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Liangshan Prefecture, located at the northeastern edge of the Hengduan
Mountain System and within the southern section of the Sichuan-Yunnan
tectonic belt in Sichuan Province, China, a region prone to landslides, collapses
and debris flows due to its active tectonics, complex topography and significant
river erosion. By analysing a dataset of environment factors and geological
hazard catalogue, the research uses the Relief algorithm to identify critical
influencing factors for each hazard type, selecting 10, 9 and 9 factors for
landslides, collapses and debris flows, respectively. Five models are used to
assess the vulnerability of these hazards: the Information Value model, the
Evidence Weight model, the Logistic Regression model, and both the Evidence
Weight-Logistic Regression and the Information Value-Logistic Regression
coupled models. The effectiveness of these models is confirmed by confusion
matrix and ROC curve analyses, with the combined models showing particularly
high accuracy in assessing susceptibility. High risk zones were identified in
specific areas and alongmajor fault zones in Liangshan Prefecture. The research
provides significant insights into the susceptibility of geological hazards in
mountainous and canyon regions, offering a comprehensive approach that
goes beyond the limitations of single model applications. This methodology
not only provides more accurate and comprehensive results, but also serves as
a fundamental reference for geological hazard mitigation and management in
Liangshan Prefecture, potentially benefiting similar regions worldwide.

KEYWORDS

landslide susceptibility zoning, utilizing evidence weight, logistic regression, geological
hazards, liangshan prefecture

1 Introduction

Geological hazards pose a major threat to human life, infrastructure and
the environment, especially in mountainous areas with complex geological and
environmental conditions. Evaluation models in geological disaster susceptibility
analysis can be divided into qualitative evaluation and quantitative evaluation.
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Current quantitative methods for landslide susceptibility analysis
include BP neural networks (Wang et al., 2005; Hongtao, 2020;
Huang et al., 2022), hierarchical analysis (Komac, 2006; Wu and
Chen, 2009), the information quantity method (Sarkar et al.,
2013; Tan et al., 2015; Du et al., 2017; Tsangaratos et al., 2017;
Wubalem andMeten, 2020; He et al., 2023; Nie et al., 2023), coupled
models (Zhao et al., 2017; Arabameri et al., 2019; Luguang et al.,
2021; Wang et al., 2023), MaxEnt models (Liu et al., 2022),
Evidence Weight model (Lee and Choi, 2004; Ilia and Tsangaratos,
2016), and various machine (Kadavi et al., 2018) and deep
learning models (Bui et al., 2020). Each method, however, has its
limitations. For instance, the right-of-evidence model overlooks the
interplay between factors, while the information quantity method
acknowledges the contribution of individual factors but neglects
their interrelations. Consequently, scholars globally engage in
comparative research using diverse methodologies to address these
analytical gaps (Lombardo et al., 2015; Wang et al., 2016; Nhu et al.,
2022; Conforti et al., 2023).

This study focuses on Liangshan Prefecture in Sichuan Province,
employing an integrative approach that combines detailed field
investigations of geological hazardswith a comprehensive analysis of
the causative geological conditions and development characteristics
of these hazards. The research primarily addresses the susceptibility
of landslides, collapses, and debris flows within the region.
Utilizing the collinearity method and the Relief algorithm, the
study investigates the interrelation and contribution of various
influencing factors. For the assessment of landslides, collapses,
and debris flows, 10, 9, and 9 evaluative factors are respectively
selected. The methodology incorporates five distinct evaluation
models: the Information Volume Model, the Evidence Weight
Model, the Logistic Regression Model, and two coupling models -
the Evidence Weight-Logistic Regression Coupling Model and the
Information Volume-Logistic Regression Coupling Model. These
models facilitate a comparative analysis of the susceptibility and
accuracy of the three types of geological hazards. The findings of
this study not only offer a foundational reference for the mitigation
andmanagement of geological disasters in Liangshan Prefecture but
also contribute valuable insights for susceptibility assessments of
geological hazards in regions characterized by high mountain and
canyon topographies.

2 Study area

Liangshan Yi Autonomous Prefecture, situated in the
southwestern sector of Sichuan Province, encompasses an extensive
area of approximately 60,400 square kilometers. Xichang City serves
as its administrative center, with the prefecture governing two
county-level cities and fifteen counties. Geotectonically, Liangshan
is strategically positioned at the juncture of several significant
geological features: it lies on the western fringe of the Yangtze
Paleocontinent Block and the eastern boundary of the Tibetan
Plateau. This location is also at the confluence of the Kang-Yunnan
fault zone and the southern segment of the Sichuan-Yunnan tectonic
belt, making it a region of pronounced tectonic evolution. Liangshan
is centrally situatedwithinChina’s north-south seismic belt,marking
it as a zone of heightened tectonic and seismic activity. This is
exemplified by the peak ground acceleration depicted in Figure 1A.

The geological structure within the study area is notably
complex and diverse. Based on the distinct physical and mechanical
properties of various geotechnical entities, the region’s engineering
geological rock formations have been classified into five categories:
clayey soil and gravelly soil, clastic rock, carbonate rock,
metamorphic rock, and magmatic rock.This classification is further
illustrated in Figure 1B, providing a clear visual representation of
the area’s intricate geological composition.

Liangshan Prefecture, situated on the northeastern edge of
the Hengduan Mountains in southwestern Sichuan, is a region of
complex topography, marked by high elevations in the northwest
and lower ones in the southeast, with predominantly north-
south oriented mountain ranges. The area’s landforms are diverse,
categorized into river valley accumulative, mid-mountain, and
tectonic erosion alpine types. Influenced by a subtropical monsoon
climate, Liangshan experiences distinct dry and wet seasons, rather
than clear-cut four seasons, and receives an average annual rainfall of
995.5 mm, mainly betweenMay and September.The dry-hot valleys
of the Jinsha River, receiving about 600 mm of annual rainfall, are
characterized by hot, arid conditions, leading to a fragile ecosystem
and frequent natural disasters. Rainfall is a triggering factor that
causes landslides, especially in the regions where landslides often
occur after consecutive days of heavy rainfall (Doan et al., 2024).
Hydrologically, the prefecture is abundant in rivers, encompassing
three major water systems: the Jinsha, Yalong, and Dadu Rivers,
which further divide into twelve key watersheds such as the Litang,
Anning, Meigu, and Minjiang Rivers, as shown in Figure 1C.

The region is prone to several geological hazards, including
landslides, debris flows, collapses, and ground subsidence. As of
the end of 2021, there were 4,016 recorded geological disasters,
accounting for about 13.4% of Sichuan’s total, with landslides and
debris flows being the most common. These disasters primarily
consist of small to medium-sized soil landslides, rock collapses, and
channel-type debris flows.

3 Data and methodology

3.1 Data

Landslide investigation is the first step of vulnerability analysis
and the necessary condition of modeling. The data of geological
disaster catalog in this paper are from geological disaster risk survey
in Liangshan Prefecture, Sichuan Province.

An evaluation factor is a fundamental metric reflecting specific
characteristics of the subject under evaluation. A comprehensive
collection of such factors forms the evaluation factor system, which
is intrinsically linked to the evaluation object. In the context
of susceptibility assessment, the construction of this system is
paramount. However, developing a model that encompasses all
geological environmental factors for susceptibility evaluation
is impractical. This limitation arises partly cause certain factor
parameters may be challenging to acquire, and the presence
of numerous evaluation parameters often leads to complex
interdependencies and interactions.Therefore, judicious selection of
dominant reference factors, which are both stable and quantifiable,
becomes crucial in constructing an effective evaluation factor

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2024.1417671
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Xu et al. 10.3389/feart.2024.1417671

FIGURE 1
Geological hazard distribution map of Liangshan Prefecture.

TABLE 1 Sources of basic data.

Data name Data sources

Digital Elevation Model (DEM) Detailed Geological Hazard Survey Information for Sidhu County

Vector data, hazard point data, faults, rivers, and roads in Sidney County, villages Xide County 1:50,000 Engineering Geological Conditions Map

Land use type Tsinghua University Global Land Observation and Monitoring Database (http://data.
ess.tsinghua.edu.cn/)

Normalized Difference Vegetation Index (NDVI) Centre for Resource and Environmental Sciences and Data, Chinese Academy of
Sciences (http://www.resdc.cn/)

Slope data Geospatial Data Cloud (http://www.gscloud.cn/)

system. The foundational data sources for these factors are
delineated in Table 1.

In this study, a comprehensive assessment of geological
hazards in Liangshan Prefecture was conducted, informed by
extensive literature review and analysis of the region’s specific
conditions. Initially, 13 influencing factors for landslides were
selected, including elevation, slope, aspect, slope position,
curvature, proximity to roads, water systems, and faults, the
Normalized Vegetation Index (NDVI), Terrain Wetness Index

(TWI), stratigraphy, rock groups, and land use types. For debris
flows, 11 factors were identified, such as slide density, average
slope, terrain relief, vertical drop, land use type, NDVI, engineering
geological rock groups, distance from faults and roads, average
annual rainfall, and river network density. Lastly, 12 influencing
factors were considered for collapses, encompassing elevation, slope,
aspect, curvature, distance from faults and water systems, NDVI,
engineering rock formations, rainfall, earthquakes, and human
engineering activities.
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TABLE 2 Contribution of landslide, landslide and debris flow impact factors.

Landslide
evaluation factor

Contribution Debris flow
factor

Contribution Collapse factor Contribution

Elevation 0.0148 Landslide Density 0.0138 Elevation 0.0631

Slope 0.0046 Average Slope −0.0013 Slope 0.0065

Aspect 0.0009 Topographic Relief 0.0206 Aspect 0.0031

Gradient 0.0042 Aspect Ratio Drop 0.0024 Distance To Water
System

0.0029

Curvature −0.0008 Land Use Type −0.0021 Distance To Fault 0.138

Distance To Water
System

−0.0016 NDVI 0.0014 Engineering Geological
Rock Formation

0.0143

Distance To Road 0.0105 Engineering Geological
Rock Formation

0.0002 Distance To Road 0.0226

Distance To Fault 0.008 Distance To Fault 0.0018 Land Use Type 0.0103

NDVI 0.0039 Distance To Road 0.0084 PGA 0.0314

TWI 0.0051 Average Annual Rainfall 0.0093 Curvature −0.0061

Lithology 0.0002 River Network Density 0.015 Average Annual Rainfall −0.0207

Engineering Geological
Rock Formation

−0.0022 NDVI −0.0076

Land Use Type 0.01

A multicollinearity test was applied to these factors to assess
the collinearity among them. The results, indicated by the Variance
Inflation Coefficient (VIF), showed that all factors for landslides,
debris flows, and collapses had a VIF less than 10, suggesting no
significant collinearity and affirming their independence.The Relief
algorithm was then used to analyse the contribution of these factors
to landslides, collapses, and debris flows, with the results presented
in Table 2. It was found that the contributions of curvature, distance
from water systems, and engineering geological rock groups in
landslide factorswere negligible, aswere the contributions of average
slope and land use type in debris flow factors, and curvature, average
annual rainfall, and NDVI in collapse factors.

After excluding these less influential factors, an optimal set of
factors was established for evaluating the susceptibility of landslides,
collapses, and debris flows. These factors were then imported
into ArcGIS software for reclassification, converting them into
100 m×100 m raster layers.This process facilitated the production of
grading maps for each evaluation factor, as detailed in Figures 2–4.
This methodological approach provides a robust framework for
assessing geological hazard susceptibility in Liangshan Prefecture.

3.2 Methodology

This study is divided into three steps. First of all, based on
the geological disaster database, 10 environmental factors located
in the study area are preferentially selected and factor correlation

test is carried out. Then, different model evaluation methods are
used: the Information Value model, the EvidenceWeight model, the
Logistic Regression model, and both the Evidence Weight-Logistic
Regression and the Information Value-Logistic Regression coupled
models. Finally, the evaluation results of each model are evaluated
and compared. Figure 5 shows the flow chart of the researchmethod
in this paper.

3.2.1 Information value method
Information Value model is a statistical prediction method

based on information theory, the Information Value model needs to
combine various landslide factors to calculate the Information Value
under each grading of each landslide influencing factor, in which
the larger the Information Value is, the higher the susceptibility to
landslides under the grading of the influencing factor is (Wang et al.,
2014).The formula for calculating the informativeness value is given
in the following equation:

Ii = log2
Ni/N
Si/S

(1)

Where: I i denotes the integrated information quantity value
of a certain impact factor, N i is the number of landslides in
the study area under a certain grading of the impact factor, N
is the total number of landslides, Si is the graded area under a
certain grading of the impact factor, and S is the total area of
the study area.
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FIGURE 2
Reclassification map of landslide evaluation factors. (A) Elevation; (B) Slope; (C) Aspect; (D) Gradient; (E) Distance to road; (F) Distance to fault; (G)
NDVI; (H) TWI; (I) Lithology; (J) Land use type.

3.2.2 Evidence weight
Evidencemodel was initially applied to themedical field, and was

applied to the evaluation of mineral resources in the late 1980s, and
was later introduced to landslide hazard evaluation. It is a vulnerability

evaluation model based on Bayes’ theorem, in which there are two
assumptions: the first assumption is that each evaluation factor is
independent of each other, and the second assumption is that each
evaluation factor will not change in a relatively long period of time
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FIGURE 3
Reclassification map of debris flow factor. (A) Elevation; (B) Slope; (C) Aspect; (D) Distance to water system; (E) Distance to fault; (F) Distance to road;
(G) Engineering geological rock formation;(H) Land use type; (I) PGA.

(Xu et al., 2013). The formula for calculating the specific weight of
evidence is shown in the following equation:

W+i = ln
P{B|L}

P{B|L}
(2)

W−i = ln
P{B|L }

P{B|L}
(3)

W f =W
+
i −W

−
i (4)

Where: W+i is a positive weight, indicating the probability of
landslides occurring within the level of a certain influence factor;
W−i is a negative weight, indicating the probability of landslides
occurring outside the level of a certain influence factor: B represents
the area of landslides within the grading of a certain influence factor;
B represents the number of rasters of landslides outside the grading
of a certain influence factor; L represents the area of landslides
within the study area; and L represents the area of non-landslides
within the study area.

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1417671
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Xu et al. 10.3389/feart.2024.1417671

FIGURE 4
Reclassification map of collapse factor. (A) Landslide density; (B) Terrain relief; (C) Longitudinal slope; (D) NDVI; (E) Lithology; (F) Distance to fault; (G)
Distance to road; (H) Average rainfall; (I) River network density.

3.2.3 Logistic regression
The logistic regression model is a particularly classical model

for statistical analysis, which is mainly applicable to the case
where the dependent variable is a categorical variable, and
for landslides there are only two cases, occurrence and non-
occurrence, so binary logistic regression is generally used to
analyse the relationship between the evaluation factor and the
dependent variable. The model has fewer requirements for the

independent variable, whether it is a discrete variable, a continuous
variable, or both, regardless of whether it obeys a normal
distribution or not, it can be evaluated as an evaluation factor
(Dai et al., 2001). The specific calculation is shown in the following
equation.

Z = ln( P
1− P
) = β0 + β1X1 + β2X2 +⋯+ βnXn (5)
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FIGURE 5
The flow chart of the research method in this paper.

P = 1
1+ e−z

(6)

Where: β0 is a constant term; β1, β2 … … βn are the values
of logistic regression coefficients of each influencing factor; χi
denotes each influencing factor; Z is the weighted sum of all the
influencing factors; and P denotes the probability of the occurrence
of landslides.

3.2.4 Weight of evidence and logistic regression
coupling model

In landslide susceptibility evaluation, there’s been a pivotal
shift from the exclusive use of single models, which often
come with inherent limitations, to the adoption of more robust
coupled models. Traditional models like the weight-of-evidence
model, while popular, did not fully account for the intricate
interactions between various influencing factors. To overcome these
limitations, the development of coupled models has been initiated,
merging the strengths of multiple distinct methodologies into a
single, unified approach. This amalgamation not only addresses
the shortcomings of individual models but also combines their
diverse advantages, leading to more accurate and comprehensive
evaluation outcomes. A prime example of this is the coupling
of logistic regression with the weight-of-evidence model. The
logistic regression model, known for its effectiveness in categorizing
and evaluating variables against landslide data, is particularly
adept at handling inter-factor interactions. Its integration with
the weight-of-evidence model significantly alleviates the latter’s
limitations, especially in dealing with factor interdependencies.
This results in a substantial enhancement in the predictive
accuracy and reliability of landslide susceptibility assessments,
marking a significant advancement in the field of geological
hazard analysis.

3.2.5 Application of information and logistic
regression coupling model

The concept of a coupled model, which merges multiple
individual models into a single analytical framework, has become
increasingly significant in the field of landslide susceptibility
evaluation. This innovative approach harnesses the collective
strengths of various model paradigms, thus overcoming the
limitations inherent in using single-model approaches. For instance,
while the logistic regression model is adept at classifying variables
and offering a comprehensive evaluation based on landslide data, it
lacks the capability to assess the individual contributions of specific
factors to landslides. Conversely, methods like the information
quantity model are focused on evaluating the impact of each factor
butmay neglect their interrelationships. By integrating these distinct
methodologies, the coupledmodel approach effectively balances the
weaknesses of each model, resulting in a more holistic and nuanced
analysis. This integration not only facilitates a detailed classification
of variables and a comprehensive evaluation but also ensures a
meticulous assessment of the contribution of each factor, leading to
more accurate and insightful landslide susceptibility evaluations.

4 Results

4.1 Landslide susceptibility evaluation of
five models

The assessment of landslide susceptibility using the information
quantity model is based on the application of Formula 1 to
determine the information value associated with each category of
contributing factors. Notably, the information values associated
with the altitude and land use classifications are relatively more
substantial, suggesting a pronounced influence of these factors on
landslide genesis. Conversely, a low information value for formation
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FIGURE 6
Landslide susceptibility assessment map. (A) Information Value model; (B) Evidence Weight model; (C) Logistic Regression model; (D) Evidence Weight
and Logistic Regression Coupled Modelling; (E) Information Value and Logistic Regression Coupled Modelling.

lithology implies a low contribution to landslide occurrence.
This conclusion is consistent with the values of the contributing
factors detailed in the previous analysis. The quantified information
for each factor is then integrated into ArcGIS software. The

application of a weighted sum algorithm facilitates the merging
of the information values and the subsequent overlaying of
layers, culminating in the derivation of the landslide susceptibility
index map (Figure 6A).
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FIGURE 7
Collapse susceptibility assessment map. (A) Information Value model; (B) Evidence Weight model; (C) Logistic Regression model; (D) Evidence Weight
and Logistic Regression Coupled Modelling; (E) Information Value and Logistic Regression Coupled Modelling.

Susceptibility assessment using the evidence weight model in
landslide analysis is performed by calculating the evidence weight
(W f ) of each factor rating as shown in Eqs 2–4. The W f value
indicates the effect of a factor on landslide occurrence, with a

negative value indicating an inhibitory effect on landslide formation
and a positive value indicating a facilitatory role. Notably, factors
such as elevation and land use type have higher evidence weights,
suggesting that they contribute significantly to landslide formation.
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FIGURE 8
Debris flow susceptibility assessment map. (A) Information Value model; (B) Evidence Weight model; (C) Logistic Regression model; (D) Evidence
Weight and Logistic Regression Coupled Modelling; (E) Information Value and Logistic Regression Coupled Modelling.

In practice, these Evidence Weight values for each factor rating are
entered into ArcGIS software. Using a weighted sum function, the
Evidence Weights are multiplied by their corresponding layers in
an overlay process, resulting in a landslide susceptibility index map.

This map acts as both a visual and analytical tool, showing areas
of varying landslide susceptibility and providing a comprehensive,
data-driven understanding of potential landslide risk based on the
combined effects of various influencing factors (Figure 6B).
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TABLE 3 Confusion matrix validation results.

Evaluation model Landslide evaluation
accuracy (%)

Debris flow evaluation
accuracy (%)

Collapse evaluation
accuracy (%)

Information Value model 57.1 75.5 80.7

Evidence Weight model 56.8 75.4 78.5

Logistic Regression model 76.9 78.9 83.7

Information Value and Logistic
Regression Coupled Modelling

78.3 79.0 84.5

Information Value and Logistic
Regression Coupled Modelling

78.3 78.4 83.9

FIGURE 9
Landslide susceptibility modelling ROC plot. (A) Information Value model; (B) Evidence Weight model; (C) Logistic Regression model; (D) Evidence
Weight and Logistic Regression Coupled Modelling; (E) Information Value and Logistic Regression Coupled Modelling.

In the logistic regression model of this study, a balanced
ratio of non-slip points to landslide points (1:1) is used to
improve the accuracy of the model. A methodical approach
is adopted for the sampling of slip points, in which an area
extending two hundred metres beyond the area of influence of
geological hazards in Liangshan Prefecture is defined. Within
this defined area, samples are randomly selected to ensure a
minimum distance of 200 m between each slip point. In this
model, the independent variables are the influencing factors,
while the dependent variable is the occurrence of landslides,
coded as 1 for landslide points and 0 for non-slide points. The
probability map of landslides is then generated using Eqs 5, 6
(Figure 6C).

The study also introduces the Evidence Weight Logistic
Regression Coupled Model, which incorporates the outputs of
Eqs 2–4 as independent variables in SPSS software to determine the
β values. These values are then utilised in ArcGIS software through
Eqs 5, 6 to produce a probability map showing the occurrence
of landslides in Liangshan Prefecture (Qian et al., 2023). Similarly,
the information value logistic regression coupled model inputs the
output of Eq. 1 as an independent variable into SPSS software
to obtain β-values. These are then used in ArcGIS to generate a
landslide occurrence probabilitymap for Liangshan (Hu et al., 2023)
(Figure 6D).

The natural discontinuity method is used to categorise landslide
susceptibility, dividing the area into five different zones: very low,
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FIGURE 10
Collapse susceptibility modelling ROC plot. (A) Information Value model; (B) Evidence Weight model; (C) Logistic Regression model; (D) Evidence
Weight and Logistic Regression Coupled Modelling; (E) Information Value and Logistic Regression Coupled Modelling.

FIGURE 11
Debris flow susceptibility modelling ROC plot. (A) Information Value model; (B) Evidence Weight model; (C) Logistic Regression model; (D) Evidence
Weight and Logistic Regression Coupled Modelling; (E) Information Value and Logistic Regression Coupled Modelling.
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low, medium, high and very high susceptibility. This classification
results in the production of landslide susceptibility assessment maps
for each of the five models. The very high and high susceptibility
zones are mainly located in critical areas such as the southern part
of the Heishui River rupture zone, the Zemu River rupture zone,
the Jinghe River rupture zone, the Lujujiang River rupture zone, the
Hanyuan-Ganluo rupture zone, the areas surrounding the Ebian-
Jinyang rupture zone, the vicinity of National Highway 108, and the
southern and central regions of Huili County (Figure 6E).

4.2 Collapse susceptibility evaluation of
five models

Following the calculation of Eq. 1, the resulting information
value was imported into ArcGIS software where it was integrated
using the weighted sum function. This function was used to
multiply the Information Value by the layer overlay, resulting in
the generation of a collapse susceptibility index map based on the
InformationValuemodel. At the same time, the evidenceweights for
each factor rating were also entered into ArcGIS and the weighted
sum function was again used to merge these weights with the
layer overlay, producing a second collapse susceptibility index map.
In addition, Eqs 5, 6 were used to develop a collapse probability
map based on the logistic regression model. The outputs from
Eqs 2–4 were entered as independent variables into SPSS software
to calculate the β value, which was then used in ArcGIS alongside
Eqs 5, 6 to produce a collapse occurrence probability map.This map
was informed by the evidence weight logistic regression coupled
model. In addition, these results were also used as independent
variables in SPSS to derive another set of β-values, which were
processed with Eqs 5, 6 in ArcGIS to generate a collapse occurrence
probability map based on the coupled Information Value-Logistic
Regression model, thus providing a comprehensive and multi-
faceted approach to assessing collapse vulnerability.

These probabilities were then classified into five categories
using the natural discontinuity method: very low susceptibility,
low susceptibility, medium susceptibility, high susceptibility and
very high susceptibility. This classification made it possible to
produce collapse susceptibility rating maps for the five models,
as shown in Figure 7. The very high and high susceptibility areas
were mainly located in the southern and central parts of Haili
County, central and eastern Leibo County, central Ganluo County,
the border area between Yanyuan County and Dechang County in
Xichang City, around the National Highway 108, the Zemu River
fault zone, and along the Jinsha River on the eastern and southern
borders of Liangshan Prefecture. This comprehensive approach
provides a detailed and nuanced understanding of collapse-prone
areas, supporting effective geohazard management and planning
(Figure 7).

4.3 Debris flow susceptibility evaluation of
five models

After calculating the Information Value for each factor’s rating,
this data was imported into ArcGIS software. Using the weighted
sum function, the Information Value was combined with the layer

overlay to produce a mudflow susceptibility index map according
to the Information Value model. Similarly, the evidence weight for
each factor rating was added to ArcGIS, where the weighted sum
function was used to merge the evidence weight with the layer
overlay, resulting in an additional mudslide susceptibility index
map. In addition, a mudslide probability map was derived using
the logistic regression model according to Eqs 5, 6. The outputs
from Eqs 2–4 were used as independent variables in SPSS software
to calculate the β value. This β-value was then used in ArcGIS in
conjunction with Eqs 5, 6 to produce a mudflow probability map
based on the evidence weight logistic regression coupled model.
In addition, the output of Eq. 1 was entered into SPSS software as
an independent variable to obtain another β-value, which, when
processed using Eqs 5, 6 in ArcGIS, facilitated the generation of a
mudslide occurrence probability map using the Information Value-
Logistic Regression coupledmodel, thus providing a comprehensive
approach to assessing mudslide susceptibility.

Utilizing the natural discontinuity method, these probabilities
were classified into five categories: very low susceptibility zone, low
susceptibility zone, medium susceptibility zone, high susceptibility
zone, and very high susceptibility zone. This classification led to
the final development of mudslide susceptibility evaluation maps
for each of the five models, as illustrated in Figure 8. Notably,
the zones of very high and high susceptibility to mudslides were
predominantly located in central Zhaoguo County, central Haili
County, central Ganluo County, the Zemuhe Fracture Zone, and
the areas surrounding the 108 National Highway, providing crucial
insights for targetedmitigation and planning in these high-risk areas
(Figure 8).

5 Discussion

5.1 Confusion matrix verification

The confusion matrix, often referred to as the error matrix,
provides a clear and straightforward method for evaluating the
accuracy of susceptibility models. Its basic purpose is to categorise
and compare predicted samples with actual samples to form a
matrix. In this study, the models used are all binary classification
models. The confusion matrix for such models consists of four
primary indicators: True Positives (TP), which are the number of
positive samples correctly identified; False Positives (FP), which are
the number of positive samples incorrectly classified; TrueNegatives
(TN), which are the number of negative samples correctly classified;
and False Negatives (FN), which are negative samples incorrectly
classified. Together, these indicators form the basis for assessing the
accuracy of the model. The accuracy calculation formula is derived
from these four indicators and is essential in assessing the overall
effectiveness of the model in accurately classifying samples. The
accuracy is calculated with Eq. 7.

Accuracy = TP+TN
TP+TN+ FP+ FN

(7)

The evaluation of the effectiveness of the fivemodels in assessing
the susceptibility of landslides, collapses and debris flows was
determined by calculating confusion matrices. As shown in Table 3,
the accuracy rates for the Information Content and Evidence
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Weight models in assessing landslide susceptibility are relatively
low at 57.1% and 56.8% respectively. This suggests that these
models have limited predictive power. In contrast, the logistic
regression, information content-logistic regression and evidence
weight-logistic regressionmodels have significantly higher accuracy
rates, all above 70%. In particular, the coupled information quantity
logistic regression and evidence weight logistic regression models
achieve the highest accuracy of 78.3%, indicating strong predictive
performance.

In the context of debris flow susceptibility assessment, all five
models show accuracy rates above 75%. The information volume
logistic regression model stands out with the highest accuracy
of 79%. Similarly, when assessing collapse susceptibility, the
accuracy rates of all five models exceed 75%, with the information
quantity-logistic regression coupled model achieving the highest
accuracy at 84.5%. These results highlight the effectiveness of
the coupled models, particularly the information quantity-logistic
regression coupled model, in providing more accurate susceptibility
assessments for these geological hazards.

5.2 ROC curve verification

The Receiver Operating Characteristic (ROC) curve is used as a
tool to assess the accuracy of each model’s scores, where the AUC
(Area Under the Curve) value, which ranges from 0 to 1, represents
the area under the ROC curve. Higher AUC values indicate greater
accuracy in the model’s scoring results.

As shown in Figure 9, the ROC curves for the landslide
susceptibility scores of five different models show different levels
of accuracy. The Information Value model achieves an AUC
of 0.797, while the Evidence Weight model is close behind
with an AUC of 0.795. The logistic regression model shows a
higher accuracy with an AUC of 0.846. Among the coupled
models, the Evidence Weight-logistic regression model achieves
an AUC of 0.862, and the Information Weight-logistic regression
coupled model comes out on top with an AUC of 0.863. These
results show that the coupled models, which combine different
analytical approaches, have superior evaluation performance.
They show improved accuracy in landslide susceptibility
assessment compared to the individual models, underlining the
effectiveness of integrating multiple methods in geological hazard
assessment (Figure 9).

As shown in Figure 10, the ROC curves for the five collapse
susceptibilitymodels show that allmodels haveAUC (area under the
curve) values greater than 0.85, indicating a high level of accuracy.
Specifically, the logistic regression model achieves an AUC value of
0.926, while the Evidence Weight-logistic regression coupled model
and the Information Value-logistic regression model have AUC
values of 0.924 and 0.929 respectively. The Evidence Weight model
has an AUC of 0.901 and the Information Value model has an AUC
of 0.896.

Among these, the logistic regression, Evidence Weight-
logistic regression coupled and Information Value-logistic
regression coupled models stand out for their higher accuracy
in assessing collapse susceptibility. This indicates that these
models, especially the coupled ones, are well suited to assess
the susceptibility to collapse disasters in the study area.

Their higher AUC values reflect a more accurate and reliable
prediction capability, making them the preferred choice
for collapse hazard assessment in this specific geographical
context (Figure 10).

As shown in Figure 11, the Receiver Operating Characteristic
(ROC) curves for the five debris flow susceptibility models
indicate that each model has an AUC (Area Under the Curve)
value greater than 0.8. This indicates a commendable level of
accuracy for all models in predicting debris flow susceptibility.
Of these models, the logistic regression model stands out as
having the highest AUC value at 0.879. This high value suggests
that the logistic regression model is the most accurate and
effective of the five in assessing debris flow susceptibility. Its
superior performance highlights the robust predictive ability of
the logistic regression model, making it a particularly valuable
and reliable tool for debris flow hazard assessment in this
study (Figure 11).

5.3 Active faults and inactive faults

In landslide susceptibility evaluation, distinguishing between
active and inactive faults is of significant importance. Active
faults exhibit distinct mechanical properties compared to inactive
faults, such as lower cohesion, lower shear strength, and higher
pore water pressure. These characteristics make active faults more
prone to triggering landslides. Therefore, accurately identifying
and distinguishing active faults from inactive ones is crucial
for the precision of landslide susceptibility assessments. Due
to the objective limitations of data sources, this study cannot
differentiate between active and inactive faults. This limitation
may impact the results of the study. The inability to distinguish
active faults could lead to conservative estimates of landslide
susceptibility, potentially underestimating or overestimating
the risk in certain areas. Additionally, using mixed data from
active and inactive faults may reduce the accuracy of the
evaluation model, thereby affecting the reliability of landslide
predictions. To address this issue, future research should focus
on obtaining higher precision data on fault activity or employing
more advanced methods to identify fault activity. For instance,
using high-resolution remote sensing imagery, geophysical
exploration techniques, and detailed field surveys can more
accurately determine the activity characteristics of faults. Moreover,
incorporating big data andmachine learning techniques can further
enhance the ability to differentiate between active and inactive
faults, thus improving the accuracy and reliability of landslide
susceptibility evaluations.

6 Conclusion

(1) Focusing on Liangshan Prefecture, Sichuan Province, this
study used the Relief algorithm to select optimal sets of
evaluation factors for landslides and debris flows identified
by covariance diagnosis. A total of 10, 9 and 9 evaluation
factors were selected for landslides, collapses and debris flows,
respectively. Five evaluation models - the information value
model, the evidence weight model, the logistic regression
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model, the evidence weight-logistic regression coupled model
and the information value-logistic regression coupled model
- were used to assess the vulnerability of landslides, collapses
and debris flows.

(2) A comparative analysis of the landslide susceptibility
evaluation results of these models showed that the Evidence
Weight-Logistic Regression and its coupled model achieved
the highest accuracy rate of 78.3%, indicating a superior
predictive effect. ROC curve tests showed that both the
evidence weight logistic regression and information value
logistic regression models had the highest AUC values,
making them the most effective for assessing landslide
susceptibility in the region. The areas of very high and
high landslide susceptibility were mainly located in the
major fault zones (Heishui River, Zemu River, Jinghe River,
Lujujiang River, Hanyuan-Ganluo, Ebian-Jinyang) around
National Highway 108 and in the southern and central parts
of Haili County.

(3) In the evaluation of collapse susceptibility, the information
value logistic regression model showed the highest accuracy
at 84.5%. The ROC curve accuracy tests indicated that
the logistic regression, evidence weight logistic regression
coupled and information value logistic regression coupled
models had the best performance and were suitable for
assessing collapse susceptibility in the region. High collapse
susceptibility areas were mainly found in the southern and
central areas ofHaili County, central and eastern LeiboCounty,
central Ganluo County, along the border between Yanyuan
County and Dechang County of Xichang City, near National
Highway 108, around the Zemu River fault zone, and along
the eastern and southern borders of the Jinsha River in
Liangshan Prefecture.

(4) For debris flow susceptibility, the information value-logistic
regression coupledmodel had the highest accuracy at 79%.The
ROC curve analysis showed that the logistic regression model
had the highest AUCvalue of 0.879,making it themost suitable
model for assessing debris flow susceptibility in the area. Areas
with very high and high debris flow susceptibility were mainly
located in central Zhaojue County, central Huili County,
central Ganluo County, the Zemu River fault zone, and around
National Highway 108.
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