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Landslide disasters, due to their widespread distribution and clustered
occurrences, pose a significant threat to human society. Rainfall is considered a
primary triggering factor, and the frequent clustering of landslides underscores
the importance of early warning systems for regional landslide disasters in
preventing andmitigating rainfall-induced landslides. Research on early warning
models is crucial for accurately predicting rainfall-induced landslides. However,
traditional models face challenges such as the complexity of landslide causes,
insufficient data, and limited analysis methods, resulting in low accuracy and
inadequate precision. This study focuses on Fujian Province, China, proposing a
four-step process for building a regional landslide early warning model based
on machine learning. The process includes data integration and cleaning,
sample set construction,model training and validation, and practical application.
By integrating and cleaning the latest and most detailed data, a training
sample set (15,589 samples) for the regional landslide disaster early warning
model is established. Three machine learning algorithms—Random Forest,
Multilayer Perceptron, and Convolutional Neural Network—are employed and
compared, the evaluation results indicated that the RF-based warning model
achieved an accuracy of 0.930–0.957 and an AUC value of 0.955. The CNN-
based warning model demonstrated an accuracy of 0.945–0.948 with an
AUC value of 0.940. The MLP-based warning model achieved an accuracy
of 0.930–0.953 and an AUC value of 0.930. The results showed comparable
accuracy metrics among the three models, with RF exhibiting a significant
advantage in AUC values. Finally, the models are applied to the regional
landslide disasters induced by heavy rainfall in Fujian Province on 5 August
2021. The results showed that in the binary classification warning strategy,
the accuracy of the Random Forest and Convolutional Neural Network was
92.9%, while that of the Multilayer Perceptron was 85.8%, all performing
well. In the multi-classification hierarchical warning strategy, the Random
Forest excelled, while the performance of the Convolutional Neural Network
and Multilayer Perceptron was relatively limited. The findings of this study
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contribute to valuable attempts in landslide disaster warning model research,
with anticipated further improvements through the gradual accumulation of
samples and practical application verification.

KEYWORDS

landslide disaster, machine learning, early warning model, Random Forest,
Convolutional Neural Network, Multilayer Perceptron

1 Introduction

Landslide disasters often result in the destruction of houses,
disruption of transportation routes, and pose a serious threat to
the safety of people’s lives and property (Froude and Petly, 2018;
Gatto et al., 2023). Given the predominant triggering effect of rainfall
and the frequent clustering of landslides in specific regions, early
warning systems for regional rainfall-induced landslide disasters
have become a critical tool in landslide disaster prevention, often
referred to as the primary defense against such disasters. Research
on landslide disaster early warning models is essential for accurate
predictions. Based on this, numerous scholars both domestically and
internationally have conducted extensive research on this matter.
For example, Caine studied the rainfall intensity-duration control of
shallow landslides and debris flows (Caine, 1980).

The earliest applied model is the statistical critical rainfall
threshold model (Cannon, 1985; Au, 1998; Aleotti, 2004;
Krøgli et al., 2018; Baum and Godt, 2010; Abraham et al., 2020).
Due to its simplicity, this model has been widely referenced and
applied in various regions (Liu et al., 2015; Hong et al., 2016a;
Ding et al., 2017; Peruccacci et al., 2017; Wei et al., 2018). Other
models, such as dynamic warning models, analyze the mechanism
of rainfall-infiltration-disaster occurrence, primarily based on the
mechanics of infinite slope stability analysis. These models couple
rainfall-infiltration hydrogeological models with infinite slope
stability mechanics to assess landslide stability (Ponziani et al.,
2013; Pennington et al., 2015; Mulyana et al., 2019). Despite their
clear physical significance, their complex parameter inputs and
uncertainties limit their use to small-scale studies.

In recent years, the vigorous development of artificial
intelligence technology has led to the maturation and widespread
application of machine learning algorithms across various
industries, including geological disaster prevention and control.
Machine learning algorithms such as artificial neural networks,
decision trees, support vector machines, and Random Forests have
been extensively used for landslide spatial evaluation and prediction
(Chen et al., 2017; Tien Bui et al., 2016, 2017; Liu et al., 2010;
Hong et al., 2016a; Trigila et al., 2015; Dong et al., 2024; Zeng et al.,
2024; Luti et al., 2020). For instance, Reichenbach et al. (2018)
provided a comprehensive review of statistically-based landslide
susceptibility models, while Ado et al. (2022) and Lima et al. (2022)
offered extensive literature surveys and bibliometric analyses on
machine learning applications in landslide susceptibility mapping.
Yilmaz (2009) used frequency ratio, logistic regression, and artificial
neural networks to generate landslide susceptibility maps in
Tokat County, Turkey, with the artificial neural network model
demonstrating superior performance. Micheletti et al. (2014)
applied adaptive support vector machines, Random Forests, and
AdaBoost for landslide susceptibility mapping in the Canton of

Vaud, Switzerland. Thai Pham et al. (2019) used ensemble learning
algorithms to assess susceptibility in Pithoragarh, India.

Furthermore, studies have integrated various machine learning
techniques with physical models for enhanced accuracy. For instance,
Jie Dou et al. (2015) combined the Certainty Factor method with
ANN technology for Sado Island, Japan. In Austria, J.N. Goetz et al.
(2015) found that Random Forest algorithms yielded the highest
accuracy for landslide susceptibility mapping. MilošMarjanović et al.
(2009) and Sameen et al. (2020) used support vector machines, k-
nearest neighbors, and Convolutional Neural Networks for regional
assessments. Wei et al. (2021) developed a hybrid framework for
regional landslide susceptibility mapping that combines physical
models with Convolutional Neural Network.

Recent advancements have also focused on hybrid models
that integrate machine learning with dynamic rainfall indices for
improved early warning systems. Sun et al. (2022) proposed a
coupledmodel using RandomForest susceptibility and precipitation
factors, while Zhou et al. (2022) introduced an interpretable
model combining SHAP and XGBoost for global and local
susceptibility assessment. Yang et al. (2024) explored theCGBOOST
deep-learning algorithm, and Liu et al. (2022) validated the
feasibility of various machine learning algorithms for regional
early warning models. Yuan and Chen (2023) proposed a national-
level early warning method using hybrid neural networks and a
spatiotemporal transformer.

Additionally, Khan et al. (2022) developed a global landslide
forecasting system for hazard assessment and situational awareness.
Nocentini et al. (2023) explored the influence of rainfall parameters
and model settings on landslide space-time forecasting through
machine learning. Ren et al. (2024) combined dynamic rainfall
indices withmachine learningmethods for spatiotemporal landslide
susceptibility modeling. Lee et al. (2022) integrated rainfall period,
accumulated rainfall, and geospatial information for dynamic
landslide susceptibility analysis.

In summary, early warning systems for rainfall-induced
landslides are vital for disaster prevention.While traditional models
have laid the groundwork, the integration of machine learning
algorithms and hybrid models has significantly advanced the
field, offering more accurate and scalable solutions for landslide
prediction and risk assessment.

However, the aforementioned warning models face challenges
such as the complexity of geological disaster causes, insufficient
sample data, and limited analysis methods, resulting in low warning
accuracy and inadequate precision. To address these issues, this
paper introduces a four-step process for constructing a regional
landslide early warning model based on machine learning. The
steps include data integration and cleaning, construction of training
sample sets, model training and validation, and practical application
of the model. The study focuses on Fujian Province, one of
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the provinces in the southeast of China with a high frequency
of landslide disasters, providing a comprehensive demonstration
of the four-step process for building landslide warning models
using three algorithms: Random Forest (RF), Convolutional Neural
Network (CNN), and Multilayer Perceptron (MLP). By applying
these algorithms, the paper conducts a comparative study using real-
world examples, highlighting the advantages and disadvantages of
eachmodel in the context of binary andmulticlass landslide disaster
early warning strategies. This research represents a valuable attempt
to integrate AI technology andmachine learning algorithms into the
field of landslide disaster early warning.

2 Geological background of the study
area

China is one of the countries globally with the most extensive
distribution and severe consequences of geological disasters
(Liu et al., 2022). Landslide geological disasters are widespread in
the mountainous and hilly areas across the country, with nearly
a million known occurrences. On average, these landslides cause
hundreds of deaths and result in direct economic losses amounting
to tens of billions of yuan each year (Geological Hazard Technical
Guidance Center, Ministry of Natural Resources, 2019). Fujian
Province is one of the provinces in China where landslides occur
frequently.

The geographical location of Fujian Province lies mainly in the
hillymountainous area along the southeast coast of China (as shown
in Figure 1). Mountainous areas in Fujian Province account for
80.06% of the total land area, plains cover 8.03%, plateaus occupy
1.99%, and hills make up 9.92%. The distribution of terrain in the
study area is uneven, with hills and mountains mainly concentrated
in the central and western regions of Fujian Province, totaling
approximately 106,244 squaremeters in area.The elevation generally
ranges from 5 to 2,180 m. In the western part, the prominent feature
is the Wuyi Mountains, which run horizontally and are located
near the border between Jiangxi Province and Fujian Province. The
Huanggang Mountain, with an altitude of approximately 2,158 m,
is one of the main peaks. In the central part, there are mountain
ranges such as the Shengfeng Mountain-Daiyun Mountain-Boping
Ridge, which run in a north-northeast direction, consistent with
the direction of the coastline. In comparison to the central and
western regions of Fujian Province, the southeastern coastal area has
relatively lower elevations, characterized mainly by terrain features
such as hills, plateaus, and plains. The stratigraphy and lithology
of Fujian Province are highly developed, with predominant rock
types including granite, shale, sedimentary rock, metamorphic rock,
sandstone, tuff, and ignimbrite. In the southwestern part of Fujian
Province, there are thin layers of relatively soft mudstone and shale,
while the central and southern regions are primarily composed
of granite. Sedimentary and metamorphic rocks dominate in the
western parts, and tuff and ignimbrite are predominant in the
eastern parts. Fujian Province experiences a subtropical monsoon
climate characterized bywarm and humid conditionswith abundant
rainfall. Summers are hot and humid, autumns are rainy, andwinters
are relatively dry. The province receives ample precipitation, with
an annual average ranging from 1,000 to 2,500 mm, with higher
rainfall in summer and autumn and lower in spring and winter.

The geological environmental factor map is shown in Figure 2
(modified by Liu et al., 2022).

In recent years, geological disasters have occurred frequently in
Fujian Province, with collapses, landslides, debris flows, and ground
collapses being the most common types, and the majority of them
are of medium and small scale. Among them, landslides are the
most significant type of natural disaster. By the end of 2019, a total
of 21,176 geological disasters including collapses, landslides, debris
flows, and ground collapses had occurred in the province.

3 Research methods and processes

The process of constructing the regional landslide warning
model based on machine learning involves four main steps:
data integration and cleaning, creation of a training sample set,
development and validation of machine learning models, and
practical application of the model. The specific structure and
workflow are depicted in Figure 3.

3.1 Data integration and cleaning

Building the training sample set for regional landslide warning
mainly involves three types of datasets: geological environmental
data, historical landslide records, and rainfall-triggering factors.
Before constructing the sample set, it is necessary to collect,
organize, and clean these three types of data. Data cleaning typically
encompasses two categories:

(1) Data Missing and Anomaly Handling: Problems such as
human errors, data transmission errors, equipment failures,
and ambiguous geological information can impact the integrity
of the original dataset. These issues need to be addressed
through data preprocessing and cleaning. Typically, this
involves dealing with missing values through interpolation or
deletion, as well as identifying and correcting outliers.

(2) Feature Attribute Preprocessing: Given the varying scales
of input features in the training samples, it is essential
to standardize or scale these features uniformly. Different
machine learning algorithms react differently to variations
in input feature scales, necessitating distinct preprocessing
methods for input feature attributes. It is significant to
uniformly normalize or scale the input features of training
samples before model training to minimize differences in
feature ranges. Otherwise, this could directly impact the
model’s accuracy.

The study focused on Fujian Province, China, and collected
and organized historical landslide records, geological environmental
data, and rainfall data.The landslide disaster data were sourced from
the Fujian Province Landslide Disaster Sample Database spanning
from 2010 to 2018. Landslides are distributed across all counties
and districts in Fujian, but their frequency varies significantly. In
the western, northern, and central regions of Fujian, the number of
landslides is higher, mainly due to the rugged terrain and complex
geological conditions in these areas, leading to more developed
landslides. Specifically, in Youxi County, Datian County, and Dehua
County in the central region, landslide occurrences exceed 300
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FIGURE 1
The geographical location of Fujian Province.

FIGURE 2
Geological environmental factor map (A): grade; (B) geomorphic type; (C) formation lithology; (D): annual rainfall.

times. In most other areas, the occurrences are below 150 times.
However, in the southeastern coastal areas of Fujian, where the
terrain is flat with predominantly plains and plateaus, landslide
disasters are less likely to occur due to the flat terrain. The highest
number of landslides in Fujian Province occurred in 2011, with
2,456 incidents, while the lowest number was in 2018, with only
39 incidents. The number of landslides in 2011 was 63 times that
of 2018. Landslides in Fujian are mostly concentrated between
May and August, accounting for 76% of the annual total. This
is mainly due to Fujian’s subtropical monsoon climate, where the
rainy season occurs from May to August. Rainfall is a significant
factor in landslide disasters as it infiltrates the soil, reducing
its strength and making it prone to permeation deformation,
leading to soil failure and resulting in landslides. It has been

observed that landslide occurrences are primarily influenced by
heavy rainfall.

Data cleaning involved standardizing temporal and spatial
coordinates, handling erroneous attribute values, and addressing
missing fields in the historical landslide data. Geological
environmental data were obtained from the 1:20,000 and 1:50,000
geological environment and geological disaster investigation
databases of Fujian Province. Besides routine error data cleaning,
preprocessing steps such as projection standardization, feature
scaling, and normalization were conducted. Rainfall data were
sourced from hourly meteorological and hydraulic rainfall station
data from 2010 to 2018. Data cleaning tasks primarily included
site registration, interpolation of missing data, and elimination of
erroneous data. As shown in Table 1.
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FIGURE 3
Schematic overview of the overall framework.

TABLE 1 Main issues and corresponding solutions for data Existence.

Number Data type Main issues Corresponding solutions

1 Historical Landslide Recorded Data 1. Missing occurrence time;
2. Missing coordinates of occurrence location;
3. Coordinates in latitude and longitude do not
match the area described in the field, indicating
obvious errors;
4. Other types of disaster data

1. Remove the record;
2. If there is detailed description of the area in
the attribute field, supplement by sampling;
otherwise, remove the record;
3. If there is detailed description of the area in
the attribute field, supplement by sampling;
otherwise, remove the record;
4. Remove the record

2 Geological Environmental Data 1. Non-uniform coordinate system;
2. Missing key attributes;
3. Obvious errors in key attributes;
4. Key attributes in different factor layers are
qualitatively described;
5. Large quantitative differences in key
attributes between different factor layers

1. Projection transformation, uniform
coordinate system;
2. Query relevant documents and materials,
supplement directly if there is detailed
description; otherwise, supplement manually
based on relevant materials;
3. Query relevant documents and materials,
supplement directly if there is detailed
description; otherwise, supplement manually
based on relevant materials;
4. Use uncertainty coefficient method for
quantization;
5. Conduct feature scaling and normalization

3 Rainfall Data 1. Partial data missing in hourly rainfall station
database;
2. Abnormally large hourly rainfall at stations;
3. Blank missing data for hourly rainfall at
stations;
4. Large quantitative differences in daily rainfall
data for grid units compared to key attributes in
other factor layers

1. Interpolate using surrounding station data;
2. Remove outliers, interpolate using
surrounding station data;
3. Interpolate using surrounding station data;
4. Conduct feature scaling for rainfall attribute
(actual rainfall value/10)

3.2 Construction of training sample set

The construction of the training sample set involves extracting
environmental factor features and triggering factor features based

on sampling of positive and negative samples, to obtain input and
output feature parameters for the model. To construct the warning
model, it is necessary to divide the sample data into training and
testing sets.The optimized samples are randomlymixed and shuffled
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to ensure that the ratio of positive to negative samples in the training
and testing sets is nearly consistent, preventing an imbalance in
the number of positive and negative samples in either set. This
study employs the model_selection module from sklearn using the
Python language to divide all the landslide warning samples in
the Fujian Province region into training and testing sets at a 4:1
ratio. To maintain consistency in the ratio of positive to negative
samples within the training data, a specific percentage of each
category’s samples is selected as training data. Since the model
requires multiple training sessions, and to avoid changes in the
training data due to randomshuffling of the dataset each time,we use
a fixed random_state. This ensures that the division of data remains
the same for each training session.

3.2.1 Sampling of positive and negative samples
Positive sample sampling is based on historical landslide record

data. According to the requirements of model construction, the
selection criteria are as follows: the points must have definite spatial
geographic coordinates and time coordinates (accurate to each
day). Negative samples refer to points where landslides did not
occur, which cannot be directly obtained. Negative sample sampling
includes the following steps. See Figure 4 for a schematic diagram.

(1) Negative Sample Collection Outside the Buffer Zone of
Positive Samples

Determination of Negative Sample Spatial Location: Negative
samples are randomly sampled outside a certain buffer zone around
positive samples.The determination of the buffer zone radius should
consider both the minimumwarning grid unit size in the study area
and the distribution of historical landslide points.

Assignment of Time Attributes to Negative Samples: The time
attributes of negative samples are typically constrained within the
range of timedistribution of positive samples. Sampling is conducted
using a random function, with the general formula:

T = RAND (T1,T2)

T is the randomly obtained time; T1 is the lower limit of the
period for randomly obtaining time; T2 is the upper limit of the
period for randomly obtaining time.

(2) Negative Sample Collection Within the Grid of
Positive Samples

Determination of Negative Sample Spatial Location: Negative
samples are randomly sampled within the grid of positive samples,
where the grid represents the warning grid units in the study
area. The number of negative samples collected can be determined
according to research requirements.

For the sampling of negative samples in this section, it
is recommended to use the same number of negative samples
as positive samples, meaning a 1:1 sampling ratio within grid
units containing positive samples. However, this ratio should be
specifically studied based on the particular research question, taking
into account the varying number of samples in different study areas.
Researchers are advised to collect and construct training sample
sets based on different sampling ratios, and then select the optimal
positive to negative sample ratio based on themodel training results.

Assignment of Time Attributes to Negative Samples: For this
portion, the time attributes of negative samples also use the random
function shown in formula (1). However, in addition to the upper
and lower limits of the period, an additional constraint is added: the
time attribute of the sampled negative samples should be different
from that of the positive samples.

In this study on early warning research in Fujian Province, the
minimum warning grid unit is set to 2 km. In some regions, the
density of historical landslide points is relatively high, so the buffer
zone radius is set to the size of the warning grid unit, which is
2 km. To ensure the balance between positive and negative samples,
the number of negative samples collected outside the buffer zone
of positive samples is approximately twice the number of positive
samples, while the number of negative samples collected within the
grid of positive samples is equal to the number of positive samples.
In summary, a total of 15,589 samples covering nearly 9 years

FIGURE 4
Schematic diagram of negative sample spatial sampling based on positive samples (modified by Liu et al., 2022)
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(2010–2018) were obtained for Fujian Province. Among them, there
are 3,562 positive samples and 12,027 negative samples, resulting in a
positive-to-negative sample ratio of approximately 1:3.4. The spatial
distribution of positive and negative samples is shown in Figure 5.

3.2.2 Extraction of model input and output
feature parameters

The model’s input feature parameters primarily encompass
geological environmental factors, rainfall-triggering factors, and
historical disaster information. The extraction of geological
environmental features and rainfall factors is predicated on an
analysis of the developmental distribution patterns and influencing
factors of landslide disasters in the study area. Geological

environmental factors influencing landslide disasters in the region
typically comprise topography, lithology, and human activities.
Rainfall-triggering factors influencing landslide disasters in the
region generally encompass daily rainfall, antecedent rainfall, or
antecedent effective rainfall.

Geological environmental factors and rainfall-triggering factors
are overlaid and analyzed with the subdivision units of the warning
grid (refer to Figure 6) to obtain the geological environmental
features and rainfall factors of the warning grid units.The geological
environmental feature database contains characteristic attributes of
geological environmental factors for each warning grid unit, while
the rainfall factor database includes daily rainfall feature attributes
or effective rainfall feature attributes for each warning grid unit.

FIGURE 5
Location and training sample set of Fujian province.

FIGURE 6
Schematic diagram of model input feature parameter extraction (modified by Liu et al., 2022)
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TABLE 2 Training sample input and output features and parameters (modified by Liu et al., 2022).

Number Input feature Input feature parameters Data source and
processing method

1 Slope/(°) ①0–15;②15–25;③25–35;④35–50;
⑤≥50

Quantification based on Fujian Province
1:100,000 slope map

2 Landform Type ①Plain;②Hilly Plateau;③Low
Mountains;④Low-MediumMountains;
⑤Medium-High Mountains

Quantification based on Fujian Province
1:200,000 landform type map

3 Lithology ①Blocky Hard Granite Formation;
②Blocky Hard - Relatively Hard Diorite
Formation;③Blocky Hard - Relatively
Hard Tuff, Tuff Formation;④Medium to
Thick Layer Relatively Hard Sandstone
Formation;⑤Thin Layer Relatively Soft
Mudstone, Shale Formation;⑥Medium

Thick Layer Hard Quartz, Schist
Formation;⑦MediumThick Layer

Relatively Hard Carbonate Formation;
⑧Loose Sand, Clay Layer

Quantification based on Fujian Province
1:200,000 lithology map

4 Annual Rainfall/(mm) ①1,400–1,450;②1,450–1,500;
③1,500–1,550;④1,550–1,600;
⑤1,600–1,650;⑥1,650–1700;
⑦1700–1750;⑧1750–1800;
⑨1800–1850;⑩1850–1900;
⑪1900–1950;

⑫1950–2000;⑬>2000

Quantification based on Fujian Province
1:500,000 geological disaster

investigation and zoning report,
classification quantification

5 Vegetation Type ①South subtropical rainforest area in
the east of Daiyun Mountain;②Daiyun
Mountain Yijiufeng Mountain Range;
③Evergreen mulberry-semi-evergreen
oak forest area;④South subtropical

rainforest area in southeastern Pingling;
⑤Coastal South Subtropical Rainforest
Area;⑥Evergreen mulberry tree leaf

forest area

Quantification based on Fujian Province
1:500,000 vegetation type map,
classification quantification

6 Distance to Water System/(m) ①0–500;②≥500 Extraction of water system distribution
layer from Fujian Province 1:500,000
susceptibility map, classification

quantification

7 Distance to Roads(m) ①0–500;②≥500 Extraction of road distribution layer
from 1:250,000 DLG data, classification

quantification

8 Distance to Buildings/(m ①0–500;②≥500 Extraction of building distribution layer
from 1:250,000 DLG data, classification

quantification

9 Population Density (people/km2) ①50–100;②100–150;③150–300;
④300–450;⑤450–600;⑥600–750;

⑦>750

Quantification based on the Sixth
National Population Census data,

classification quantification

10 Historical Disaster Points (count) The actual number of historical disaster
points in each grid unit/10

Scaling based on landslide hazard points
from Fujian Province 1:500,000

geological disaster investigation data
and National Geological Disaster

Database (2010–2008)

11 Daily Rainfall/(mm) Actual rainfall value/10
Interpolation calculation based on

hourly precipitation station data from
2010 to 2018 for meteorology and water

resources, scaling

12 Previous Day Rainfall/(mm) Actual rainfall value/10

13 Previous 2 Days Rainfall/(mm Actual rainfall value/10

(Continued on the following page)
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TABLE 2 (Continued) Training sample input and output features and parameters (modified by Liu et al., 2022).

Number Input feature Input feature parameters Data source and
processing method

Actual rainfall value/10

26 Rainfall in the Previous 15
Days/(mm)

Actual rainfall value/10

27 0 or 1 Positive Sample (1); Negative Sample
(0)

Positive samples taken from historical
landslide record data are assigned a
value of 1; negative samples obtained
through sampling are assigned a value

of 0

FIGURE 7
The importance of the input features.

FIGURE 8
Schematic diagram of random forest model.
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TABLE 3 Hyperparameters of the random forest model in the study area.

Hyperparameter Meaning Optimized
value

max_depth Maximum depth of
decision trees

13.8178

max_features Maximum number of
features

0.1

min_samples_split Minimum number of
samples to split

3.1664

'n_estimators Number of decision
trees

165.9397

The model’s output feature parameters are determined by the
attributes of positive and negative samples. The output feature
parameter for positive samples is set to 1, while the output feature
parameter for negative samples is set to 0.

In the study area of Fujian Province, China, this paper
extracted 10 feature factors including slope, landform type, lithology,
annual rainfall, vegetation type, hydrological influence, roads,
buildings, and actual occurrences of historical landslides (the
actual number of historical disaster points in each grid unit) as
input features representing geological environmental conditions.
Additionally, 16 rainfall-triggering factors such as daily rainfall
and rainfall over the previous 15 days were incorporated as input
features for rainfall-triggering factors. This resulted in a total
of 26 input feature attributes and one output feature attribute,
comprising a training sample set of 15,589 records (see Figure 6;
Table 2).

During the process of dividing the sample data into training
and testing sets, the optimized samples were randomly mixed to
ensure that the ratio of positive and negative samples in both
the training and testing sets was consistent. This was done to
prevent any imbalance in the number of positive and negative
samples in either the training or testing set. The division of the
Fujian Province landslide warning sample set into training and
testing sets was accomplished using the model_selection module
in sklearn, implemented in Python. The dataset was divided in
a 4:1 ratio. To ensure a balanced ratio of positive and negative
samples in the training data, a specific percentage was extracted
from each class of samples as training data. To maintain consistency
in data division across multiple training iterations and avoid
variations caused by random shuffling of the dataset, a fixed
random_state was employed to ensure consistent results in each
training division.

The above content selected 26 indicators as input features, but
different features have varying levels of importance and impact on
themodel. To investigate the influence of input features on themodel
and determine whether the selected input features are appropriate, a
study on the importance of input features was conducted using the
Random Forest algorithm model as an example.

The process for selecting input features is as follows:
First, calculate the importance of each input feature.

The formula for calculating the importance index is

as follows:

Pk =
∑n

i=1
∑t

j=1
DGkij

∑m
k=1
∑n

i=1
∑t

j=1
DGkij

× 100%

Where Pk represents the importance of the k input feature;
m is the number of input features; n is the number of decision
trees; t is the number of nodes in each decision tree; DGkij is the
decrease in Gini index for the k input feature at the j node of the i
decision tree.

The importance of each input feature to the model
output was calculated according to the Equation. The
ranking of the importance of each input feature is shown
in Figure 7.

The importance indices of the 26 input features in the study area
can be ranked into six levels:

Level 1: Rainfall on the current day and the previous
day, with importance indices of 39.6% and 13.5%,
respectively.

Level 2: Distribution of historical disaster points, with an
importance index of 7.0%.

Level 3: Rainfall from the second to the fifth day before, with
importance indices ranging from 3.2% to 5.8%.

Level 4: Rainfall from the sixth to the 15th day before, distance to
houses, and average annual rainfall, with importance indices ranging
from 1.0% to 2.2%.

Level 5: Vegetation type, population density, strata lithology,
slope, and geomorphological type, with importance indices ranging
from 0.3% to 0.7%.

Level 6: Distance to roads and distance to water systems, with
the lowest importance indices, both less than 0.1%.

The analysis of the importance ranking of each input feature
is closely related to the study scale. At the provincial scale of
this study in Fujian (with 2 km∗ 2 km warning grid units), the
input features in Level 5 are larger-scale geological environmental
factors with relatively smaller impacts. Additionally, the landslide
samples collected are mainly located near residential areas, while
landslides along roads were not included, directly resulting in the
importance indices of distance to roads and distance to water
systems being close to 0. The high importance values of features
such as rainfall on the current day, distribution of historical disaster
points, rainfall from the first to the fifth day before, and distance
to houses align with the recognized patterns of landslide disasters
and triggering factors in Fujian Province. Using the recursive
elimination method, the input feature with the smallest importance
indicator was removed each time, and the optimized RandomForest
algorithm was used to calculate the model accuracy. The results
showed that the model accuracy remained largely unchanged after
removing some features. Considering that the number of input
features in this study is not large, all 26 input features were retained
for the subsequent model.

3.3 Model construction and validation

This paper develops warning models using three machine
learning algorithms: the Random Forest model, the Convolutional
Neural Network (CNN) model, and the Multilayer Perceptron
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FIGURE 9
Schematic diagram of convolutional neural network (CNN) model.

(MLP) model. The Random Forest model is an ensemble learning
technique that combines weak learners (decision trees) by randomly
sampling data and aggregating their outputs through voting to
produce the final prediction. The Convolutional Neural Network
(CNN) is a type of feedforward neural network commonly used
in image recognition, speech recognition, and various other
applications. It comprises layers such as convolutional layers,
pooling layers, fully connected layers, as well as input and output
layers. The Multilayer Perceptron (MLP) model consists of multiple
layers of neurons, each resembling an artificial neural network layer.
Neurons within each layer receive inputs from the preceding layer,
apply nonlinear transformations via activation functions, and pass
the results to the subsequent layer, enabling effective solutions to
nonlinear problems.

3.3.1 Random Forest model
The Random Forest algorithm employs bootstrapping, where

n samples are randomly selected with replacement to form k new
sample training sets. This ensures that decision trees within the
Random Forest can distinguish between each other, thus increasing
the diversity of the decision trees and enhancing the reliability
of the analysis results, thereby improving model performance.
These k-decision trees are then combined into a Random Forest
through ensemble algorithms. Subsequently, each of the sample
mentioned above sets is used as a training set, and decision tree
models are applied to train these samples. By evaluating the output
probability values, the best decision tree nodes are selected for
splitting. Finally, the results generated by all decision trees are
combined using a simple majority voting mechanism to obtain the
final result. As shown in Figure 8.

The core of the Random Forest lies in treating any individual
decision tree as a base classifier. The samples are trained through
decision trees to obtain different classification models h1(X)……
hk(X), and the final classification result is obtained through a
voting mechanism. The formula for the final classification result
is as follows:

H(X) = argmax
z I(hi(x) = Z

In this context, “H(x)” represents the classification output result
of the Random Forest model, “ hi”stands foran individual decision

tree model, “Z” represents the output variable, and “ I(.)” is an
indicator function. This indicates that the Random Forest adopts a
majority voting decision method to determine the classification.

The study employs the training sample set from the research
area (Figure 6; Table 2) to optimize four hyperparameters within
the Random Forest model: max_depth, max_features, min_
samples_split, andn_estimators.Utilizing theBayesian optimization
algorithm, it searches for the optimal hyperparameter values and
outputs the values obtained during each iteration. By rounding
these values to integers, the optimal hyperparameter values are
determined as follows: {max_depth’: 13, ‘max_features’: 0.1, ‘min_
samples_split’: 3, ‘n_estimators’: 166}. The refined hyperparameters
for the Random Forest algorithm are illustrated in Table 3.

3.3.2 Constructing Convolutional Neural
Network (CNN) model

The Convolutional Neural Network (CNN) is a type of deep
learning model comprised of components such as convolutional
layers, pooling layers, and fully connected layers. The convolutional
layer serves as the core of CNN, detecting various features in
images, such as edges, textures, or shapes, by applying convolutional
operations on input data. These operations utilize learnable filters
(also known as kernels) to scan the input data and generate feature
maps. Pooling layers typically follow convolutional layers to reduce
the size of feature maps and retain the most important information.
They achieve this by downsampling the spatial dimensions of the
feature maps, either by taking the maximum value (max pooling)
or the average value (average pooling) within certain regions of
the feature maps. This helps reduce the number of parameters
and computational complexity while preserving crucial features.
Fully connected layers are usually positioned at the end of CNN
and are responsible for mapping the extracted features to the
final output categories or predictions. These layers flatten the
extracted features from the preceding layers and input them to fully
connected neurons in the neural network to performclassification or
regression tasks. As shown in Figure 9.

This study utilized the training sample set from the research area
(Figure 6; Table 2). The model architecture of the Convolutional
Neural Network (CNN) comprises an input layer, an output
layer, two convolutional layers, two max-pooling layers, a fully
connected layer, and a dropout module aimed at preventing
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TABLE 4 Hyperparameters of the convolutional neural network model.

Parameter Meaning Optimized value

filters1 Size of the first layer’s
convolutional kernel

512 × 1

filters2 Size of the second layer’s
convolutional kernel

32 × 1

dropout rate Dropout rate for each layer’s
neurons

0.1

activation1 Activation function for the first
layers

relu

activation2 Activation function for the
second layers

relu

activation3 Activation function for fully
connected layer

sigmoid

lr The learning rate for model
training

0.002

overfitting. Bayesian optimization algorithm was employed
to search for partially optimal hyperparameters of the CNN
model. This primarily involved determining the number of
neurons in certain layers, activation functions for each layer,
dropout rates for individual layer neurons, and the learning
rate for model training. Specifically, the number of neurons
in each layer was set to 512 x 1 for the initial convolutional
layer and 32 x 1 for the second convolutional layer. The
dropout rate for each layer was set to 0.1, with ReLU as the
activation function for the first and second layers. The learning
rate was fixed at 0.002. Other parameters were configured
to the default settings of the CNN algorithm. The optimized
hyperparameters of the Convolutional Neural Network are detailed
in Table 4.

3.3.3 Multilayer Perceptron (MLP) model
construction

Multilayer Perceptron (MLP) is a fundamental type of
feedforward artificial neural network. It consists of multiple
layers of neurons, including an input layer, at least one or more
hidden layers, and an output layer (Hinton, 2006). In an MLP,
each neuron is connected to all neurons in the previous layer,
with each connection having an associated weight. Information
flows from the input layer through the neurons and layers to the
output layer. The presence of hidden layers allows MLP to learn
and capture more complex patterns and features. MLP model are
often trained using backpropagation algorithms, adjusting weights
iteratively to minimize the error between predicted and actual
outputs. This model applies to various machine learning tasks
such as classification and regression. It is worth noting that MLP is
commonly used for processing unstructured data like images, text,
or time series data.WhileMLP is a simple and flexible model, it may
suffer from overfitting or require more complex model structures to
improve performance when dealing with complex problems.

TABLE 5 Hyperparameters of the multilayer perceptron model.

Parameter Meaning Optimized value

units1 Number of neurons in the first
layer

64

units2 Number of neurons in the
second layer

128

units3 Number of neurons in the third
layer

128

units4 Number of neurons in the
fourth layer

64

dropout rate1 Dropout rate of neurons in the
first layer

0.1

dropout rate2 Dropout rate of neurons in the
second layer

0.43

dropout rate3 Dropout rate of neurons in the
third layer

0.35

activation1 Activation function of the first
layer

relu

activation2 Activation function of the
second layer

sigmoid

activation3 Activation function of the third
layer

sigmoid

activation4 Activation function of the fourth
layer

sigmoid

lr Learning rate 0.0001

This paper employs the training sample set of the research
area (Figure 6; Table 2) to construct a Multilayer Perceptron (MLP)
model, comprising one input layer, four hidden layers, and three
dropout modules to mitigate overfitting. The optimization of the
deep neural network model’s hyperparameters is achieved through
the Bayesian optimization algorithm, considering factors such as the
number of neurons in each layer, activation functions, dropout rates,
and the learning rate. Specifically, the first layer has 64 neurons,
the second and third layers each have 128 neurons, and the fourth
layer has 54 neurons. The dropout rates for the neurons are 0.1,
0.43, and 0.35 for the first, second, and third layers, respectively.
ReLU activation is used for the first layer, while sigmoid activation is
applied to the subsequent layers, and the learning rate is set to 0.0001.
Other parameters adhere to the default settings of the deep neural
network algorithm. Table 5 presents the optimized hyperparameters
for the Multilayer Perceptron model.

3.3.4 Model optimization
When constructing artificial intelligencemodels,model training

aims to enhance accuracy. Model accuracy relies not only on
the learning algorithm’s performance but also on the selection
of hyperparameters and features. Optimizing the model can also
enhance accuracy, thus it is necessary to optimize certain parameters
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of eachmodel. Presently, hyperparameter optimizationmethods can
employ automatic tuning techniques. Automatic hyperparameter
tuning methods mainly consist of random search, grid search,
and Bayesian optimization algorithms. In contrast to grid search
and random search, the Bayesian algorithm utilizes Gaussian
processes, making full use of prior knowledge. Moreover, Bayesian
optimization can attain the optimal solution and is more robust
than random search. Consequently, this paper adopts the Bayesian
optimization algorithm to adjust the model’s hyperparameters (Lee
and Min, 2001).

Gaussian Process, also known as Gaussian distribution
random process, can represent the distribution of functions.
The characteristics of Gaussian distribution are determined by
covariance and mean. By calculating the posterior probability of
samples, the maximum posterior variance of the model output
can be obtained. Generally, Gaussian processes require calculating
the probability of each feature and multiplying them. However,
due to the large number of feature factors, it is necessary to use a
multivariate Gaussian regressionmodel and establish the covariance
matrix of features. Finally, the probability “p(χ) is calculated using
all feature values.

p(χ) =
n

∏
j
p(χj;μj;σ

2) =
n

∏
j

1
√2πσj

exp
{
{
{
‐[

[

(χj‐μj)
2

2σ2
]

]

}
}
}

Average of all features:

 μj =
1
m
∑m

i=1
xi

Covariance matrix:

∑= 1
m

m

∑
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m
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Multivariate Gaussian distribution probability model:

p(χ) = 1

2π
π
2 |∑|

1
2

exp{‐1
2
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‐1
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During the process of searching for optimal values and
optimizing hyperparameters, this process is a Gaussian process.

3.3.5 Model validation
To assess the performance of the model, two metrics, namely,

the confusion matrix and ROC curve, were selected to evaluate the
effectiveness of the regional landslide warning model.These metrics
are used to measure the accuracy and generalization ability of the
model, respectively.

(1) Confusion Matrix

The confusion matrix is a matrix used to evaluate the
performance of classification models, providing an intuitive
reflection of the model’s binary classification effectiveness. It
categorizes the classification results into four scenarios based on
the actual classes (true values) and predicted classes, namely,
True Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN). The specific relationships between these four
classification results are depicted in Table 6:

As shown in Table 6, TN represents the true negative value,
which is the number of samples predicted and not experiencing

TABLE 6 Confusion matrix.

True values 0 1 Total

Predicted Value
0 TN FN TN + FN

1 FP TP FP + TP

Total TN + FP FN + FP TN + FP + FN +
FP

landslides. FN represents the false negative value, indicating the
number of samples predicted as not experiencing landslides but
experiencing landslides. FP represents the false positive value,
indicating the number of samples predicted as experiencing
landslides but not. TP represents the true positive value, which
is the number of samples predicted and experiencing landslides.
Additionally, other classification metrics can be derived from the
confusion matrix, including accuracy, true positive rate (TPR),
sensitivity (recall), specificity, and negative predictive value (NPV),
aiding in assessing the model’s performance. The formulas and
meanings are presented in Table 7.

(2) ROC (Receiver Operating Characteristic) curve

The ROC curve is employed to comprehensively assess and
evaluate the performance of themodel. It is generated by plotting the
true positive rate against the false positive rate at various thresholds.
The value of AUC (Area Under the ROC Curve) represents the
generalization ability of the landslide warning model, serving as an
evaluation metric for model performance. AUC ranges from 0.5 to
1.0, with values closer to one indicating better model performance.

3.4 Model application

In practical applications, the pre-trained landslide warning
models can be directly accessed using the LOAD function. These
models have been previously trained, and saved, and can output
the probability of landslide disasters occurring. By adhering to
different warning strategies, the warning levels can be systematically
determined and classified.

3.4.1 Model input and computation
Acquiring model input parameters by dividing the study area

into grid cells of 2 km x 2 km. Each grid cell layer is then associated
with 26 input feature parameters. These parameters include slope,
terrain type, lithology, annual rainfall, vegetation type, distance to
watercourses, distance to roads, distance to buildings, population
density, and historical disaster points, which are derived from
geological environmental input features trained by the model. The
remaining 16 input feature parameters, such as rainfall for the
current day, rainfall for the previous 1 day, rainfall for the previous
2 days, and so forth up to rainfall for the previous 15 days, are
computed based on the specific time of the day for which the
warning calculation is performed. Ultimately, this process generates
input data files for each grid cell. These input data files are then
fed into the three machine-learning landslide warning models for
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TABLE 7 Formulas and meanings of metrics.

Metric Formula Meaning

Accuracy Accuracy = TP + TN
TP + TN + FP + FN

The proportion of correctly classified samples
among all samples

True Positive Rate (TPR) TPR = TP
TP + FP

The proportion of positive samples correctly
identified as positive

Sensitivity (Recall) Sensitivity = TP
TP + FN

The proportion of actual positive samples that are
correctly predicted as positive

Specificity Speci ficity = TN
TN + FP

The proportion of actual negative samples that are
correctly predicted as negative

Negative Predictive Value (NPV) TNR = TN
TN + FN

The proportion of negative samples that are
correctly identified as negative among all samples

predicted as negative

TABLE 8 Binary warning strategy based on machine learning landslide
warning models.

Probability
threshold range

(%)

Output warning
level

Risk of
geological
disaster

occurrence

≥50 Warning High Risk Risky

<50 NoWarning Low Risk

computation, yielding the output of landslide hazard probabilities
within each grid cell.

3.4.2 Warning strategy
Based on the probabilities of landslides occurring in each grid

cell as output by the model, the final warning level is determined
according to the model’s output strategy. This paper proposes
two warning strategies: binary warning strategy and multiclass
warning strategy.

(1) Binary Warning Strategy

The binary warning strategy categorizes the final warning level
into two classes based on the probabilities of landslides occurring
in each grid cell as output by the model: no warning and warning.
We set the threshold for classification at 50% and use this threshold
to determine the landslide warning level. When the probability
of landslides in each grid cell output by the model is below the
50% threshold, the warning level is classified as “no warning,”
indicating a low risk of geological disaster occurrence. Conversely,
when the probability of landslides in each grid cell output by the
model is above the 50% threshold, the warning level is classified
as “warning,” still indicating a high risk of geological disaster
occurrence (Table 8).

(2) Multiple Classification Warning Strategy

The multiple classification warning strategy divides the final
warning level into several categories based on the landslide
occurrence probability output by the model for each grid cell.

TABLE 9 Multi-class warning strategy based on machine learning
landslide warning model.

Probability (%) Threshold range
warning level

Output warning
level

>80 Red Warning very high risk

60–80 Orange Warning High Risk

40–60 YellowWarning Moderate Risk

<40 NoWarning Low Risk

This study refers to the industry standard geological disaster
meteorological risk warning regulations, using thresholds of 20%,
40%, 60%, and 80% to categorize the warning levels into nowarning,
yellow warning, orange warning, and red warning. Specifically,
when the output probability is below 40%, the warning level
is “no warning,” indicating a relatively low risk of geological
disaster occurrence. When the output probability falls within
the range of 40%–60%, the warning level is “yellow warning,”
suggesting a higher risk of geological disaster occurrence. For
output probabilities between 60% and 80%, the warning level is
“orange warning,” indicating a high risk of geological disaster
occurrence. If the output probability exceeds 80%, the warning level
is “red warning,” indicating a very high risk of geological disaster
occurrence (Table 9).

4 Results and comparative analysis of
three warning models

4.1 Model validation results

(1) Confusion Matrix Results

According to the confusion matrix output results of the three
models (Table 10), it can be observed that when thresholds are set
to 0.25, 0.5, and 0.75 respectively, the accuracy of the Random
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Forest model is 0.930, 0.953, and 0.957, the accuracy of the
Convolutional Neural Network (CNN) model is 0.945, 0.947, and
0.948, and the accuracy of the Multilayer Perceptron (MLP) model
is 0.930, 0.937, and 0.953. According to the ROC results of the
three models (Figure 10), the AUC value of the Random Forest
model is 0.955, the AUC value of the CNN model is 0.940, and the
AUC value of the MLP model is 0.930. The test metrics of the three
models are very close, demonstrating good generalization ability and
accuracy of all threemodels, proving their reliability. Comparatively,
among the three models, the Random Forest model exhibits the
highest accuracy (0.957) and the highest AUC value (0.955).

(2) ROC Results

4.2 The effectiveness of model application
in early warning

As an example, let’s consider 5 August 2021, and apply themodel
input, model computation, and early warning strategy outlined in
Section 2.4. We’ll generate the risk warning levels for geological
disasters according to both the binary and multiclass warning
strategies. The results for the binary warning strategy are shown
in Figure 11, while the results for the multiclass warning strategy
are shown in Figure 12.

We’ll then collect and organize the actual landslide disaster
occurrences in the study area on 5 August 2021 (14 newly occurred
landslides). By mapping the coordinates of the actual landslide
points onto the warning result maps (Figures 11, 12), we’ll validate
the effectiveness of the model’s practical application.

From Figure 11 and Table 11, it is evident that in the results of
the binary warning strategy, among all 14 newly occurred landslide
points, 13 fall within the “Warning” level range of the Random
Forest (RF) model (Figure 11A), achieving a prediction hit rate of
92.9%; 13 newly occurred landslide points fall within the “Warning”
level range of the Convolutional Neural Network (CNN) model
(Figure 11B), with a prediction hit rate of 92.9%; and 12 newly
occurred landslide points fall within the “Warning” level range of
the Multilayer Perceptron (MLP) model (Figure 11C), achieving a
prediction hit rate of 85.7%.

From Figure 13 and Table 11, in the results of the multiclass
warning strategy, the Random Forest model’s warning results
(Figure 12A) show that among all 14 newly occurred landslide
points, 13 (92.9%) fall within the Random Forest model’s warning
zone, with approximately half falling into the “YellowWarning” and
“Orange Warning” zones and no newly occurred landslide points
fall into the “Red Warning” zone. The CNN warning model results
(Figure 12B) indicate that among all 14 newly occurred landslide
points, 13 (92.9%) fall within the CNN model’s warning zone, with
no newly occurred landslide points falling into the “YellowWarning”
zone, and approximately 86% fall into the “Red Warning” zone. The
MLP warning model results (Figure 12C) show that among all 14
newly occurred landslide points, 12 (85.8%) fall within the MLP
model’s warning zone, with no newly occurred landslide points
falling into the “OrangeWarning” zone, and 71.4% fall into the “Red
Warning” zone.

Comparative analysis shows that the Random Forest warning
model not only performs excellently in accuracy but also exhibits

outstanding performance in multi-level hierarchical warning. The
warning zones of different levels are distributed more evenly,
indicating that the Random Forest model is more suitable for multi-
level warnings. The CNN and MLP warning models demonstrate
good accuracy, but they perform inadequately in hierarchical
warning, with their output results tending toward the two extremes
of 0 and 1. Consequently, the majority of the warning zones in the
output results of these two models are in the “Red Warning” zone,
indicating their limitations in hierarchical warning applications.

4.3 Analysis of results

In the model training and evaluation phase, we employed three
machine learning algorithms: Random Forest (RF), Multi-Layer
Perceptron (MLP), and Convolutional Neural Network (CNN) for
learning, training, and validating the landslide disaster warning
models. The dataset was divided into training and testing sets in
a 4:1 ratio, and a Bayesian optimization algorithm was used to
optimize the model’s hyperparameters. The reliability of the models
was thoroughly tested on the testing set using confusion matrices
and ROC curves. Evaluation results showed that the accuracy of the
warning model based on the Random Forest algorithm ranged from
0.930 to 0.957, with an AUC value of 0.955; for the Convolutional
Neural Network-based warning model, the accuracy ranged from
0.945 to 0.948, with an AUC value of 0.940; and for the Multi-Layer
Perceptron-based warning model, the accuracy ranged from 0.930
to 0.953, with an AUC value of 0.930. The results indicate that the
accuracy of the three models’ testing metrics is comparable, but the
Random Forest algorithm demonstrates a clear advantage in terms
of AUC value. All three models exhibit good generalization ability
and precision. In terms of model application, methods for obtaining
and importing input feature parameters in practical warning
scenarios are proposed. Two standardized warning model output
feature strategies are suggested: binary classification warning and
multi-classification warning. In the binary classification warning
strategy, a threshold of 50% is used for the output probability,
dividing the warning results into “no warning” and “warning”
categories. In the multi-classification warning strategy, thresholds
of 40%, 60%, and 80% are utilized, categorizing the warning results
into “no warning,” “yellow warning,” “orange warning,” and “red
warning” classes. Taking thewidespread landslide disasters triggered
by heavy rainfall in Fujian Province, China on 5 August 2021,
as an example, the practical application of the models in real
scenarios was demonstrated. Results revealed that using the binary
classification warning strategy, out of the 14 landslide disasters
that occurred on 5 August 2021, 13 landslides (accounting for
92.9% of the total) fell within the “warning” areas predicted by the
Random Forest and Convolutional Neural Network (CNN) warning
models, while 12 landslides (85.7% of the total) fell within the
“warning” areas predicted by the Multi-Layer Perceptron (MLP)
warning model. This demonstrates the excellent performance of the
three warning models in the binary classification warning strategy.
When employing the multi-classification warning strategy, within
the output results of the Random Forest warning model, seven
landslides (50.0% of the total) fell into the “yellow warning” zone,
six landslides (42.9% of the total) fell into the “orange warning”
zone, and one landslide (7.1% of the total) fell into the “no warning”

Frontiers in Earth Science 15 frontiersin.org

https://doi.org/10.3389/feart.2024.1419421
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2024.1419421

TABLE 10 Confusion matrix results of three warning models.

Threshold Actual value

Landslide Non-landslide

RF Model

0.25
Predicted Value

Landslide 2,581 255 Ture Positive Precision:0.910

Non-Landslide 312 10,124 Ture Negative Precision:0.970

Recall Rate:0.892 Specificity:0.975 Precision:0.957

0.5
Predicted Value

Landslide 2,267 29 Ture Positive Precision:0.987

Non-Landslide 626 10,350 Ture Negative Precision:0.943

Recall Rate:0.784 Specificity:0.997 Precision:0.953

0.75
Predicted Value

Landslide 1972 4 Ture Positive Precision:0.998

Non-Landslide 921 10,375 Ture Negative Precision:0.918

Recall Rate:0.682 Specificity:1.0 Precision:0.930

CNNModel

0.25
Predicted Value

Landslide 573 57 Ture Positive Precision:0.910

Non-Landslide 115 2,373 Ture Negative Precision:0.954

Recall Rate:0.833 Specificity:0.977 Precision:0.945

0.5
Predicted Value

Landslide 565 40 Ture Positive Precision:0.934

Non-Landslide 123 2,390 Ture Negative Precision:0.951

Recall Rate:0.821 Specificity:0.984 Precision:0.948

0.75
Predicted Value

Landslide 554 30 Ture Positive Precision:0.949

Non-Landslide 134 2,400 Ture Negative Precision:0.947

Recall Rate:0.805 Specificity:0.988 Precision:0.947

MLP Model

0.25
Predicted Value

Landslide 556 71 Ture Positive Precision:0.887

Non-Landslide 124 2,367 Ture Negative Precision:0.950

Recall Rate:0.818 Specificity:0.971 Precision:0.937

0.5
Predicted Value

Landslide 547 54 Ture Positive Precision:0.987

Non-Landslide 133 2,384 Ture Negative Precision:0.943

Recall Rate:0.784 Specificity:0.997 Precision:0.953

0.75
Predicted Value

Landslide 540 45 Ture Positive Precision:0.998

Non-Landslide 140 2,393 Ture Negative Precision:0.918

Recall Rate:0.682 Specificity:1.0 Precision:0.930

zone. In the output results of the CNNwarning model, 12 landslides
(85.8% of the total) fell into the “red warning” zone, one landslide
(7.1% of the total) fell into the “orange warning” zone, and one
landslide (7.1% of the total) fell into the “no warning” zone. In the
output results of the MLP warning model, 10 landslides (71.4% of

the total) fell into the “red warning” zone, two landslides (14.3%
of the total) fell into the “orange warning” zone, and two landslide
(14.3% of the total) fell into the “no warning” zone. Comparative
analysis indicates that the Random Forest warning model not
only demonstrates excellent accuracy but also performs remarkably
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FIGURE 10
ROC Curve Results (A): RF Model; (B) CNN Model; (C) MLP Model).

FIGURE 11
Verification Results of Binary Warning Strategy Instance (A): RF Warning Model; (B) CNN Warning Model; (C) MLP Warning Model).

well in multi-classification hierarchical warning. The CNN and
MLP warning models exhibit good accuracy in warning but show
limitations in hierarchical warning effectiveness.

5 Discussion

This study uses three machine learning algorithms—Random
Forest (RF), Multi-Layer Perceptron (MLP), and Convolutional
Neural Network (CNN)—to provide a broader assessment of
model performance. The use of multiple algorithms allows for
a comparison of different methods, identifying their respective
strengths and weaknesses. Previous research typically focused on
a single algorithm, limiting the scope of comparative analysis
(Hastie et al., 2009). Implementing both binary and multiclass
classification strategies enhances the versatility and applicability of
the warning models. By categorizing warning results into different
risk levels, stakeholders can better prioritize and manage resources.
This dual-strategy approach is relatively unique and adds depth to
the predictive capability of the models (Breiman, 2001). The models
demonstrated strong generalization ability and high accuracy during

the testing phase, particularly the Random Forest algorithm, which
achieved the highest AUC value. This robustness is crucial for the
practical application of landslide prediction, where model reliability
is key (Zhou et al., 2020). Previous research on landslide warning
models often used single algorithms and simple classification
strategies. For example, studies by Dou et al. (2020) and Hong
et al. (2016b) mainly used logistic regression and support vector
machines, focusing on binary classification. This study employs
multiple algorithms and classification strategies, providing a more
detailed and comprehensive analysis. It demonstrates the relative
advantages of differentmethods in various contexts. Liu et al. (2022)
conducted a study on landslide disaster early-warning models using
six machine learning algorithms. Among them, the Random Forest
model performed the best, with the highest generalization ability
(AUC = 0.955) and no overfitting. The Artificial Neural Network
model followed with an AUC of 0.935, then the Nearest Neighbor
model, Logistic Regression model, and Support Vector Machine
model with AUCs of 0.924, 0.922, and 0.920, respectively. The
Decision Tree performed the worst, with an AUC value of 0.904 and
an accuracy of 0.937. In comparison, the AUC values of the three
early-warning models in this paper are 0.955 for the Random Forest
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FIGURE 12
Multiclass Warning Strategy Validation Results (A): RF Warning Model; (B) CNN Warning Model; (C) MLP Warning Model).

TABLE 11 Comparison of the actual application effectiveness of three models in warning.

Model
Warning

Binary warning strategy results Multi-class warning strategy results

Warning
Level

Landslides
(occurrences)

Percentage
of

Landslides
(%)

Warning
Level

Landslides
(occurrences)

Percentage
of

Landslides
(%)

RF Model
Warning 13 92.9

Red Warning 0 0

Orange Warning 6 42.9

YellowWarning 7 50.0

NoWarning 1 7.1 NoWarning 1 7.1

CNNModel
Warning 13 92.9

Red Warning 12 85.8

Orange Warning 1 7.1

YellowWarning 0 0

NoWarning 1 7.2 NoWarning 1 7.1

MLP Model
Warning 12 85.7

Red Warning 10 71.4

Orange Warning 0 0

YellowWarning 2 14.3

NoWarning 2 14.3 NoWarning 2 14.3

algorithm, 0.940 for the Convolutional Neural Network-based
warning model, and 0.930 for the Multi-Layer Perceptron-based
warning model. The overall AUC value differences are relatively
small, and the values are higher, indicating that the early-warning
models established using these three algorithms are more stable.

The Random Forest algorithm typically yields excellent
predictive results, even when dealing with complex or high-
dimensional datasets. It can effectively handle large datasets and
exhibits good robustness towards missing data. Random Forest can

also fit nonlinear relationships in data quite well. However, it may
perform poorly when dealing with high-dimensional sparse data.
CNN excels in processing data with grid-like structures such as
images and speech because they can effectively capture local features.
Through mechanisms like weight sharing and local connections,
CNN reduces the number of parameters, thereby improving the
model’s training efficiency and generalization ability. However,
CNN may not perform well when dealing with sequential data
or non-grid structured data, as their architecture assumes input
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FIGURE 13
Schematic diagram of multilayer perceptron (MLP) model.

TABLE 12 The binary strategy and multiclass strategy.

Feature/Advantage-Disadvantage Binary strategy Multiclass strategy

Feature

Simple and intuitive, distinguishes only occurrence or
non-occurrence of disasters

Able to detail disaster types and levels, distinguishes
multiple disaster states

Easy to implement and understand Provides more detailed information on disaster states

Applicable to various scales and types of geological
disaster prediction

Adaptable to complex scenarios, such as multiple types
and levels of disasters

High prediction accuracy, provides detailed warning
strategiesAdvantage

High computational efficiency, direct decision-making

Able to more accurately reflect actual disaster
occurrence and development processes

Disadvantage

Information loss, relatively lower prediction accuracy
and comprehensiveness

High model complexity, requires more data and
computational resources

Unable to handle complex situations Greater implementation and understanding difficulty

data have a grid-like structure. CNN requires a large amount of data
for training to avoid overfitting issues. MLP can adapt to various
types of data, including structured and unstructured data. Their
model structure is relatively simple,making themeasy to understand
and implement. However, for high-dimensional or large-scale data,
MLP may not be efficient enough as they typically require a large
number of parameters to learn complex patterns. However, the
dataset established in this study features characteristics such as being
large and low-dimensional, making it suitable for the application
conditions of Random Forests, CNN, and MLP. This is also why
these three models perform well in predicting landslide outcomes.

Although the three models show small numerical differences
in validation metrics (such as AUC values and accuracy), these
minor differences can lead to significant differences in practical
applications. Specifically, we observed the following points:(1)
Geographical Distribution Differences: In practical applications,
different models show significant differences in the warning areas
on geographical distribution maps. Taking the landslide disasters
in Fujian Province on 5 August 2021, as an example, although the

RF and CNN models are very close in accuracy and AUC values,
they exhibit significant differences in the predicted warning areas.
The RF model tends to issue warnings in medium-risk areas, while
the CNNmodel issues more warnings in high-risk areas. (2)Reason
Analysis: This difference mainly stems from the sensitivity of the
models to input features. The RF model performs well in capturing
potential risk points due to its ability to handle highly nonlinear
relationships in the data. On the other hand, the CNN model
effectively captures spatial features through its convolutional layers,
leading to more accurate predictions in high-risk areas. (3)Impact
Analysis: These small differences in metrics can lead to significant
differences in practical applications. For example, the RF model
predicts more warnings in “yellow warning” and “orange warning”
areas, which is crucial for disaster prevention in medium-risk
regions. The high accuracy of the CNN model in “red warning”
areas means better preparedness in high-risk regions. The MLP
model also provides higherwarnings in some low-risk areas, offering
additional references for overall risk management. Through the
above analysis, we further illustrate that although the three models
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have small differences in validation metrics, these differences can
translate into significant differences in practical applications. This
part of the discussion not only highlights the applicability of the
models in different scenarios but also provides valuable insights for
practical disaster warning work.

The article employs two warning strategies. The binary
warning strategy categorizes the final warning level into two
classes: no warning and warning, corresponding to low and
high predicted geological disaster risks, respectively. The binary
classification strategy is simple and intuitive, well-suited for
scenarios requiring direct disaster prediction and emphasizing
rapid decision-making. Involving only two categories contributes
to high computational efficiency and straightforward decision-
making, facilitating swift responses to emergencies. The multiclass
warning strategy classifies the final warning level intomultiple levels:
no warning, yellow warning, orange warning, and red warning.
These graded warnings (red, orange, yellow) correspond to very
high, high, and relatively high risks of geological disasters. The
multiclassification strategy distinguishes between various types
or different levels of disaster states, providing more detailed and
refined predictive outcomes. This strategy is suitable for regions
and situations characterized by diverse types of disasters and
higher complexity. It enables more accurate predictions for each
potential disaster state and corresponding emergency response
measures, thereby enhancing disaster preparedness capabilities.The
advantages and disadvantages of these strategies are summarized in
the following Table 12.

The application of these models in practical landslide prediction
demonstrates their potential. However, limitations such as handling
high-dimensional data and the data requirements of CNNs need to
be addressed in future research. To further improve the robustness
and applicability of landslide warning models, future studies should
consider integrating hybrid models that combine the strengths
of various algorithms. Additionally, exploring advanced machine
learning techniques such as ensemble learning, transfer learning,
and unsupervised learning can enhance model performance.
Subsequent optimization of input features and validation of models
using more diverse datasets will also be beneficial.

6 Conclusion

This study presents a comprehensive approach to constructing
regional landslide warning models utilizing machine learning,
demonstrated within the context of Fujian Province, China. The
outlined four-step process includes data integration and cleaning,
construction of training sample sets,machine learningmodel training
and validation, and practical model application. Employing Random
Forest (RF), Convolutional Neural Network (CNN), and Multilayer
Perceptron(MLP)algorithms, theresearchshowcases theeffectiveness
of these models in predicting rainfall-induced landslides.

(1) The dataset utilized for model development comprises 15,589
samples, incorporating 10 geological environmental condition
factors and 16 rainfall-induced features. This diverse dataset
provides a robust foundation for training and testing themodels.

(2) The training and evaluation phase highlights the performance
of RF, CNN, and MLP algorithms, revealing comparable

accuracy metrics. The RF algorithm notably excels with a
higher AUC value, indicating superior predictive capability.

(3) In practical model application, two standardized warning
strategies are proposed: binary classification and multi-
classification. The binary classification strategy distinguishes
between “no warning” and “warning” categories based on a
50% threshold, while the multi-classification strategy offers
nuanced warnings, dividing predictions into “no warning,”
“yellow warning,” “orange warning,” and “red warning” classes
using varying thresholds.

(4) Real-world application of the models during the 5 August
2021 landslide disasters in Fujian Province demonstrates
their efficacy. In the binary classification strategy, the models
successfully predicted the majority of landslide occurrences.
In the multi-classification approach, the RF model exhibits
superior hierarchical warning effectiveness compared to CNN
and MLP models.

In summary, this research significantly contributes to advancing
landslide disaster warning models by providing insights into
model construction, evaluation, and practical application. Further
refinement and validation of these models are anticipated through
continued data accumulation and real-world verification.

The paper only conducts statistical analysis on the relationship
between various factors and landslide occurrences, lacking sufficient
insight into the mechanism and causes of landslides. In the future,
it is necessary to employ more rational and complex nonlinear
methods for research. Although the sample set used in this study
achieves a balance between positive and negative samples through
the SMOTE algorithm, the generated synthetic samples are obtained
through linear interpolation, which may introduce errors compared
to the actual local conditions. Therefore, in future sample dataset
construction, it is essential to select positive and negative samples
proportionally. The warning methods studied in the paper have
implications for broader application. Currently, they are only used
in Fujian Province, but they could be applied to other regions in the
future. By collecting different disaster-causing factors to construct
sample sets, a regional geological disaster meteorological warning
model could be developed, thus further verifying its applicability.
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