population density observed from satellite
images, we determined the study area, and then carried out research
on rainfall-triggered landslides in the study area.

In recent years, the field of landslide identification
technology has undergone significant technological innovation,
particularly with the application of deep learning techniques
(Wang et al., 2021; Yang et al., 2022), which have provided efficient
means of identification and high-precision results for disaster
emergency response. While the accuracy of deep learning
in landslide identification is satisfactory for simple surface
environments, its recognition accuracy significantly decreases when
dealing with complex surface environments, such as areas near
roads. Therefore, at the current stage of technological development,
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FIGURE 2
Underlying strata map of the study area.

the human-machine interactive method for landslide identification
maintains its irreplaceable position.

Our team has made substantial strides in the realm of
remote sensing interpretation for event-induced landslides, with a
wealth of experience specifically in extracting landslide data from
optical remote sensing images. We have successfully developed
interpretation criteria for earthquake-induced landslides (Xu et al.,
2015; Sun et al., 2024b; Shao et al., 2024) and have also achieved
significant breakthroughs in identifying rainfall-induced landslides
(Ma et al., 2023a; Cui et al., 2024; Gao et al., 2024). The insights
and standards developed for earthquake-induced landslides are
readily applicable to the recognition of rainfall-induced landslides
in this study, as both types of landslides present marked differences
from their surroundings on optical remote sensing images, which
is a key indicator for identification. Drawing from our previous
research, we have compiled an expert knowledge framework that
is a core to the process of landslide interpretation. This framework
combines the analysis of optical remote sensing imagery, terrain
and geomorphological characteristics, and the mechanisms that
trigger landslides, offering a robust scientific foundation for precise
landslide identification. Especially for shallow landslides triggered
by rainfall events, their distinctive morphological traits (such as
compact size and elongated forms) are vital for enhancing the
accuracy and efficiency of landslide interpretation.

In this study, based on high-resolution satellite images, all
landslide data were extracted by human-computer interaction visual
interpretation. We use the Planet satellite image with a resolution of
3 m as themain satellite image. Pre-event imagery dates back toMay
2017, captured in a global monthly composite image, while post-
event imagery was obtained in July 2017 (Figure 3). Given the spatial
resolution of the Planet and extensive traces of human activity in
the study area, precautions were taken to avoid misidentifying. For
a more accurate identification of landslides, we supplemented the
analysis with detailed validation using Google Earth imagery from
August 2016 and August 2017 (Figure 4).

The lithology data used in the study are from the China
Geological Survey (http://dcc.cgs.gov.cn/, accessed on 19
March 2024).

4 Results

4.1 Rainfall event

This study collected GPM IMERG Final Run daily precipitation
products from June 8th to 11 June 2017, to conduct spatial analysis of
the rainfall event in Chongqing (Figure 5). The results indicate that
theHechuanDistrict, Beibei District, BishanDistrict, Yubei District,
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FIGURE 3
The Planet images of the study area pre- and post-rainfall event. (A) May 2017 (B) July 2017.

FIGURE 4
The Google Earth image depicts the study area marked in yellow in Figure 3 (29.9°N, 106.341°E) pre- and post-rainfall event. (A) August 2016 (B)
August 2017.

and Tongliang District are the areas with the highest precipitation.
This rainfall event caused flooding, leading to waterlogging and
road inundation in urban areas. Notably, all 27 towns and streets
within Hechuan District experienced significant flooding, resulting
in severe submersion of agricultural lands. Due to ongoing river

diversion construction in Huangjin Village, river surged, causing 30
workers were trapped (Tianqi Network, 2017). Although all trapped
workers were successfully rescued by the firefighters, this incident
raised concerns about geological disaster prevention. Hechuan and
its surroundings, due to their unique geographical and climatic
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FIGURE 5
Spatial distribution of accumulation precipitation in Chongqing from 8 June 2017 to 10 June 2017.

conditions, are prone to geological disasters. The heavy storm
induced landslides pose a serious threat to public safety. Therefore,
studying the landslides triggered by this rainfall is critical. Through
scientific research and effective preventionmeasures, authorities can
better safeguard lives and property and mitigate the recurrence of
such disasters.

The rainfall process of the study area was analyzed temporally
using the 0.5-hour rainfall data from the GPM IMERG Final
Run. It was observed that the intense rainfall mainly occurred
from 3:00 p.m. on 8 June 2017, to 12:00 a.m. on 9 June 2017.
According to the standards outlined in the National Standard
of the People’s Republic of China (GBT28592-2012 Grade of
precipitation) and the rainfall intensity classification criteria issued
by the China Meteorological Administration (Table 1), the total
rainfall on June 8th was approximately 85 mm, reaching the
level of a heavy storm. Figure 6 shows that the rainfall intensity
reached the maximum at 17: 30 on the 8th, about 30 mm/h.
The event spanned three days, with a total precipitation of
about 87 mm.

4.2 Rainfall-induced landslide inventory

The occurrence of rainfall resulted in the initiation of 487
landslides, covering a total area of about 485,587 m2. This biggest

TABLE 1 Precipitation intensity grading standards promulgated by the
China Meteorological Administration.

Rainfall classification Total rainfall in 24 Hours(mm)

Light Rain <10

Moderate Rain [10,25)

Heavy Rain [25,50)

Heavy Strom [50,100)

Very Heavy Strom [100,250)

Extremely Heavy Strom ≥250

landslide covered an area of about 8,608 m2, while the smallest was
76 m2, with an average landslide area of around 997 m2. Based on
the data presented in Figure 7, there was a total of 205 landslides
with sizes less than 500 m2, which represents about 42% of the
total area of landslides. There were a total of 227 landslides, with
sizes ranging from 500 to 2,000 m2, which accounted for around
46% of the total. Furthermore, a total of 45 landslides occurred,
with sizes varying between 2,000 and 5,000 m2. There were ten
landslides with areas of more than 5,000 m2, all of which were
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FIGURE 6
Rainfall process curve of the study area from 8 June 2017 to 10 June 2017.

FIGURE 7
Landslide area classification statistics.

situated on the right bank of the Jialing River (Figure 8). Empirical
relationships of landslide area-volume proposed by Guzzetti et al.
(2009) were utilized for calculations. The findings reveal that the
largest volume of an individual landslide was roughly 35,574 m3,
the smallest was around 38 m3, and the average volume was
about 2,197 m3.

The studied region has an average landslide number density
(LND) of 0.84 num/km2. The area affected by landslides accounts
for approximately 0.083%. Based on the search radius of 1 km,
the raster resolution was set to 12.5 m, and the Kernel density
method was used to plot LND (Figure 9A) and landslide area
density(LAD, Figure 9B) maps of landslides. The highest LND
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FIGURE 8
(A) Rainfall-induced landslide inventory, (B) zooming of the landslide abundance area.

value reaches up to 55.6 num/km2. According to the distribution
of LND, it is divided into six levels. Specifically, the LND of
40–60 num/km2 covers about 2.5 km2, which represents 0.43% of
the total study area; the 20–40 num/km2 group takes up an area of
about 4 km2, accounting for 0.67% of the total; the 10–20 num/km2

group occupies 8.0 km2, and its proportion is 1.4%; the region of
5–10 num/km2 is around 10.2 km2, with a ratio of 1.8%; the area and
proportion of 2–5 num/km2 are 12.6 km2and 2.2%, respectively; the
group with less than 2 num/km2 hold an area of 545.6 km2 which is
93.6% of all. Correspondingly, the analysis of LAD shows that its
maximum is 6.4%. The area where LAD is less than 0.5% covers
approximately 562.2 km2, which accounts for 96.4% of the total
study area; the areawith LADbetween 0.5%and1% is about 9.0 km2,
representing 1.5% of all; the 1%–2% group takes up 4.8 km2 in area
and 0.82% in proportion; the 2%–4% covers an area of about 3.8 km2

which is 0.65%of the study area; the area of 4%–6% in LAD is around
3.1 km2, and its ratio is 0.54%; the region whose LAD is greater than
6% cover approximately 0.3 km2, accounting for about 0.04%.

In this study, we focused on showcasing localized areas
of high landslide density within the research zone, aiming to
investigate the phenomenon of rainfall-triggered landslides. As
depicted in Figure 10, we presented the topography at two different
periods (Planet images from May and July 2017), with locations
of landslides triggered by rainfall marked by red dashed lines.
Comparing these two images, we observe significant color changes

in the marked areas, primarily transitioning from vegetated regions
to exposed soil. Upon further observation, unlike deep-seated
landslides, rainfall-triggered shallow landslides exhibit elongated
fluid-like forms. Additionally, shallow landslides tend to have
relatively smaller areas, highlighting distinct differences compared
to deep-seated landslides. These observations emphasize the
varying impacts of different landslide trigger types on morphology,
resulting in different landslide morphologies and distribution
characteristics.This diversity serves as crucial evidence for landslide
identification, aiding in a deeper understanding of landslide
formation mechanisms and their significance in geological hazard
management.

5 Discussion

The interplay of various geological structures and climatic
backgrounds under different triggering events leads to
diversification of landslide phenomena (Tatard et al., 2010).
Furthermore, the ongoing warming of the Earth’s climate system
adds complexity and challenges to the understanding of landslide
processes (Gariano and Guzzetti, 2016). In this context, establishing
a landslide database is crucial for advancing landslide research.
Santangelo et al. (2023) have created a database of landslides
triggered by extreme rainfall events in the Marche-Umbria region
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FIGURE 9
Spatial density of landslides triggered by this rainfall event. (A) Landslide number density (LND); (B) landslide areal density (LAD).

of Italy through field reconnaissance, which includes records of
1,687 landslide events. Martha et al. (2015) mapped a total of 3,472
landslides in the Bhagirathi and Alaknanda river valleys in India
following an extreme rainfall event from June 15 to 17, 2013,
using satellite remote sensing imagery. This study focuses on the
parallel ridge-valley region in Chongqing, one of the world’s three
major fold mountain systems, which offers a new perspective for
landslide research due to its unique geographical location, geological
structure, and climatic environment.The rainfall patterns, geological
activity, and topographical features of this region significantly differ
from other study areas, most notably in the scale of landslides. The
establishment of this database not only enhances our understanding
of the characteristics of landslides in the parallel ridge-valley
region in Chongqing, but also provides valuable data support and
theoretical basis for global landslide research, especially in exploring
the triggering mechanisms and evolutionary processes of landslides
in fold mountain systems.

A preliminary statistical analysis of the rainfall-triggered
landslide was conducted, and its spatial distribution characteristics
were discussed. During this rainfall event, the maximum
precipitation reached 226 mm, which was recorded in the Baohe
(Wang Z. et al., 2019). The area with a high incidence of landslides
is primarily situated on the right bank of the Jialing River, exhibiting
a northeastward distribution trend, consistent with the orientation
of the central mountain range in the study area (Figure 8). Despite

the higher rainfall in the western region, the relatively gentle terrain
resulted in fewer triggered landslides. In contrast, the eastern
region, characterized by more rugged terrain, had fewer landslides
triggered, possibly due to its greater distance from the rainfall center.
The variation in landslide distributionmay be influenced bymultiple
factors, though currently only preliminary speculation can bemade.
Future research will focus on analyzing the influencing factors of
landslides to further elucidate their formation mechanisms.

By Figures 2, 8, landslides are mostly distributed in the Upper
Triassic strata. This geological stratigraphy is largely made up
of relatively hard quartz sandstone and interbedded shale with
poor permeability and lower hardness. The presence of these
weak interbeds makes them extremely vulnerable to deformation
and failure under external stresses, resulting in slope instability.
To further investigate the mechanisms behind rainfall-induced
landslides, we selected the western mountainous region as a
comparative area. This location is geographically near to the target
area, with similar landscape undulations. The geological features
of the western mountainous region reveal that the underlying
strata are from the Lower Triassic, and are predominantly
formed of limestone, marl and other rocks with comparable
characteristics. In contrast, these rock layers are more uniform
and less prone to significant deformation and damage, thus
posing a relatively lower risk of slope instability. By comparing
the lithology of these two areas, the distribution of landslides
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FIGURE 10
The high-density landslide area: (A) before rainfall event; (B) after rainfall event.

appears to be reasonable. This finding provides an important
geological basis for further study of the formation mechanism of
rainfall landslides.

In this study, we utilized the GPM IMERG Final Run daily
product with a spatial resolution of 0.1°. Pan et al. (2023) assessed
the applicability of GPM in the Chinese mainland. Their research
revealed that satellite rainfall data exhibited increasing errors
compared to national station data under moderate, heavy, and
torrential rainfall conditions. Spatially, the GPM IMERG product
performed well in the eastern and southern regions but relatively
poorly in the western and northern regions. Temporally, the IMERG
product could reasonably estimate the seasonal rainfall distribution
in China, with the best performance in summer and the worst
in winter. Despite the errors in estimating precipitation in the
Chinese mainland, these data still hold significant value. The
GPM IMERG precipitation product shows good performance in
exploring the spatial distribution of three-day cumulative rainfall
in Chongqing. However, for our specific area of interest, this spatial
resolution is relatively coarse, leading to discrepancies between the
rainfall amounts and those recorded by ground-based observation
stations. It should be noted that we believe these differences do not
hinder the analysis of spatial distribution characteristics and that of
rainfall trends.

Satellite technology plays a crucial role in landslide research,
among which Planet images, with its 3-meter resolution, provide
high accuracy, offering strong support for landslide extraction.
However, rainfall-triggered landslides often have small areas,
making precise delineation of landslide boundaries a challenging
task. Therefore, landslide interpretation personnel are required to
have extensive experience. To validate the spatial accuracy of the
established landslide database, a series of validation steps were
conducted. Firstly, we used sub-meter-level resolution Google Earth
images as a reference to carefully inspect the extracted landslide
boundaries. The results showed that although there were some
errors, they were still within an acceptable range. More importantly,
these errors did not significantly affect subsequent analysis and
research, ensuring the reliability and usability of the data obtained.

To obtain comprehensive information about the landslide event,
we acquired Planet images from one month before and after the
event, and introduced Google Earth satellite images on August 26
after the event as auxiliary evidence while considering the time
resolution. Despite the at least one-month interval before and after
images, we realize that rainfall landslides are usually triggered by
extreme rainfall events (Peruccacci et al., 2012; de Oliveira et al.,
2016; Zhang et al., 2022). Although the probability of such extreme
events is low, it does not rule out the possibility of other rainfall
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FIGURE 11
The Precipitation in the study area from May to August 2017.

events triggering landslides during this interval. To validate the
accuracy of our landslide database, we further utilized the GPM
IMERG Final Run daily product from May to August 2017 to
investigate the rainfall conditions in the study area (Figure 11).
The results show that from May to August, the maximum rainfall
occurred on June 8th (approximately 85 mm/day), while the second-
highest rainfall (approximately 39.8 mm/day) occurred on August
25th.The rest of the timemainly experienced light rain, with rainfall
much lower than the maximum value. In this study, we used Google
Earth images to assist in identifying buildings, farmland, and other
features. Now, we applied Google Earth images to examine whether
landslides were triggered between June 11th and August 25th (the
date of the second-highest precipitation). The results indicate that
no new landslides were triggered in this period.

Establishing a comprehensive and accurate database of rainfall-
induced landslides is crucial for enhancing the precision of landslide
risk assessment and optimizing management strategies. The high
accuracy of this database not only deepens our understanding of
the processes leading to landslides, but also provides critical data
support for the establishment of effective early warning systems. A
detailed and precise database of rainfall-induced landslides can be
used to train more sophisticated landslide semantic segmentation
models (Bragagnolo et al., 2021; Li et al., 2023), which play a vital
role in disaster emergency response. These models can quickly
identify potential landslide areas, issue timely warnings, and guide
evacuations, thereby effectively reducing casualties and property
damage.This has a long-term and profound impact on safeguarding
people’s lives and property, as well as the sustained development of
the social economy.

In the realm of landslide research, the rainfall-triggered
landslide threshold has always been a focal point. In earlier
studies, Caine (1980) proposed an empirical formula correlating the
intensity and duration of rainfall with the incidence of landslides
and debris flows, based on an integrated analysis of literature
available at that time. Subsequently, an increasing number of
scholars have employed statistical methods to investigate rainfall-
triggered landslide thresholds. For instance, Guzzetti et al. (2007)
exerted rainfall landslide databases of the Central EuropeanAdriatic
Danubian South-Eastern Space to establish the relationship between

rainfall intensity and duration, inferring threshold curves using
Bayesian statistical techniques. They further updated Caine’s model
by analyzing a database of 2,626 rainfall events worldwide that
caused landslides and debris flows (Guzzetti et al., 2008). Rosi et al.
(2015) updated 12 rainfall thresholds in Tuscany (Italy) using
the MaCumBA software (Segoni et al., 2014). Galanti et al. (2018)
derived rainfall thresholds for the Riviera Spezzina region in
Italy using least-squares linear fit, quantile regression, and logistic
regression, with logistic regression providing the most accurate
thresholds. While these studies have made some progress in
adjusting the parameters of empirical rainfall threshold formulas,
there are still some limitations. Differing from the statistical
methodsmentioned,Ma et al. (2023b) initially conducted a physics-
based spatiotemporal prediction and trigger mechanism analysis of
rainfall-induced landslides for four short-duration rainfall events
and long-duration intermittent rainfall that occurred from June
19 to 26 July 2013, in the Tianshui area of Gansu Province,
China. Building on this, they employed a method based on the
TRIGRS physical model, tailored to the specific geological and
climatic conditions of the area, to delve into the trigger thresholds
for rainfall-induced landslides (Ma et al., 2023c). Additionally,
the team conducted an in-depth analysis of the causes of loess
landslides triggered by this intense rainfall event (Shao et al.,
2023b), which has deepened our understanding of rainfall-induced
landslide thresholds. The physics-based modeling approach offers
a new perspective for understanding the physical processes of
landslides and complements statistical methods, jointly advancing
in-depth research in the field. Meanwhile, the advancement of
artificial intelligence algorithms has yieldedmore satisfactory results
(Chiang et al., 2022; Distefano et al., 2022).

In exploring the mechanisms behind landslide occurrence,
we focuses on the impact of moisture on soil physical properties
in this study, particularly the effect of rainfall on soil saturation
and shear strength. When rainfall reaches a certain level, the
physical properties of the soil undergo significant changes
(Moriwaki et al., 2004; Ahmadi-adli et al., 2017), which increases
the likelihood of landslides. Based on these observations, the study
posits a simplified linear relationship between rainfall volume
and the occurrence of landslides. This linear model streamlines
the geological processes, making the theoretical framework
clearer and easier to operate and validate. At the same time, it
provides a foundation for exploring more complex nonlinear
relationships, aiding in the understanding of the fundamental
conditions for landslide occurrence. The universality of the
model makes it applicable across different geological and climatic
conditions, facilitating its widespread use and meeting the need
for rapid and effective prediction of landslide risk in disaster risk
management. Based on the simplified linear model and considering
the differences between local observation station data and global
satellite precipitation data, it is speculated that the rainfall threshold
for the area is much higher than the 39.8 mm/day recorded on
August 25th. In fact, there is not a simple linear relationship between
precipitation and landslide occurrence. Future research could make
use of machine learning models to explore their more complex
relationship, aiming to obtain more accurate rainfall thresholds
and provide stronger support for landslide hazard assessments and
rainfall-induced landslide warning systems.
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6 Conclusion

Through preliminary analysis of a localized heavy storm event
near the Huaying Mountain in the parallel ridge-valley area of
western Chongqing on 8 June 2017, we established a landslide
database triggered by this event using high-resolution satellite
images. The study revealed that the rainfall event triggered 487
landslides, affecting an area of approximately 4,85,587 m2, which
accounts for 0.083% of the study area. The largest landslide
covered an area of about 8,608 m2, while the smallest was
76 m2. The maximum volume of a landslide was approximately
35,574 m3, while the minimum was 38 m3. The average LND
was 0.84 num/km2, with the highest LND reaching around
55.6 num/km2, predominantly distributed along the southern
foothills of the Huaying Mountain. The maximum LAD was
about 6.4%, highlighting the significant impact of extreme climate
events on geological disasters. Future research should analyze
the factors influencing landslides to reveal their mechanisms.
Additionally, more accurate landslide early warning systems
could be developed to effectively reduce the occurrence of
landslide disasters, thereby ensuring the safety of people’s lives
and property.
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