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Fine-grained classification of tree species by using high-spectral image data
has garnered considerable attention from scholars. In this study, through field
measurements from Maguan County, Wenshan Prefecture, Yunnan Province,
China, high-spectral image data from the Chinese Resource-1 02D satellite
were used as the data source. Various analyses were conducted on the
original image’s spectral curve, the spectral curve after envelope removal,
the spectral curve after first-order differential transformation, and the spectral
curve after second-order differential transformation. A spectral angle mapping
classification method was employed to classify and identify four dominant
tree species in Maguan County, and the accuracy of the classification results
was validated using a confusion matrix. Results indicate that the highest
accuracy in tree species classification was achieved when first-order differential
transformation and envelope removal were used for the spectral curve; the
overall accuracy exceeded 95%, and the kappa value was approximately 0.95.
The classification results for the spectral curve after second-order differential
transformation were the lowest, with an overall accuracy of 81.69% and a kappa
value of 0.76. This research demonstrates that applying first-order differential
transformation or envelope removal in combinationwith spectral anglemapping
classification considerably reduces data processing time and improves tree
species classification accuracy.

KEYWORDS

hyperspectral imaging, tree species identification, spectral curve, spectral angle
classification, confusion matrix

1 Introduction

Forest ecosystems are essential components of the earth’s ecosystems. They provide
suitable living spaces for flora and fauna while playing a crucial role in environmental
protection (Evans, 1939), climate (Herawati and Santoso, 2011) regulation (Thompson et al.,
2009), soil and water conservation (Molchanov, 1963), windbreak and sand fixation
(Rong et al., 2022), and ecological improvement (Sayer et al., 2004) In recent years,
ecological issues (Sovacool, 2014; Liu et al., 2018), such as greenhouse gas emissions, soil
erosion, soil degradation, loss of biodiversity, and decreasing water resources, have become
increasingly prominent because of forest degradation.Therefore, conducting forest resource
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inventory to comprehensively and accurately assess the quantity and
quality of forest resources has become an indispensable task for
governments, forestry departments, and forest management units.
This task supports ecological conservation, sustainable forestry
development, and modern forest management.

Traditional methods of forest inventory primarily rely on
manual surveys, which are characterized by high labor intensity;
substantial workload; low efficiency; and high time, labor, and
financial costs. Moreover, the complexity of the geographical
environment poses risks to survey personnel. As a result, the
use of remote sensing technology for forest resource inventory
has gradually become a research focus for domestic and
international scholars (Leckie, 1990; Boyd and Danson, 2005)
Remote sensing images have also become a vital data source in
forest resource identification and monitoring (Lei et al., 2016;
Pasquarella et al., 2018).

Identifying the types, distribution, and quantity of trees is
a crucial aspect of forest resource inventory, and the use of
remote sensing imagery for tree species classification has elicited
widespread attention from scholars. In early studies, multispectral
imagery was an important data source in tree species classification
(Zhong et al., 2021). However, its spectral resolution is limited,
so accurately differentiating tree species with a similar spectral
reflectance is difficult. Typically, only two broad categories, namely,
coniferous and broadleaf forests, can be distinguished (Yu, 2013).
Hyperspectral imagery presents a new opportunity for fine-grained
tree species classification (Zhang et al., 2018), and the use of
valuable information within hyperspectral data for precise tree
species classification has become a popular research direction
(Wang, 2011). Scholars have conducted various studies in this
area. For example, Gong et al. used artificial neural networks
and successfully classified one broadleaf and six coniferous
tree species with an accuracy of up to 90% (Gong et al., 1998).
Martin M E et al. combined hyperspectral data to classify 11 tree
species on the basis of spectral characteristics and leaf features
(Martin et al., 1998). Kumar et al. used 11 sets of leaf spectral
reflectance data to differentiate tree species and demonstrated the
enhanced distinctiveness of the spectral feature curves after first-
order differential transformation (Kumar et al., 2010). In addition,
Goodenough et al. classified five forest tree species in Victoria,
Canada, by using hyperspectral data and obtained high accuracy
of up to 92.9% (Goodenough et al., 2002). Gong Peng et al. used
data obtained from a spectrometer to identify six tree species types
(Gong et al., 1997). Ding Lixia et al. utilized an envelope removal
method and Euclidean distance to identify four tree species and
achieved promising results (Ding et al., 2010). Moreover, Wang Lu
et al. used HJ-2A hyperspectral imagery to recognize dominant
tree species in the Tahe region of Greater Khingan Mountains
and achieved the highest accuracy in tree species classification
after applying second-order differential transformation to the
imagery (Wang and Fan, 2015). Despite these advancements,
challenges remain in tree species classification. Machine-based
classification methods often require high-quality imagery and
are time consuming, leading to reduced classification accuracy.
Meanwhile, spectral feature-based methods can be influenced
by the spectral signatures of other land cover types, resulting
in low classification accuracy and quality. This study combined
differential transformation and spectral angle classification

methods to enhance the accuracy and general applicability of tree
species classification.

This study, which was based on forest inventory field
measurements in Maguan County, Wenshan Zhuang and Miao
Autonomous Prefecture, Yunnan Province, China, and used high-
spectral-resolution remote sensing imagery from the Resource-1
02D satellite, focused on four dominant tree species in Maguan
County (Pinus yunnanensis, Alder, Quercus, and China fir).
It employed a combination of differential transformation and
spectral angle classification methods to develop an efficient,
accurate approach for dimensionality reduction and fine-grained
classification of tree species by using high-spectral-resolution
remote sensing imagery. The study’s findings offer a new, effective
method of utilizing spaceborne high-spectral-resolution remote
sensing imagery data in forest resource classification and inventory
work. This method provides a novel approach and solution and
offers reliable data support for forest resource conservation and
scientific management.

2 Research area and data

2.1 Study area

Maguan County is located in the southwestern part of Wenshan
Zhuang and Miao Autonomous Prefecture, Yunnan Province,
China. Its geographical coordinates range from approximately
22°42′to 23°15′north latitude and 103°52′to 104°39′east longitude.
It is situated in the southeastern part of Yunnan Province on a low-
latitude plateau and is characterized by typical karst topography,
as depicted in Figure 1. Maguan County has a diverse and
complex terrain, with elevations ranging from a minimum of
123 m to a maximum of 2,579 m above sea level. Consequently,
the vertical variation in climate is much more pronounced than
the horizontal variation. The region experiences an annual average
temperature of 16.9°C, with July being the hottest month (average
of 21.7°C) and January being the coldest (average of 9.7°C). The
area receives an annual average rainfall of 1,345 mm, enjoys an
average of 1,804 h of annual sunlight, and has a frost-free period
averaging 327 days, indicating that the area has a subtropical eastern
monsoon climate. Maguan County is rich in forestry resources
and has high biodiversity, and its forest coverage rate is 56.7%.
The county encompasses a total forested area of 163,160 ha, with
a total live wood volume of 7.95 million m3. It is primarily
home to subtropical evergreen broadleaf forests, mixed coniferous
and broadleaf forests, and plantations of tung oil, tea oil, tea,
and lacquer trees. This study focused on four dominant tree
species in Maguan County, namely, P. yunnanensis, Alder, Quercus,
and China fir.

2.2 Data

The fundamental data used in this study are outlined in Table 1.
The data primarily include the following.

(1) Resource-1 02D Hyperspectral Image Data: These data have
three images in total, that is, two from 10 November 2020, and
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FIGURE 1
Regional map of the study area.

TABLE 1 Basic data of the study area.

Data name Data sources Main purpose

Resource 1 02D hyperspectral image data https://data.cresda.cn/#/home Used for tree species classification

Administrative boundary of Maguan County http://datav.aliyun.com/portal/school/atlas/area_selector Produce regional administrative boundary maps

DEM elevation NASA EARTHDATA Produce a topographic thematic map of Maguan County

Landsat8 OLI imaging https://www.gscloud.cn/search Geometric correction of hyperspectral data by using
thematic maps of the terrain in Maguan County

Lin Ban’s field investigations Forestry Bureau of Maguan County Spectral characteristic curves for collecting major tree
species

one from 6 March 2021, and cover the entire Maguan County
region.

(2) Maguan County Administrative Boundary Data: These data
provide information on the administrative boundaries of
Maguan County.

(3) Digital Elevation Model (DEM) Data: These data offer
elevation information on the study area.

(4) Landsat 8 Operational Land Imager (OLI) Data:These data are
utilized for various analyses.

(5) Forest Stand Data from Field Surveys: These are obtained
from the Maguan County Forestry Bureau and include
a total of 8,510 forest stands for the four tree species.
Specifically, the data contain 618 P. yunnanensis stands, 1,546
China fir stands, 4,135 Alder stands, and 2,211 Quercus
stands.

3 Research methods

The overall technical approach used in this study is depicted
in Figure 2, and the primary research methods are described in the
following subsections.

3.1 Data preprocessing

Hyperspectral data are characterized by numerous spectral
bands; they contain a wealth of information and often have
high data redundancy. Therefore, hyperspectral data need to be
preprocessed. The main steps involve the removal of redundant
bands, radiometric correction, atmospheric correction, and
geometric correction.
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FIGURE 2
Technical roadmap.

TABLE 2 Excluded bands of Resource-1 02D satellite.

Bands Reason Range/nm

VN: 72–76 Fusion bands 1,005–1,040

SW: 22–27

Water vapor-affected bands

1,357–1,442

SW: 48–59 1,795–1,980

SW: 82–83 2,366–2,384

SW: 88–90 Low signal-to-noise ratio bands 2,467–2,501

The preprocessing procedure in this study began by loading
the hyperspectral image via Envi software. Then, the spectral
characteristic curves of each band were exported from the
image. Subsequently, in Excel, specific bands were removed from
the Resource-1 02D hyperspectral image. These excluded bands
included fusion bands, water vapor-affected bands, and bands with
low signal-to-noise ratios (Table 2). Only the necessary bands for the
study were retained, and these included visible and near-infrared
(VN) bands 1–71 (395–996 nm), shortwave infrared (SW) bands
1–21 (1,005–1,341 nm), bands 28–47 (1,459–1,778 nm), bands
60–81 (1,997–2,350 nm), and bands 84–87 (2,400–2,450 nm).

Next, the Resource-1 02D hyperspectral image was subjected
to radiometric calibration and atmospheric correction by using
the FLAASH atmospheric correction tool in ENVI software. This
process eliminated atmospheric aerosols and other substances
that could affect image quality, allowing the image to reflect the
true surface reflectance. Figure 3 shows the vegetation spectral
reflectance curve before atmospheric correction, and Figure 4
displays the vegetation spectral reflectance curve after atmospheric
correction. Afterward, the Resource-1 02D hyperspectral image was
geometrically corrected using Landsat 8 OLI imagery as a reference
to ensure that the image’s errors were less than 0.5 pixels.

3.2 Spectral transformation

Applying differential transformation to hyperspectral data can
effectively enhance image quality, reduce the influence of the
background on vegetation spectral information, improve the signal-
to-noise ratio, and further eliminate the effects of atmospheric
interference during transformation. Differential transformation
allows for a highly accurate representation of the biological
composition information of different vegetation types (Shu et al.,
2016). This study focused on three transformation methods:
first-order differential transformation, second-order differential
transformation, and envelope removal.
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FIGURE 3
Spectral reflectance curve of vegetation before calibration.

FIGURE 4
Corrected vegetation spectral reflectance curve.

3.2.1 Spectral first-order differential
transformation

Spectral first-order differential transformation involves taking
the first derivative of the original remote sensing image data
(Gu et al., 2019; Shen, 2022). After this transformation, the image
data are less affected by atmospheric radiation, scattering, and
atmospheric absorption, enabling the spectral curves to reveal
subtle differences between land cover types (Sun et al., 2019). The
calculation for spectral first-order differential transformation is
given as Eq. 1

FDRλt =
dR
dλ
=

Rλt+1 −Rλt

Δλ
(1)

where λt represents the wavelength of the t‐th spectral band; FDRλt
is the spectral first-order differential value between the t‐th and t+1-
th spectral bands; Rλt and Rλt+1 are the original spectral reflectance

values for the t‐th and t+1-th spectral bands, respectively; and Δλ is
generally set to 1.

3.2.2 Spectral second-order differential
transformation

Second-order differential transformation involves taking the
second derivative of the original remote sensing image data
(Yang et al., 2021; Ma et al., 2023). After this transformation, the
image data can further amplify differences between different land
cover types, thus aiding in identifying sensitive spectral bands
(Liu, 2021). The calculation for spectral second-order differential
transformation is given as Eq. 2

SDRλt =
d2R
dλ2 =

d
dλ
(dR

dλ
) =

Rλt+2 + 2Rλt+1 +Rλt

(Δλ2)
(2)

where λt represents the wavelength of the t‐th spectral band; FDRλt
is the spectral second-order differential value between the t‐th and
t+2-th spectral bands; Rλt and Rλt+1 and Rλt+2 are the original
spectral reflectance values for the t‐th, t+1-th, and t+2-th spectral
bands, respectively; and Δλ is generally set to 1.

3.2.3 Envelope line division method
The envelope removal method, also known as the continuum

subtraction method (Kokaly and Clark, 1999; Ren et al., 2020),
is effective in enhancing the absorption, reflection, and emission
characteristics of spectral curves. It normalizes the spectral
curves to a consistent spectral background, facilitating the
comparison of characteristic values between different spectral
curves. The reflectance values after envelope removal are
normalized to a range between 0 and 1 (Roush and Clark,
1984), with the peak point being one and the other points
being less than 1. The final result is the continuum-removed
data (Meng et al., 2020). The calculation for envelope removal is
presented as Eq. 3

RCk
=

Rk

Rcrk
(3)

where RCk represents the continuum-removed value for the k‐th
spectral band, Rk is the original spectral reflectance for the k‐th
spectral band, and RCrk represents the continuum for the k‐th
spectral band (Xie et al., 2005).

3.3 Spectral angle mapping method

Spectral angle mapping (SAM) (Xu et al., 2013; Yu et al., 2016)
was introduced by Kruse et al., in 1993 (Kruse et al., 1993). The
principle behind using this method in land cover classification is
to treat the spectral signature of each pixel in an image as a high-
dimensional vector. It measures the spectral similarity between
two vectors by calculating the angle between them. A small angle
indicates high spectral similarity and a high likelihood that the
pixels belong to the same land cover class (Petropoulos et al., 2013;
Zhang and Li, 2014) Therefore, unknown data can be categorized
based on the size of the spectral angle. In this study, for tree species
classification, the spectral angle between unknown and known
data was computed, and the unknown data were assigned to the
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FIGURE 5
Original spectral characteristic curves of the four vegetation types.

FIGURE 6
Vegetation curve obtained through first-order differential
transformation.

class corresponding to the smallest spectral angle. The calculation
formula for SAM is Eq. 4

cos α =
n

∑
i=1
(xi ⋅ yi)/(√

n

∑
i=1

xi2 ⋅ √
n

∑
i=1

yi2) (4)

where n is the number of spectral bands, xi and yi represent the
response values of the two spectral vectors in the i‐th band, and α
is the spectral angle whose range of variation is [0, π/2]. The values
of the pixels in the spectral angle image can also be expressed using
cos(α), which has a variation range of [0, 1].

3.4 Accuracy verification

The Confusion Matrix, also known as the Error Matrix,
can accurately reflect the classification results and ground truth
information, and reflect the final classification accuracy in a

FIGURE 7
Vegetation curve obtained through second-order differential
transformation.

FIGURE 8
Vegetation curve after envelope removal.

TABLE 3 Spectral bands with significant differences.

Spectral category Significant difference
band/nm

Original spectrum 395–516, 662–682, 774–794, 825–845,
851–872, 937–957, 1,055–1,075,

1,139–1,159, 1,173–1,193, 1,245–1,265,
1,459–1,479, 1,644–1,664, 1,650–1,670,

2,199–2,219

First-order differential spectrum 500–520, 516–536, 559–579, 557–577,
712–732, 995–1,115, 1,129–1,149,

1,482–1,502, 1701–1721, 2021–2041

Second-order differential spectrum 547–567, 670–690, 687–707,
1,129–1,149, 1,146–1,166

De-enveloped spectrum 480–500, 532–552, 1,180–1,200,
1,667–1,687
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FIGURE 9
Original image classification results.

Confusion Matrix. Each column of the confusion matrix represents
a ground truth classification, and the value in each column is
equal to the number of ground truth pixels corresponding to the
corresponding category in the classification image. There are two
types of pixel count and percentage representation. By calculating
the confusion matrix, two indicators, Overall Accuracy and Kappa
coefficient, can be obtained, and the research results can be validated
by combining them.

The overall classification accuracy is equal to the correctly
classified pixels Eq. (5). The number of correctly classified pixels
is distributed along the diagonal of the confusion matrix, and the
total number of pixels is equal to the total number of pixels of all
real reference sources.The overall classification accuracy calculation
formula (5) is shown.

OA =
pixeltrue
pixelall

(5)

In Eq. 5, it represents the overall classification accuracy, is the
correct number of pixels for classification, is the total number
of pixels.

Kappa coefficient: It is the sum of the total number of real
reference pixels N) multiplied by the diagonal of the confusion
matrix (XKK), subtracted by the product of the number of real
reference pixels in a certain class and the total number of classified

pixels in that class, and then divided by the square of the total
number of pixels and subtracted by the product of the total number
of real reference pixels in a certain class and the total number
of classified pixels in that class to sum all categories Eq. (6). The
calculation formula is as follows.

K =
N∑X

k
−∑X

k
k∑X∑k

N2 −∑X
k
k∑X∑k

(6)

4 Analysis of spectral characteristic
curve transformation results

4.1 Original spectral characteristic curve

The original spectral characteristic curves for the four
tree species in the study area (Quercus, Alder, China fir,
and P. yunnanensis) obtained after sampling from the
preprocessed Resource-1 02D hyperspectral image data are shown
in Figure 5.

Figure 5 indicates that all four tree species exhibited typical
vegetation spectral characteristics, with spectral reflectance
increasing then decreasing with the wavelength. Within the
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FIGURE 10
Classification results of de-enveloping lines.

wavelength range of 395–996nm, the spectral curves of China fir
and Alder overlapped in the range of 775–988 nm. All four tree
species showed a reflection peak around 550 nm, with reflectance
decreasing between 550 and 679 nm. In this range, distinguishing
between China fir and Alder was difficult because their spectral
curves overlapped. In the range of 775–988 nm, spectral reflectance
of the four tree species was in the order of P. yunnanensis >
Quercus > Alder > China fir, indicating distinct differences
in reflectance among the four. These differences are favorable
for classification. In the range of 1,005–1,173 nm, the spectral
reflectance of the four tree species differed considerably, and at
1,072 nm, reflectance reached its maximum value, which was also
beneficial for species classification.Within the ranges of 1,459–1,778
and 1,997–2,450 nm, substantial differences in spectral reflectance
were observed among the four tree species, which also facilitated tree
species classification.

4.2 Spectral characteristic curves after
first-order differential transformation

The spectral curve characteristics of vegetation are amplified
after first-order differential transformation. The spectral

characteristic curves of Quercus, Alder, China fir, and P.
yunnanensis are shown in Figure 6.

Figure 6 indicates that the spectral characteristic curves of the
four tree species exhibited considerable differences. Within the
range of 395–413 nm, the curves showed a decreasing trend, but
the first-order differential curves of Quercus and P. yunnanensis
overlapped and could not be distinguished. In the range of
413–499 nm, the spectral characteristic curves of the four tree
species completely overlapped, making them indistinguishable.
Within the range of 499–550 nm, the first-order differentials for
the four tree species were positive, indicating a positive correlation
between their spectral reflectance and wavelength. Additionally, all
four tree species exhibited a reflectance peak at 524 nm. Within
the range of 559–679 nm, the first-order differential values were
negative, and the frequency and amplitude were similar, suggesting
a negative correlation between spectral reflectance and wavelength.
However, the first-order differential values were ineffective in
distinguishing tree species in this range because of their high
overlap degree. Within the range of 687–765 nm, the first-order
differential values of the four tree species were in the order of P.
yunnanensis > Quercus > China fir > Alder. At 730 nm, all four
tree species exhibited a maximum first-order differential reflectance
peak, and the differences were substantial. Therefore, 730 nm can
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FIGURE 11
First-order differential transformation classification results.

serve as a feature band for classifying tree species. Another sensitive
range was the reflectance peak from 1,475 to 1,644 nm, with
the peak located at 1,526 nm. Within this range, the first-order
differential values of the four tree species were in the order of P.
yunnanensis > Quercus > China fir > Alder, making this range
a sensitive band that can be used for differentiation. Moreover, a
sensitive band region was found in the range of 1,660–1,750 nm,
where a negative peak appeared. The spectral first-order differential
values of the four tree species in this range were in the order of
Alder > China fir > Quercus > P. yunnanensis. A negative peak
was observed at 1,711nm, which can be used as a distinguishing
feature band.

4.3 Spectral characteristic curves after
second-order differential transformation

The spectral characteristic curves of Quercus, Alder, China fir,
and P. yunnanensis after second-order differential transformation
are shown in Figure 7.

Figure 7 reveals considerable differences in the regions between
524–567 and 622–722 nm. In the range of 524–567 nm, a second-
order differential negative peak centered at 550 nm was found, with
the second-order differential spectral values ranking in the order

of China fir > Alder > P. yunnanensis > Quercus. In the range of
622–722 nm, a second-order differential reflectance peak centered
at 696 nm was observed, with the second-order differential spectral
values ranking in the order of Quercus > P. yunnanensis > Alder
> China fir. The two ranges were effective in distinguishing the
four tree species. In the ranges of 928–954 and 1,105–1,173 nm,
substantial fluctuation was observed in the second-order differential
values of the four bands, which can serve as feature bands for
distinguishing the four tree species. Within the 928–954 nm range,
the second-order differential value of Quercus was considerably
different from the values of the three other species. Alder, China
fir, and P. yunnanensis had similar second-order differential values.
In the 1,105–1,173 nm range, the reflectance of Quercus peaked at
1,139 nm, and the reflectance of Alder, China fir, and P. yunnanensis
peaked at 1,156 nm.

4.4 Spectral characteristic curve after
envelope removal

The spectral characteristic curves of Quercus, Alder, China fir,
and P. yunnanensis after envelope removal are shown in Figure 8.

Figure 8 shows considerable differences in the spectral
characteristic curves of the four tree species. At 500 nm, a
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FIGURE 12
Classification results of second-order differential transformation.

TABLE 4 Overall accuracy and kappa coefficient statistics.

Category Overall
accuracy/%

Kappa
coefficient

Original image
spectrum

88.71 0.85

Envelope removal
method

95.59 0.94

First-order differential
spectrum

97.18 0.96

Second-order
differential spectrum

81.69 0.76

pronounced absorption valley was found, and reflectance was in the
order of Quercus > Alder > China fir > P. yunnanensis. At 550 nm,
a clear absorption peak was observed, and reflectance was in the
order of Quercus > China fir > Alder > P. yunnanensis. At 1,660 nm,
a distinct absorption peak was found, and reflectance was in the
order of Quercus > Alder > P. yunnanensis > China fir. The three
wavelengths were effective for distinguishing the four tree species.

In conclusion, after analyzing the curve feature differences in the
preprocessed original spectrum, first-order differential spectrum,

second-order differential spectrum, and the spectrum after envelope
removal, wavelengths were selected in units of 20 nm from the four
types of spectral curves, resulting in 14, 10, 5, and 4 wavelengths, as
shown in Table 3. The selected wavelengths were then used for tree
species classification.

5 Classification results and accuracy
evaluation

5.1 Classification results

The pixel spectral curves of the four tree species were analyzed
through a field investigation of 226 forest stands. The average
spectral curves were used as the spectral reference curves for each
tree species. The spectral angle mapping method was employed
to classify tree species in the Resource Satellite 02D imagery.
The classification results are shown in Figures 9–12. Figure 9
presents the classification results of the preprocessed original image,
Figure 11 displays the classification results after envelope removal,
Figure 11 shows the classification results after first-order differential
transformation, and Figure 12 illustrates the classification results
after second-order differential transformation.
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The analysis and comparison of the results revealed that the
classification results for the images processed with envelope removal
and first-order differential transformation were highly accurate.
The classification results for the preprocessed original image and
the images processed with second-order differential transformation
had low accuracy. The areas with misclassification were mainly the
planting areas of P. yunnanensis and China fir. Some China fir areas
were misclassified as P. yunnanensis areas, and a small portion of
China fir was misclassified as Quercus.

5.2 Precision evaluation

In this study, the accuracy of the classification results was
validated using a confusion matrix method (Gonzalez-Alonso et al.,
1997). Based on the distribution of tree species in the study area,
a total of 226 sampling points were set up, including 68 samples of
China fir, 51 samples of Oak, 68 samples of Alder, and 39 samples
of Pinus yunnanensis. A total of 288 pixels were obtained from
the validation sample points, including 69 for Pinus yunnanensis,
80 for Alder, 75 for Oak, and 64 for China fir. Overall accuracy
and the kappa coefficient were used to assess accuracy. Seventy-five
percent of the sample pixels were used for classification, and the
remaining 25% was used for accuracy validation. The results, which
are shown in Table 4, indicate that the classification result from the
image processed with second-order differential transformation had
the lowest overall accuracy (81.69%) among all the classification
results primarily because of the misclassification among P.
yunnanensis, China fir, and Quercus. The classification result
from the original image (overall accuracy of 88.71%) was slightly
higher than that from second-order differential transformation.
The accuracy of the classification results for the images processed
with envelope removal and first-order differential transformation
exceeded 95%, and these results closely matched the field
survey data.

6 Conclusion and discussion

6.1 Conclusion

This study adopted forestry field survey data forMaguanCounty
in Yunnan and Resource Sat-2 hyperspectral satellite imagery. It
also employed three methods, namely, first-order differentiation,
second-order differentiation, and envelope removal, to analyze
the spectral characteristics of four dominant tree species in
Maguan County. The SAM technique was applied for tree species
classification, and accuracy validation was conducted. According
to the experimental results, the imagery data processed with first-
order differentiation and envelope removal effectively enhanced
the differentiation between bands and improved the accuracy
of species classification. The original imagery and the imagery
processed with second-order differentiation had low classification
accuracy and showed instances of misclassification. The threshold
setting of the matching angle might have affected the spectral
classification or complexities in the land cover distribution within
mixed pixels and made it challenging to describe real-world
objects accurately, resulting in the aforementionedmisclassification.

Moreover, during the data preprocessing phase, the imagery
subjected to atmospheric correction showed that although the
spectral characteristics of the vegetation were corrected, the
reflectance values were low, which can lead to “same material,
different spectrum” or “same spectrum, different material” issues
(Zhang et al., 2006; Huang et al., 2022). These factors can also affect
classification accuracy.

In summary, using hyperspectral remote sensing data in tree
species classification is highly feasible. Methods, such as first-
order differentiation and envelope removal, effectively enhance the
spectral characteristics of vegetation. Additionally, the use of SAM
for classification considerably improves the accuracy of tree species
classification.

6.2 Discussion

Currently, hyperspectral data are a reliable data source for tree
species classification and can be applied to fine-scale tree species
classification in the field of remote sensing. However, previous
studies encountered challenges in balancing data processing speed,
quality, and accuracy. This research combined three methods,
namely, first-order differentiation, second-order differentiation, and
envelope removal, with SAM to achieve satisfactory classification
results for the study area. However, the study still has some
limitations. For instance, the selection of certain tree species
areas as the basis for generating average spectral feature curves
may lead to inaccuracies if other land cover types exist within
the selected regions. Future research should choose pure pixel
samples as much as possible and collect ground-truth spectral
data through field surveys to further validate the spectral feature
curves, thus reducing the influence of other land cover types on the
final results. Furthermore, this study focused on Maguan County.
Future research could apply the geographic third law to classify
and validate tree species with similar geographical environments
(Zhu et al., 2018).
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