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As one of the main seismic imaging methods, conventional reverse time
migration (RTM) may not produce high-quality images in areas with non-flat
surfaces and anisotropy because the complex surfaces have a great impact
on seismic wave simulation, resulting in strong scattering waves. In addition,
in isotropic acoustic (ISO) RTM, the neglection of the anisotropic effects will
lead to incorrect travel times during source and receiver wavefield extrapolation.
To overcome these problems, we develop a topographic pseudo-acoustic
vertical transverse isotropic (VTI) RTM algorithm based on the body-fitted grid.
In this method, we first derive anisotropic pseudo-acoustic wave equations
in the curvilinear coordinate system. Then, the Lebedev grid finite-difference
scheme is used to update these equations to simulate wavefields. Finally, we
use the source-normalized cross-correlation imaging condition to realize RTM.
Numerical tests are performed to evaluate the feasibility and applicability of
the proposed method. The imaging results show that the proposed method
can remove the effect of surface topography and anisotropy on seismic wave
propagation and improve migration imaging precision.

KEYWORDS

reverse time migration, body-fitted grid, vertical transverse isotropic media, surface
topography, Lebedev grid, coordinate transformation

1 Introduction

The reverse time migration (RTM) algorithm (Baysal et al., 1983; McMechan, 1983),
which is based on a two-way wave equation, has advantages in accurately imaging complex
structures, compared to ray-based migration and one-way wave equation migration. It
can deal with large lateral velocity variations and has no dip limitations on the images.
Therefore, it has become an important seismic imaging method in the industry. However,
non-flat surface topography introduces numerical problems for migration algorithms
that are based on flat surface assumption (Reshef, 1991). Berryhill (1979) first used
wave-equation datuming to reduce surface topography’s influence on migration results.
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Beasley and Lynn (1992) introduced the “zero-velocity layer”
concept, which is an elegant technique for the error caused by
the elevation-static correction. However, this technique cannot be
applied to the computationally attractive phase-shift algorithms
because it includes the non-physical characteristic of zero velocity
(Bevc, 1997). Alternatively, without any datuming or elevation
static corrections, some wave-equation-based methods that can
directly simulate seismicwavefields and image seismic data recorded
on an irregular topographic surface have been proposed. One
method is to use smaller grid elements to approximate irregular
surfaces (Robertsson, 1996; Ohminato and Chouet, 1997). However,
staircase approximation leads to artificial scattering waves, which
may affect the physical scattering waves or multiple reflection waves
(Zhang and Chen, 2006). To avoid the artifacts caused by this
staircase approximation, the other method employs vertical grid
mapping to match the computational grid with surface topography
(Tessmer et al., 1992; Hestholm and Ruud, 1994; Tarrass et al., 2011;
Qu et al., 2017). It is effective for relatively smooth topography
but has limitations for steep topography (Hayashi et al., 2001).
In recent years, some researchers used the numerical simulation
algorithm based on the body-fitted grid to tackle the undulating
surface problem and obtained good results (Fornberg, 1988; Zhang
and Chen, 2006; Appelö and Petersson, 2009). Then, the RTM
based on this numerical simulation algorithm in the curvilinear
coordinate was realized by Lan et al. (2014) and Qu and Li (2019).
The body-fitted grid is conforming to the rugged surface, which can
avoid artificial scattering waves. This is a coordinate transformation
method, which maps the physical points with the curvilinear grid
to the calculational points with the rectangular grid. In curvilinear
coordinates, the partial differential wave equations are numerically
updated by an optimized non-staggered finite-difference scheme,
such as the DRP/opt MacCormack scheme (Zhang and Chen,
2006). Although the DRP/opt MacCormack scheme can essentially
eliminate lattice oscillations, it needs a smaller grid length to achieve
the same accuracy as the staggered grid scheme, which greatly
increases the computational cost. To avoid wavefield interpolation
using the standard-staggered grid (SSG) approach (Virieux, 1986),
de la Puente et al. (2014), Konuk and Shragge (2021), and Sethi et al.
(2022) used the Lebedev grid (LG, also known as the fully staggered
grid) scheme (Lebedev, 1964) to accurately simulate wavefields on
the curved grid.

Many rock-physics experiments and field measurements show
that anisotropy is widely present in the subsurface media (Thomsen,
1986). The anisotropy mainly refers to velocity anisotropy, which
will make seismic waves propagate at different speeds in different
directions. If the anisotropic effect is ignored in seismic data
processing, it will result in misplaced images and low resolution
of the target during seismic migration and inversion. Although
seismic anisotropy by nature is an elastic phenomenon, most
anisotropic RTM implementations do not use the full elastic
anisotropic wave equation because of the high computational
cost involved (Chu et al., 2011). Then, many researchers derived
simpler wave equations that can be solved efficiently to perform
acoustic anisotropic RTM. Alkhalifah (1998) and Alkhalifah (2000)
proposed the acoustic assumption approximation for transversely
isotropic media with a vertical symmetry axis by setting the
shear velocity along the axis of the symmetry to zero and
developed a coupled pseudo-acoustic wave equation with the

fourth-order partial derivatives of the wavefield in the time
and space domain. Subsequently, some researchers implemented
acoustic vertical transverse isotropic (VTI) modeling andmigration
based on various coupled second-orderwave equations derived from
Alkhalifah’s dispersion relation (Zhou et al., 2006a; Fletcher et al.,
2009; Fowler et al., 2010). Duveneck et al. (2008), Duveneck and
Bakker (2011) and Zhang et al. (2011) derived a stable pseudo-
acoustic wave equation based on first principles (Hooke’s law and
the equations of motion) without introducing any assumptions and
successfully realized the RTM. Meanwhile, the decoupled pure qP-
wave equations expressed by the pseudo-differential operator were
proposed to implement forward modeling and imaging (Liu et al.,
2009; Chu et al., 2011; Zhan et al., 2012; Mu et al., 2020a; Mu et al.,
2020b). Although the pure qP-wave equations are free from shear
wave artifacts and can achieve stable numerical modeling, the
computation of the pseudo-differential operator in these equations
requires higher computation costs than the finite-difference method
(Mu et al., 2022;Mu et al., 2023).The coupled pseudo-acoustic wave
equation is more accurate with no other approximations except
the acoustic VTI approximation and can be solved by the finite-
difference method.

For pseudo-acoustic VTI media with complex surface
topography, we present a pseudo-acoustic VTI RTM algorithm
based on the body-fitted grid and first-order velocity–stress
equation. First, the orthogonal body-fitted grid was generated
to conform to the irregular surface to avoid artificial scattering
waves. Then, the first-order velocity–stress partial differential
equations (Duveneck et al., 2008) were derived in the curvilinear
coordinate system by utilizing the mapping relationship between
the Cartesian coordinate and curvilinear coordinate. After that, the
LG finite-difference scheme was used to update these equations
for wavefield extrapolation and RTM. Finally, three numerical
experiments were used to examine the accuracy and suitability
of the proposed RTM algorithm in the pseudo-acoustic VTI media
with surface topography.

2 Theory

2.1 Body-fitted grid generation and
coordinate transformation

When surface topography is present, the discrete grid must
conform to the rugged surface to avoid artificial scattering waves
(Zhang and Chen, 2006). Such a grid is named as the body-fitted
grid, which has interior smoothness and local orthogonality at
the boundary. Once the irregular surface topography is given, we
choose the Poisson equation method, which is one of the elliptic
partial differential methods, to generate a body-fitted grid. During
the numerical solution of the Poisson equation, we control the
trend of the grid lines through the iteration algorithm, which
can ensure the interior smoothness and local orthogonality of the
generated grid. This method can control the grid quality more
flexibly and conveniently by adjusting the shape, sparsity, and
orthogonality of the grid.The essence of body-fitted grid generation
is to transform the irregular surface in the physical space x = x(x,z)
into a flat surface in the computational spaceX = X(ξ,η), as shown in
Figure 1.
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FIGURE 1
Mapping between the body-fitted grid in the physical domain and the
uniform grid in the computational domain.

FIGURE 2
Schematic diagram of the Lebedev grid scheme.

TABLE 1 Procedural steps for realizing the pseudo-acoustic VTI RTM.

Step description
Equation

1) Mesh the parameter models (velocity ε and δ) into the
body-fitted grid according to the irregular surface in the
physical domain

—

2) Transform the parameter models in the Cartesian coordinate
into the computational domain in the curvilinear coordinate

1

3) Input the parameter models and the observed data in the
computational domain

—

4) Calculate the forward-propagating wavefields in the
computational domain

5

5) Calculate the back-propagating wavefields in the same
computational domain

5

6) Apply the source-normalized cross-correlation imaging
condition to obtain the image in the same computational
domain

9

7) Inverse transform the imaging result in the computational
domain into the physical domain.

1

After the body-fitted grid has been generated, the Cartesian
coordinate of each discrete grid points can be determined. Then,
the mapping from the curvilinear coordinate to the Cartesian
coordinate is

x = x(ξ,η)

z = z(ξ,η)
. (1)

By taking the partial derivatives of x and y in Equation 1,
respectively, we can obtain

∂x
∂ξ
∂ξ
∂x
+ ∂x
∂η
∂η
∂x
= 1

∂x
∂ξ
∂ξ
∂z
+ ∂x
∂η
∂η
∂z
= 0

∂z
∂ξ
∂ξ
∂x
+ ∂z
∂η
∂η
∂x
= 0

∂z
∂ξ
∂ξ
∂z
+ ∂z
∂η
∂η
∂z
= 1

. (2)

From Equation 2, we can derive the coefficients of coordinate
transformation ∂ξ/∂x, ∂ξ/∂z, ∂η/∂x, ∂η/∂z:

∂ξ
∂x
= 1

J
∂z
∂η
,
∂ξ
∂z
= −1

J
∂x
∂η

∂η
∂x
= −1

J
∂z
∂ξ
,
∂η
∂z
= 1

J
∂x
∂ξ

J = (∂x
∂ξ
∂z
∂η
− ∂x
∂η
∂z
∂ξ
)

, (3)

where J is the Jacobian of the transformation and is a non-
zero value.

2.2 First-order velocity–stress equations in
the curvilinear coordinate

In the pseudo-acousticVTImedia, the first-order velocity–stress
pseudo-acousticwave equation based onfirst principles is derived by
Duveneck et al. (2008):

∂u
∂t
= 1
ρ
∂p
∂x

∂w
∂t
= 1
ρ
∂q
∂z

∂p
∂t
= ρV2

p[(1+ 2ε)
∂u
∂x
+√1+ 2δ∂w

∂z
]

∂q
∂t
= ρV2

p[√1+ 2δ
∂u
∂x
+ ∂w
∂z
]

, (4)

where u,w are components of the particle velocity vector
and p,q are the horizontal and vertical stress components,
respectively; ρ is the density, ε,δ are the Thomsen parameters
(Thomsen, 1986); and Vp is the media velocity. These equations
can easily be discretized into finite-difference equations on
staggered grids. As they have been derived with the acoustic VTI
approximation, Equation 4 is kinematically equivalent to acoustic
VTI equations derived by Alkhalifah (2000). In addition, one
of the advantages of this formulation is the natural handling of
variable density.

When the body-fitted grid is applied, Equation 4 should be
transformed from the Cartesian coordinate into the curvilinear
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FIGURE 3
Sub-sag model. (A) Velocity model in the physical domain, (B) velocity model in the computational domain, (C) ε model in the physical domain, (D) ε
model in the computational domain, (E) δ model in the physical domain, and (F) δ model in the computational domain.

coordinate. Applying the chain rule, the wave equation in the
curvilinear coordinate can be obtained as

∂u
∂t
= 1
ρ
 (
∂ξ
∂x

∂p
∂ξ
+
∂η
∂x

∂p
∂η
)

∂w
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= 1
ρ
 (
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∂η
∂x
 ∂u
∂η
+√1+ 2δ

∂η
∂z
 ∂w
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∂q
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= ρV2
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∂ξ
∂x
 ∂u
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+
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 ∂w
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∂η
∂x
 ∂u
∂η
+
∂η
∂z
 ∂w
∂η
]

,

(5)

where the coefficients of coordinate transformation can be
calculated by Equation 3.

2.3 Lebedev grid finite-difference method

In this section, we describe the finite-difference scheme to
update Equation 5.TheSSG (Virieux, 1986) iswidely used to discrete
the first-order velocity–stress equation because of its increased
stability and ability to suppress numerical dispersion compared
with the collocated grid method. However, the velocity and stress
in Equation 5 cannot be defined in the staggered-grid points
because each variable requires the computation of spatial derivatives
in x- and z-directions on the same lattice point. If solving the
wave equations using the SSG scheme, some variables need to be
calculated by the complex interpolation method, resulting in error
and instability. Therefore, we use the LG scheme (Lebedev, 1964) to
discretize Equation 5. The way to define LG is shown in Figure 2.
The main idea of this grid is that we define different components
of velocity (rectangles in Figure 2) and stress (circles in Figure 2)
staggered at the same grid points.

From Figure 2, we can find that the same variable is defined
on different locations of the same grid. In addition, every variable
requires the computation of spatial derivatives in x- and z-directions
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FIGURE 4
Body-fitted grid. (A) In the physical domain, (B) zoomed views of (A).

on the same grid point. Hence, each variable needs to be calculated
separately to update the equation. Taking variableu as an example,
we can obtain its discrete form as

u
n+ 1

2

i+ 1
2
,j
= u

n− 1
2

i+ 1
2
,j
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2
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2
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2
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n
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2
,j
]
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n
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2
,j
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L

∑
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2
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2
,j
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2
− 2m−1

2
,j
]
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2
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, (6)
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, (7)

where Equation 6 is used to update variable u defined on the grid
point (i + 1/2, j) and Equation 7 is used to update variable u defined
on the grid point (i, j+1/2);Δt is the time sampling interval,Δξ,Δη is
the space sampling interval, and cm is the finite difference coefficient.

Other variables can be updated by the same way, and then, we
can use those discrete equations to simulate wavefields and images.
In order to eliminate reflections from the artificial boundary, the
sponge absorption boundary condition (Cerjan et al., 1985) is used
on the sides and surfaces on top.

2.4 Reverse time migration theory

The realization of the RTM includes three steps. First, the
forward propagation of the source wavefield is implemented based
on the estimated model parameters, source wavelet, and seismic
wave propagation equation. Second, the back propagation of the
recorded data at the receiver location used time-reversed wavefield
extrapolation operators.Third, the final imaging results are obtained
by applying a suitable imaging condition.

The image is formed by multiplying (a zero-lag cross-correlation)
the two wavefields at each time step (Claerbout Jon, 1971):

Image(x,z) = ∑
s
∑

t
Ss(x,z, t)Rs(x,z, t), (8)

where Image, Ss, andRs represent the imaging result, the wavefield of
source, and the wavefield of the receiver, respectively. x and z denote
horizontal and depth coordinates, respectively, and t is the time.

The image unit in Equation 8 is amplitude squared; thus,
the image magnitude has arbitrary scaling that depends on the
source strength and so has no physical interpretation as a reflection
coefficient (Chattopadhyay and Mcmechan, 2008).

When compared to the cross-correlation imaging condition,
the source-normalized cross-correlation imaging condition yields
better imaging amplitudes (Claerbout Jon, 1971; Kaelin andGuitton,
2006). Therefore, we use the source-normalized cross-correlation
imaging condition in the form of Equation 9:

Image(x,z) =
∑

s
∑

t
Ss(x,z, t)Rs(x,z, t)

∑
s
∑

t
Ss(x,z, t)Ss(x,z, t)

. (9)

The detail steps of our pseudo-acoustic VTI RTM with surface
topography are given in Table 1.

3 Numerical examples

We demonstrate the feasibility of pseudo-acoustic VTI RTM
based on the body-fitted grid with synthetic data. The numerical
examples are for three models with complex surface topography:
1) a sub-sag model, 2) a modified Hess VTI model, and 3)
a modified overthrust VTI model. Forward modeling is the
basis of imaging. For better imaging, we suppress shear wave
artifacts by a small smoothly tapered circular region with ε set
equal to δ around the source when simulating the wavefield
propagation process (Duveneck et al., 2008).

3.1 A sub-sag model

First, we use a sub-sag model with surface topography to
examine the accuracy and suitability of the proposed method. The
surface of this model is generated with the sinusoidal function:
y = 50 sin (2π/100∗x) + 60. After the body-fitted grid has been
generated, the Cartesian coordinate of each discrete grid points
and the mapping of coordinate transformation can be used to
transform parameter models from the physical domain to the
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FIGURE 5
Wavefield snapshots at different time steps. (A,C,E) t = 800 ms, t = 1,120 ms, and t = 1,440 ms, respectively, in the computational domain; (B,D,F) t =
800 ms, t = 1,120 ms, and t = 1,440 ms, respectively, in the physical domain.

FIGURE 6
30th shot records.

computational domain. Figure 3 shows the model parameters in the
physical domain (Figures 3A, C, E) and the computational domain
(Figures 3B, D, F). The size of the velocity field was 6,000 m ×
3,000 m, with a vertical and horizontal spatial spacing of 10 m. We
choose a Ricker wavelet with a 20-Hz peak frequency, and 60 shots
are equally distributed at a depth of 10 m, with the distance of
100 m. Each shot has 601 receivers, with an interval of 10 m. The
record length is 3.2 s, with a 0.8-ms time sampling interval. From
Figures 4A, B, we can see that the generated grid not only has good
orthogonality at the boundaries but alsomaintains good smoothness
of the internal grid. This body-fitted grid provides a good basis
for the wavefield simulations. Wavefield snapshots at different time
steps in the computational domain and the physical domain are
shown in Figure 5. As illustrated by the red rectangular box in
Figures 5A, C, E, respectively, the shape of the wavefield becomes
distorted due to the effects of the undulating surface. In addition, the
reflected-wave events in shot records are also distorted, as shown in
Figure 6. After transforming the wavefield in the computational to
the physical domain (Figures 5B, D, F), the shape of the wavefield is
back to normal. All of the snapshots have no numerical dispersion
and artificial scattering wave, and the shear wave artifacts are
effectively suppressed by loading the source loop. The numerical
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FIGURE 7
RTM imaging results in the physical domain. (A) Conventional pseudo-acoustic VTI RTM based on the rectangular grid and (B) pseudo-acoustic VTI
RTM based on the body-fitted grid.

FIGURE 8
Modified Hess VTI model. (A) Velocity model in the physical domain, (B) velocity model in the computational domain, (C) ε model in the physical
domain, (D) ε model in the computational domain, (E) δ model in the physical domain, and (F) δ model in the computational domain.

simulations confirm the accuracy of the LG finite-differencemethod
based on the body-fitted grid. Figure 7 shows the conventional
pseudo-acoustic VTI RTM results based on the rectangular grid and
the pseudo-acoustic VTI RTM results based on the body-fitted grid.
From Figure 7A, we can find that the irregular surface has a serious

impact on imaging results.The flat seismic events become distorted,
and the tilted seismic events fail to be clearly imaged. In addition,
in the shallow region, the imaging results suffer from scattering
noise. After considering the influence of subsurface topography in
the pseudo-acoustic VTI RTM based on the body-fitted grid, the
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FIGURE 9
Wavefield snapshots at 1,600 ms. (A) Snapshots in the computational domain and (B) snapshots in the physical domain.

FIGURE 10
Shot records. (A) 45th shot records and (B) 60th shot records.

seismic events are accurately imaged, and the scattering noise is
effectively eliminated, as shown in Figure 7B. The results validate
that the proposed RTM method has good suitability for the models
with complex topographic surfaces.

3.2 A modified Hess VTI model

We use the modified Hess VTI model with complex surfaces for
imaging to verify the reliability of our pseudo-acoustic VTI RTM
algorithm in complex models. Figure 8 shows the velocity and the
anisotropic parameters of the Hess model in the physical domain
(Figures 8A, C, E) and computational domain (Figures 8B, D, F).
Themodel has a high-speed salt dome structure and a fault structure,
and it has a strong anisotropic characteristic. The surface of this
model is generated by the function: y = 75 sin (2π/150 ∗ x) + 100.
The grid size of the model is 901 × 425, with a vertical and
horizontal spatial spacing of 10 m. The time sampling interval of
numerical simulation is 0.8 ms, and the total record length is 4.0 s.
A Ricker wavelet with a 20-Hz dominant frequency is excited as
the source wavelet. There are 90 shots at a depth of 10 m with
a 100-m spacing interval and 901 receivers with a 10-m spacing

interval. From the wavefield snapshots (Figures 9A, B) and the
shot records (Figures 10A, B), we conclude that the seismic waves
simulated with our method can propagate stably in complex media
with complex subsurface topography. We perform the conventional
pseudo-acoustic VTI RTM based on the rectangular grid, the ISO
RTM, and the pseudo-acoustic VTI RTM based on the body-fitted
grid on the synthetic dataset, and the obtained imaging results are
shown in Figure 11. From Figure 11A, it is clear that the seismic
events in the shallow region are hard to be recognized because they
are covered by scattering noise. In addition, the seismic events in
other regions have poor contiguity. Compared with Figure 11A, the
results in Figure 11C show that the proposed RTM method can
effectively suppress scattering noise and produce clearer and more
accurate images than conventional pseudo-acoustic VTI RTMbased
on the rectangular grid. As shown in the black rectangular box
in Figure 11B, there is an obvious non-convergence of diffracted
waves in the area of strong anisotropy because the anisotropy
is ignored in ISO RTM. The same region in Figure 11C is well-
imaged after considering the effect of the anisotropy. In addition,
diffraction waves generated by the fault plane do not converge well,
which is denoted by the red ellipse box in Figure 11B, while the
fault plane in Figure 11C is well-imaged. In general, the seismic
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FIGURE 11
RTM imaging results in the physical domain. (A) Conventional pseudo-acoustic VTI RTM based on the rectangular grid, (B) ISO RTM based on the
body-fitted grid, and (C) pseudo-acoustic VTI RTM based on the body-fitted grid.

events are more detailed and clearer, and the total resolution is
significantly improved in the pseudo-acoustic VTI RTM results.
This experiment demonstrates that the pseudo-acoustic VTI RTM
based on the body-fitted grid produces more accurate and higher-
resolution imaging results.

3.3 A modified overthrust VTI model

To further validate the applicability of our method to complex
models, we modified the overthrust VTI model. The velocity and
the anisotropic parameters of the modified overthrust model in
the physical domain (Figures 12A, C, E) and computational domain
(Figures 12B, D, F) are shown in Figure 12. The model has a lot of
overthrust faults and high-steep structures, which have a strongly
anisotropic characteristic. The irregular subsurface is generated
according to the first-layer interface of the model, which is more
general in nature. The grid size of the model is 751 × 371, with a
vertical and horizontal spatial spacing of 10 m. The time sampling
interval of numerical simulation is 0.5 ms, and the total record
length is 3.0 s. A Ricker wavelet with a 25-Hz dominant frequency is
excited as the source wavelet. There are 75 shots at a depth of 10 m
with a 100-m spacing interval and 751 receivers with a 10-m spacing
interval. As shown by the yellow arrows in Figure 13A, there is an
obvious non-convergence of diffracted waves, which results in the
failure to image the deep fold structure because the anisotropy is
ignored in ISO RTM.The same region shown in Figure 13B is well-
imaged after considering the effect of the anisotropy. In addition,
diffraction waves generated by the overthrust fault plane do not
converge well, which is denoted by the red arrows, as shown in

Figure 13A, while the fault plane, as shown in Figure 13B, is well-
imaged. In general, the imaging results, as shown in Figure 13B, have
higher signal-to-noise ratios and higher resolution.

4 Discussion

To avoid the artificial scattering waves due to the staircase
discretization of the irregular surface, we use the body-fitted grid
to discretize the computational domain. This grid has interior
smoothness and local orthogonality at the boundary, as shown
in Figure 4, and it can easily conform to the irregular surface.
Since the finite difference scheme is implemented in the curvilinear
coordinate, the standard-staggered grid (SSG) finite difference
scheme is no longer applicable, so we use the LG scheme (Lebedev,
1964) to update Equation 5. The numerical simulations in the sub-
sag model and the Hess VTI model validate the accuracy of the LG
finite difference method based on the body-fitted grid.

To validate the applicability of the proposed RTM method,
we use three numerical tests on the models with different
irregular surfaces. Although the third model includes a dramatically
undulating surface, all correct imaging results of themodels validate
the advantages of the proposed method for dealing with various
undulating surfaces. In addition, we use the ISO RTM and pseudo-
acoustic VTI RTM methods to process the simulated dataset. All
these results indicate that the pseudo-acoustic VTI RTM based on
the body-fitted grid can solve the effect of anisotropy and complex
surface topography on seismic wave propagation and get clearer and
more accurate subsurface images.

When comparing Equation 4 and Equation 5, we can find that
the equations in the curvilinear coordinate include additional
derivative terms that are not present in the Cartesian coordinate.
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FIGURE 12
Modified overthrust VTI model. (A) Velocity model in the physical domain, (B) velocity model in the computational domain, (C) ε model in the physical
domain, (D) ε model in the computational domain, (E) δ model in the physical domain, and (F) δ model in the computational domain.

FIGURE 13
RTM imaging results in the physical domain. (A) ISO RTM based on the body-fitted grid and (B) pseudo-acoustic VTI RTM based on the body-fitted grid.

Although the finite difference scheme based on the body-fitted
grid in the curvilinear coordinate has better simulation accuracy,
it requires more computation costs and memory overhead, which
will also lead to a decrease in imaging efficiency. Therefore, further
improvement of this method is to provide a reasonable balance
between numerical accuracy and computational efficiency.

5 Conclusion

We develop a pseudo-acoustic VTI RTM method based on
the body-fitted grid for anisotropic shot data with complex
surface topography. The orthogonal body-fitted grid can well fit
the irregular surface, which can avoid artificial scattering waves
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in the propagation of the wavefield. Based on the coordinate
transformation, we derive a first-order velocity–stress pseudo-
acoustic wave equation in the curvilinear coordinate system. The
LG finite-differencemethod is used to solve the first-order equation,
which can avoid complex interpolation calculations and improve
the accuracy and stability of the simulation. After considering
the impact of the non-flat surface and anisotropy, the proposed
RTM method can produce correct travel times during source
and receiver wavefield extrapolation and obtain accurate and
high-quality imaging results. Numerical examples demonstrate the
feasibility and robustness of the proposed method for the pseudo-
acoustic VTI media with complex surface topography.
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