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Suppressing seismic random
noise based on non-subsampled
shearlet transform and improved
FFDNet

Hua Fan, Yang Zhang*, Wenxu Wang and Tao Li

Henan Earthquake Agency, Zhengzhou, China

Traditional denoising methods often lose details or edges, such as Gaussian
filtering. Shearlet transform is amulti-scale geometric analysis toolwhich has the
advantages of multi-resolution and multi-directivity. Compared with wavelet,
curvelet, and contourlet transforms, it can retain more edge details while
denoising, and the subjective vision and objective evaluation indexes are better
than other multi-scale geometric analysis methods. Deep learning has made
great progress in the field of denoising, such as U_Net, DnCNN, FFDNet, and
generative adversarial network, and the denoising effect is better than BM3D, the
traditional optimal method. Therefore, we propose a random noise suppression
network ST-hFFDNet based on non-subsampled shearlet transform (NSST) and
improved FFDNet. It combines the advantages of non-subsampled shearlet
transform, Huber norm, and FFDNet, and has three characteristics. 1) Shearlet
transform is an effective feature extraction tool, which can obtain the high and
low frequency features of a signal at different scales and in different directions,
so that the network can learn signal and noise features of different scales and
directions. 2) The noise level map can improve the noise reduction performance
of different noise levels. 3) Huber norm can reduce the sensitivity of the network
to abnormal data and improve the robustness of network. The network training
process is as follows. 1) BSD500 datasets are enhanced by flipping, rotating,
scaling, and cutting. 2) AWGNwith noise level σ∈[0,75] is added to the enhanced
datasets to obtain the training datasets. 3) NSST multi-scale and multi-direction
decomposition is performed on each pair of samples of the training datasets
to obtain high- and low-frequency images of different scales and directions.
4) Based on the decomposed high and low frequency images, the ST-hFFDNet
network is trained by Adam algorithm. 5) All samples of the training data set
are carried out in steps (3) and (4), and the trained model is thus obtained.
Simulation experiments and real seismic data denoising show that for low noise,
the proposed method is slightly better than NSST, DnCNN, and FFDNet and that
it is superior to NSST, DnCNN, and FFDNet for high noise.
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1 Introduction

Due to the environment, transmission channel, and other factors, seismic data are
inevitably disturbed by noise in the process of acquisition, compression, and transmission,
resulting in distortion and loss of effective signal. The presence of random noise can
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adversely affect subsequent data processing and interpretation.
Therefore, random noise suppression is a basic problem in seismic
data processing, and the goal is to recover the original clean signal
from the noisy data as much as possible. Since noise, edge, and
texture details are high-frequency components, they are difficult
to distinguish during the denoising process, and some details will
inevitably be blurred and lost. It is thus necessary to find a balance
between high-frequency noise removal and detail preservation.
Many effective methods for noise suppression of seismic data have
been proposed (Wu et al., 2022).

According to whether specific prior information is assumed,
denoising methods can be grouped into two major categories:
traditional denoising methods based on prior information and deep
learning denoising methods (Kong et al., 2020; Zhang et al., 2022).

Traditional denoising methods mainly include those in the
spatial, transform, and hybrid domains.

Spatial domain methods based on local information and non-
local information are grouped into two categories. The former
includes Gaussian, Wiener, median, and bilateral filtering methods,
which use the correlation of local information and a smooth
template to suppress high-frequency noise but which easily cause
edge blurring. The latter includes NL means (non-local). This uses
the correlation of non-local information to find a similar sub-image
and calculates their mean and can effectively suppress noise and
protect edges (Buades et al., 2005).

The transform domain methods mainly include wavelet,
ridgelet, curvelet, contourlet, and shearlet transforms. The seismic
data are decomposed into a low frequency sub-band and several high
frequency sub-bands in the transform domain from the time- or
space-frequency perspective, and the high frequency sub-bands are
denoised and returned to the spatial domain through reconstruction
(Ma, 2014). The advantages of wavelet and stationary wavelet
transforms are that the point singularity of data can be optimally
represented. However, the high-dimensional wavelet basis is non-
anisotropic and the direction representation ability is poor, so the
line singularity of high-dimensional data is unable to be optimally
represented. As multi-scale geometric analysis tools, curvelet and
contourlet transforms have an anisotropic high-dimensional basis
function which has multi-scale and multi-direction representation
ability and which can optimally represent line singularity. However,
both curvelet and contourlet transforms are subdivided by another
layer in the frequency domain, reducing their sparse representation
ability (Tang, 2014) and limiting the number of directions and the
size of the support base; this affects direction selectivity (Aigu, 2015).
NSST (Labate et al., 2005; Guo et al., 2004; Guo and Labate, 2007)
is a multi-scale geometric analysis tool with excellent performance.
Its high-dimensional basis function is anisotropy, it has multi-
scale and multi-directionality, and the scale-dependent number
of directions and size of the support base are not restricted. Its
frequency domain is subdivided layer by layer, and the directionality
can be flexibly selected, which can effectively detect and locate linear
singularities of high-dimensional data (Li et al., 2011). Experimental
results show that compared with wavelet, curvelet and contourlet
transforms, NSST preserves more edge details while suppressing
high frequency noise, and it is superior to other transform
domain methods.

Hybrid domain denoising combines the spatial and transform
domain methods to fully utilize their advantages. Block Matching

3D (BM3D) (Dabov et al., 2007) is a combination of spatial
domain denoising based on non-local information, wavelet domain
threshold denoising, and Wiener filtering—the best traditional
denoising method (Kong et al., 2020).

In addition to the above traditional denoising methods,
techniques for dealing with different types of noise, such as AWGN,
mixed noise, and blind denoising, have been developed in the field
of deep learning based on technologies like big data, GPU, and cloud
computing, which have achieved remarkable results in the field
of denoising (Liu et al., 2021). For example, the denoising effects
of DnCNN and FFDNet are better than the traditional optimal
BM3D method.

According to the difference in network structure, deep learning
denoising methods are mainly grouped into three categories:
denoising methods with a residual network, denoising methods
with an encoder–decoder network, and denoising methods with a
generative adversarial network.

Zhang et al. (2017) combined residual network, BN, andCNN to
propose a deep denoising network DnCNN. The residual network
solves the diffusion of gradients caused by network deepening.
The joining of residual network and BN can effectively improve
computational efficiency and denoising performance. The blind
denoising results obtained by improved DnCNN_B and CDnCNN_
B are better than that of BM3D at different noise levels (noise
standard deviation σ ∈ [0,55]).

Zhang et al. (2018) proposed a rapid and flexible denoising
convolutional neural network FFDNet based on a noise level
map—an upgrade ofDnCNN. It takes an adjustable uniformor non-
uniform noise level map as part of the network input. The focus is
on removing Gaussian noise with different noise levels (σ ∈ [0,75])
and spatially varying noise. The network has four advantages: (1)
a single FFDNet can deal with different noise levels and spatially
varying noise; (2) the trade-off between noise reduction and detail
preservation is controlled based on the noise level map; (3) the
experimental results on AWGN data and real noisy data show
that FFDNet has potential in real noisy image denoising; (4) it
outperforms the DnCNN series for high noise σ>40.

Zhang et al. (2019) used U-Net to perform random noise
adaptive suppression of seismic data. Liu et al. (2022) used U-
Net and DnCNN network based on a residual network to
suppress interbedmultiple waves.The processing results of synthetic
data and real seismic data show that an effective wave can
be well-protected while the interference wave can be effectively
suppressed.

In 2014, Goodfellow proposed the generative adversarial
network (GAN), which is composed of a generator and a
discriminator. Using the adversarial training strategy, real noisy data
can be generated, effectively alleviating the problem of insufficient
pairs of training samples. The denoising method based on GAN
fits the data distribution through the adversarial learning between
the generator and discriminator, gradually eliminates the noise by
detecting the mapping between noise and noisy data, and finally
obtains the denoising result (Ian et al., 2014). GAN has two
limitations. One is that the distribution of the generative model
has no explicit expression and has poor interpretability. The other
is that the generator and discriminator need to update parameters
synchronously, that it is difficult to generate discrete data, and that
the training process is not stable enough (Liu et al., 2021).
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Traditional and deep learning methods have their own
advantages in denoising.These two types combined can complement
each other to greater advantage, which has been done frequently.
Huang’s (2018) research on wavelet neural network denoising
based on the sampling principle combines wavelet transform with
neural network. The activation function in the neural network is
replaced by the constructed spline wavelet scaling function. The
simulation results show that the wavelet neural network is superior
to traditional median filtering and wavelet denoising in terms of
denoising and detail preserving. Liu (2018) proposed MWCNN
(multi-level wavelet convolutional neural network) by combining
wavelet transform and U-Net network. The pooling layer and the
upper convolutional layer in the U-Net network are replaced by
the forward and inverse wavelet transforms respectively, which
avoids the information loss caused by pooling and can recover
more detailed textures from noisy data. Lv (2021) has researched
image denoising based onmulti-scale geometric analysis and neural
networks. He first combines shearlet transform with DnCNN to
increase the receptive field. The denoising data after training is
output directly by using a training strategy other than DnCNN and
obtains a better effect than DnCNN under high noise conditions.
The pooling and upper convolutional layers of U-Net are replaced
by the NSCT forward and inverse transforms, respectively, thus
avoiding the information loss and grid effect caused by the pooling
and upper convolutional layers and obtaining better denoising
results than U-Net. Wu et al. (2022) combined deep residual
network and stationary wavelet transform to suppress seismic
random noise; the residual module can avoid gradient dispersion
caused by too deep a network, and stationary wavelet transform
can extract data features efficiently. Using the low-frequency sub-
band and three high-frequency sub-bands decomposed by SWT in
different directions, the characteristics of seismic signal and noise
can be learned in different regions.The denoising results of synthetic
signals and real seismic data show that this method can suppress
seismic random noise better and the denoising results are better
than DnCNN (Wu et al., 2022).

Based on the above analysis, this study proposes a network
ST-hFFDNet to suppress seismic random noise (AWGN) based on
NSST and the improved FFDNet which integrates the respective
advantages of multi-scale geometric analysis and deep learning.
NSST is an efficient multi-scale and multi-direction feature
extraction method. The high and low frequency sub-bands
with different scales and directions can be obtained by NSST
decomposition, and the features of signal and noise can be learned
in different sub-regions.

In the name “ST-hFFDNet”, “ST” stands for NSST, “h” stands
for Huber norm, and “FFDNet” stands for the network proposed
by Zhang et al. (2018).

2 Shearlet transform and NSST
decomposition

Shearlet, which is a special case of composite dilation
wavelet, is developed by combining geometry and multi-scale
analysis through a composite dilation affine system (Labate et al.,
2005; Guo et al., 2004; Guo and Labate, 2007). In the shearlet
system, the scales are controlled by the dilation matrix, and

FIGURE 1
Adaptive conical frequency domain structure of two-scale
decomposition; R is the low frequency domain, C0 is the horizontal
cone domain, and C1 is the vertical cone domain.

the directions on different scales are controlled by the shearing
matrix. It can accurately decompose the high and low frequency
information, linear singularity, and corresponding position
information of the high-dimensional signal. It is a sparse
representation that is close to optimal for high-dimensional
signals (Han, 2013).

Kutyniok introduced the concept of cone in shearlet transform
(Feng and Xue, 2014) which can reduce bias with the refinement
of scale and with the increase of direction parameters, and Guo
(2006) further developed the cone into cone-adapted. The cone-
adapted domain is divided into three parts: the white square in
the center is the low-frequency domain R, the dark gray is the
horizontal taper domain C0, and the light gray is the vertical
taper domain C1. ξ1 and ξ2 represent the frequency axes shown
in Figure 1.

Due to down-sampling, shearlet transform will cause the
aliasing of the decomposed sub-band spectrum, resulting in the
weakening of direction selectivity and blurring of the image
edge. Furthermore, the translation invariance is lost, resulting in
the pseudo-Gibbs phenomenon or ringing effect, which affects
the denoising effect. NSST uses non-subsampled Laplacian
pyramid (NSLP) filters and non-subsampled shear directional
filters (SF) to enhance directional selectivity in multi-scale
decomposition and directional localization and to obtain translation
invariance.

The decomposition process of NSST in the frequency domain
consists of two steps:multi-scale decomposition andmulti-direction
decomposition.

Multi-scale decomposition is realized by the NSLP filter bank.
After J-level decomposition, the data matrix was decomposed
into a low frequency sub-band and J high frequency sub-
bands with the same size as the original data matrix. The
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FIGURE 2
Schematic diagram of NSST three-scale decomposition; NSLP is a non-subsampled Laplacian pyramid filter, SF is a non-subsampled shearlet direction
filter, and j is the decomposition scale.

FIGURE 3
FFDNet network architecture.

multi-directional decomposition is realized by SF filter bank
with direction and scale-varying, and the high-frequency sub-
bands at each scale are decomposed into different directional
sub-bands.

Directional sub-bands (2l + 2) can be obtained by l-level
directional decomposition of any scale high-frequency sub-band.
After J-scale decomposition, a total of ∑Jj=1(2

lj + 2) directional
subbands can be obtained. lj denotes the directional shear series of
scale j (Feng, 2014). Figure 2 shows the schematic diagram of NSST
decomposition at scale J=3.

3 Deep learning denoising technology

3.1 FFDNet network

Deep learning has been widely studied in data denoising, but,
in most methods, each network is only trained for each specific
noise level, such as MLP, CSF, and TNRD. Multiple networks
are required for denoising data with different noise levels and
cannot deal with spatially varying noise, limiting its application
in practical denoising. Zhang (2018) thus proposed a fast and
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FIGURE 4
ST-hFFDNet network architecture.

flexible denoising network, FFDNet, which improved DnCNN in
four aspects: ① in order to speed up the training and expand the
receptive field, the input data are reversibly down-sampled; ② to
achieve blind denoising, an adjustable noise level map is added to
the input of the network; ③ to improve generalization ability, the
orthogonal regularization method is used; ④ residual learning is
discarded.

Compared with BM3D and DnCNN_B, FFDNet has three
advantages:① various noise levels of σ∈ [0,75] can be handled using
a single network; ② the spatially varying noise can be handled by
specifying the non-uniform noise level map; ③ the computational
efficiency is higher than that of BM3D.

Figure 3 shows the FFDNet network architecture, consisting of
three parts: input, CNN network, and output. ① Input part: the
noisy image is reversibly downsampled into four sub-images, which
togetherwith the noise levelmap are used as the input of theCNN.②
CNN consists of three types of convolutional layers.The first is Conv
+ReLU, the intermediatemultiple layers are Conv + BN+ReLU, and
the final layer is the pure convolutional layer Conv. Zero padding is
used in each convolutional layer to keep the size of the feature map
constant. ③ Output part: the denoising results of four sub-images
are reversibly up-sampled to the same size as the noisy image size to
be the final denoising result.

In the intermediate multiple convolutional layers, batch
normalization (BN) is used to solve the gradient dispersion of the
deep network, stabilize the data distribution of each layer, improve
the computational efficiency, and reduce the dependence of model
parameters on initialization methods.

3.2 ST-hFFDNet network

Figure 4 shows the network architecture of random noise
suppression based on NSST and the improved FFDNet.

ST-hFFDNet is a deep learning network for image denoising.
The denoising principle is as follows. The noisy datasets and clean
datasets are decomposed by NSST to obtain sub-band images
of different scales and different frequency bands. Based on the
convolutional neural network, the complex relationship between the
clean and noisy sub-band images with different scales and frequency
bands is learned to reconstruct clean images.

The network shown in Figure 4 improves FFDNet in two ways:
① the sub-band images of the noisy image, decomposed by theNSST
Convolution module, are used as input to FFDNet. ② The Huber
norm is used, which combinesMSE (mean squared error) andMAE
(mean absolute error). When the residual value is small, MSE is
used, and when the residual value is large, MAE is used to reduce
the sensitivity to outliers, thereby improving the robustness of the
network (Zhang et al., 2020).

Inspired by Zhao et al. (2020), we integrated NSST
decomposition and reversible down-sampling processes into CNN
as convolutionmodules, not only streamlining themethodology but
also potentially mitigating errors introduced in these steps.

The network has three parts: input, CNN, and output. The
input part is the noisy seismic data. The CNN part contains the
focus module layer and 13 convolutional layers. The first layer
is a NSST convolutional layer, which is composed of 96 3 × 3
× 3 wavelet filters and by which a low-frequency sub-band and
multiple high-frequency sub-bands can be obtained. The second
layer is a reversible down-sampling layer plus the Nlm (noisy level
map) (Focus module+Nlm), which is composed of 385 2 × 2 × 96
wavelet filters.TheFocusmodule slices the sub-band images, and the
specific operation is to obtain a value every other pixel in an image,
similar to adjacent down-sampling, so that four complementary
sub-graphs are obtained without information loss (Glenn Jocher,
2020). The third layer is convolution plus the activation function
(Conv+ReLU), which is composed of 96 3 × 3 ×385 convolutional
filters and ReLU. The fourth to 13th layers are (Conv+BN+ReLU),
which are composed of 96 3 × 3 ×96 convolutional filters, BN,
and ReLU. The last layer is a pure convolutional layer (Conv),
which consists of three 3 × 3 × 96 convolutional filters. The
output of CNN is the final denoised image of size w× l× c; w
and l are the width and height of the sub-band image and c
is the number of channels of the noisy image. In this paper,
w=100, l=100, and c=3.

In this paper, the BSD500 dataset is used to train the proposed
network. First, the dataset is enhanced by flipping, rotating, scaling,
cropping, and translation, and the enhanced data set has 4,500
images. Then, the AWGN with noise level σ∈[0,75] is added to the
enhanced dataset to obtain the training dataset.The training dataset
is decomposed by NSST in three scales and eight directions, and
4,500 low-frequency images and 108,000 high-frequency images
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FIGURE 5
Comparison of four denoising methods for the linear in-phase axis time profile; Column 1 of Panel 5 is clean and noisy data (vertical axis time is 2 s,
and the horizontal axis track number is 500); Column 2 is the local details corresponding to the small blue box in the first column; Column 3 is the
denoising results of NSST; Column 4 is the DnCNN result; Column 5 is the FFDNet result; Column 6 is the proposed method result.

TABLE 1 PSNR, MSE, and SSIM after denoising linear in-phase axis simulated data.

Noise level σ = 30 (low noise) σ = 50 (high noise) σ = 70 (high noise) σ =90 (high noise)

Method Evaluation indicators

PSNR MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR MSE SSIM

NSST 39.18 7.85 0.9815 35.57 18.03 0.9666 33.03 32.37 0.9342 31.00 51.65 0.8697

DnCNN 38.62 8.93 0.9808 35.43 18.62 0.8960 30.07 63.99 0.7557 17.79 1081.00 0.1537

FFDNet 39.99 6.52 0.9838 37.03 12.88 0.9758 35.04 20.37 0.9693 33.51 28.98 0.9621

ST-hFFDNet 40.33 6.03 0.9922 37.58 11.35 0.9872 35.64 17.75 0.9817 33.93 26.31 0.9745
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FIGURE 6
Comparison of the denoising effect of complex inclined fault simulation data; Column 1 of Panel 6 is clean and noisy data (vertical axis time is 2 s,
horizontal axis track number is 200); Column 2 is the local details corresponding to the small blue box in the first column; Column 3 is the denoising
results of NSST; Column 4 is the DnCNN result; Column 5 is the FFDNet result; Column 6 is the proposed method result.

with different scales and directions are obtained, which are the
same size as the original images. A total of 117,000 training images
are obtained, including the original images. In each epoch, 64,000
pairs of size 100 × 100 patches are randomly clipped from these
images and corresponding clean images based on the same random
seed. The CBSD68 dataset is used to validate the image denoising
performance of the proposed method. The validation dataset is
obtained by adding AWGN of noise level σ∈[0,75] to the CBSD68
dataset.

The Adam algorithm (Kingma and Ba, 2015) is used
to optimize the ST-hFFDNet model by minimizing the
loss function (1).

Lδ(Θ,yi,Mi,xi) =
{
{
{

(F(yi,Mi;Θ) − xi)
2,

δ|F(yi,Mi;Θ) − xi| −
1
2
δ2,
|F(yi,Mi;Θ) − xi| ≤ δ
|F(yi,Mi;Θ) − xi| ≥ δ

}
}
}

L(Θ) = 1
2N

N

∑
i=1

Lδ(Θ,yi,Mi,xi),

(1)

where Mi is the noise level map, Θ is the model weight
parameters and bias parameters, yi is the noisy image, xi is the
clean image, F(yi,Mi;Θ) is the predicted denoised image, δ is
the residual threshold, N is the number of patches randomly
clipped in each epoch, Lδ is the Huber norm, and L(Θ) is the
loss function.
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TABLE 2 PSNR, MSE, and SSIM after denoising simulated data for a complex inclined fault.

Noise level σ = 30 σ = 50 σ = 70 σ =90

Method Evaluation indicators

PSNR MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR MSE SSIM

NSST 31.16 49.78 0.9323 28.13 100.01 0.8817 25.99 163.71 0.8282 24.32 240.48 0.7736

DnCNN 30.79 54.21 0.9347 27.97 103.77 0.8913 25.20 196.99 0.7944 18.55 907.98 0.4533

FFDNet 31.66 44.37 0.9413 29.15 79.08 0.9165 27.36 119.42 0.8908 25.91 166.76 0.8633

ST-hFFDNet 31.75 43.46 0.9511 29.48 73.30 0.9290 27.71 110.17 0.9032 26.09 159.99 0.8697

TABLE 3 Comparison of running time (in seconds) of three deep learning methods for denoising color images with size 256 × 256, 512 × 512, and 1,024
× 1,024.

Method
256 × 256 512 × 512 1024 × 1024

CPU time GPU time CPU time GPU time CPU time GPU time

DnCNN 1.2 0.041 5.6 0.149 19.5 0.594

FFDNet 0.3 0.019 1.5 0.046 6.0 0.154

ST-hFFDNet 0.3 0.021 1.6 0.051 6.4 0.171

The setting of hyper-parameters mainly involves the initial
learning rate and small batch size. The initial learning rate is set to
10−3, and during the training process, Adam adaptively adjusts the
learning rate based on the second-order momentum of the gradient.
The weights with greater update rate will have a smaller learning
rate, and the weights with smaller update rates will have a larger
learning rate, both in order to avoid the frequently updated weight
parameters being affected by a single abnormal sample and to learn
rare sample information at the same time. The mini-batch size is set
to 64, and the rest of the hyper-parameters adopt the default setting
values of the Adam algorithm. The ST-hFFDNet models are trained
in aMATLAB (R2018b) environmentwith theMatConvNet package
and an Nvidia GeForce GTX 1660 GPU. The training of a single
model can be done in approximately 15 h.

4 Numerical experimentation

4.1 Linear in-phase axis time profile

Figure 5 shows the comparison of denoising results of the four
methods on the simulated data of the linear in-phase axis time
profile. The top image in column 1 of Figure 5 is the clean data (2 s
on the vertical axis and 500 traces on the horizontal axis), and the
other four images, from top to bottom, are with AWGN of σ=30,
50, 70, and 90. The second column of Figure 5 is the local details
corresponding to the small blue box in the first column. Columns
3–6 of show the denoising results of NSST, DnCNN, FFDNet, and
the proposed method.

For the case of low noise (σ≤40), as shown in the second row
of Figure 5, there is little difference between the four methods from
the subjective vision, PSNR (peak signal-to-noise ratio),MSE (mean
square error), and SSIM (structural similarity) indicators. However,
the denoising effect of the proposedmethod is better than that of the
other three methods, followed by FFDNet, NSST, and DnCNN.

In the case of high noise (σ> 40), as shown in rows three to five
of Figure 5, the difference between the four methods is gradually
enlarged as the noise increases. The noise level range of DnCNN
is [σ≤ 55], and the denoising effect is very good at low noise
but becomes very poor at high noise of σ=50; there is almost no
denoising effect when σ=90. However, the other three methods have
obvious denoising effects on high noise. From the subjective vision
and objective indicators (PSNR, MSE, and SSIM), the denoising
effect of the proposed method is better than that of the other three
methods. The evaluation metrics PSNR, MSE, and SSIM for linear
in-phase axis simulation data denoising are shown in Table 1.

4.2 Simulation data on complex inclined
fault

Figure 6 compares the denoising results of the four methods
on simulated data of the complex inclined fault. The top image in
column 1 of Figure 6 is the clean one (2 s on the vertical axis and 200
traces on the horizontal axis), and the other four images, from top
to bottom, are those with AWGN of σ=30, 50, 70, and 90. Column
2 shows the local details corresponding to the small green box in
the first column. Columns 3–6 show the denoising results of NSST,
DnCNN, FFDNet, and the proposed method.
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FIGURE 7
Comparison of the denoising effect for the real post-stack seismic profile.

In the case of low noise (σ≤40) (second row of Figure 6)
from subjective vision and objective evaluation indicators (PSNR,
MSE, and SSIM), the four methods are still little different, and
the denoising effect is, in order, from good to poor: the proposed
method, FFDNet, NSST, and DnCNN.

For high noise (σ> 40) (rows three to five of Figure 6), the
difference between the fourmethods increases as the noise increases.
When σ=70, the denoising effect of DnCNN is not good, and when
σ=90, the denoising effect is very poor. In terms of subjective vision
and objective evaluation indicators (PSNR, MSE, and SSIM), the
denoising effect of the other three methods is in order from good
to poor: the proposed method, FFDNet, and NSST.

PSNR, MSE, and SSIM evaluation metrics are shown in Table 2.
Table 3 lists the running time results of DnCNN, FFDNet, and

the proposedmethod for denoising color images with size 256 × 256,
512 × 512, and 1,024 × 1,024. The evaluation was performed in a
MATLAB (R2018b) environment on a computer with a four-core

Intel(R)Core(TM) i3-10100CPU@3.6 GHz, 16 GBof RAM, and an
Nvidia GeForce GTX 1660 GPU. As can be seen from the table, the
overall time of DnCNN is about thrice that of the FFDNet method.
The running time of the proposed method is generally comparable
to that of the FFDNet method.

4.3 Real seismic data

The trained ST-hFFDNet model is used to denoise the real
seismic data. Figure 7 compares the denoising effect for real post-
stack seismic profile. The first row of Figure 7 shows the post-stack
seismic profile and the denoising results of the four methods. The
second row is the local detail corresponding to the small blue box in
the first row. Rows three to four show the noise removed by the four
methods and the local details of the removed noise.
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FIGURE 8
Denoising results of four methods for linear in-phase axial simulated data and corresponding amplitude spectra.

FIGURE 9
Denoising results of four methods for the real post-stack seismic profile and corresponding amplitude spectra.

Row 1 of the figure is the real post-stack seismic profile and
denoising results of NSST, DnCNN, FFDNet, and the proposed
method. Row 2 is the local detail corresponding to the small blue box
in row1. Row3 is the noise removed byNSST,DnCNN, FFDNet, and
the proposed method. Row 4 is the local noise detail corresponding
to the small blue box in row 1.

Column 1 of Figure 7 shows the post-stack seismic profile (top)
and local details (bottom). Column 2 is the denoising result of NSST,
the local details, the removed noise, and the local details of the
removed noise. Column 3 shows the results and details of DnCNN.
Column 4 shows the results and details of FFDNet, and Column 5
shows the results and details of the proposed method.

It can be seen from Figure 7 that the denoising results of NSST
(column 2), DnCNN (column 3), and FFDNet (column 4) are not
obviously different and are slightly blurred. The denoising results of
the proposedmethod (column 5) are significantly improved, and the
subjective visual inspection results are better and the details clearer
than that of the other three methods.

In addition, from the two aspects of noise removal and
preservation of the stratum structure details, we can see from the
noise removal of the four methods that: (1) NSST removes certain
stratum structure details while de-noising, and its black noise map
indicates that the degree of noise removal is lower; (2) DnCNN
removes more details of the stratum structure while denoising; (3)
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FIGURE 10
Change of model loss function with the number of training epochs.

FFDNet removes less stratum structure details; (4) the proposed
method removes the least stratum structure details while denoising,
indicating that the proposed method is better than the other three
in denoising and preserving stratum structure details.

Figure 8 shows the denoising results of four methods for linear
in-phase axial simulated data and the corresponding amplitude
spectra. The upper part of Figure 8, from left to right, is the noisy
image, the clean image, and the denoising results of the four
methods, respectively. The lower part of Figure 8 is the amplitude
spectra corresponding to the upper part. Compared with the
amplitude spectrum of the clean image, it is evident that the
amplitude spectrum of the proposed method is closest to that of the
clean image, the spectrumof FFDNet is slightly inferior to that of the
proposed method, the spectrum of NSST is more different than that
of the clean image, and the spectrumofDnCNN is themost different
to that of the clean image. From PSNR and MSE of four methods,
the order in advantage for image denoising is the proposed method,
FFDNet, NSST, and DnCNN.

The upper part of Figure 8 is the noisy image (σ=70), the clean
image, and the denoising results of NSST, DnCNN, FFDNet, and
the proposed method. The lower part is the amplitude spectra
corresponding to the upper part.

Figure 9 shows the amplitude spectra of the real post-stack
seismic profile. The upper part of Figure 9, from left to right, is the
seismic profile and the denoising results of the four methods. The
lower part of Figure 9 is the amplitude spectra corresponding to
the upper part. From the amplitude spectra, it is evident that the
difference among the fourmethods is not obvious, but the amplitude
spectrum of DnCNN is better than that of other three methods.
Visually, the order of advantage for the amplitude spectra of the other
three methods is the proposed method, FFDNet, and NSST. From a
spectra point of view, the superiority of DnCNN over the proposed
method and FFDNet may be related to the low noise level of real
post-stack seismic profile. Zhang et al. (2018) observed that FFDNet
is slightly worse than DnCNN when noise levels are low (σ ≤ 25)
but gradually outperforms DnCNN as noise levels increase (σ> 25),
which may be due to the trade-off between receptive field size and
modeling ability.

The upper part of Figure 9 is the seismic profile and the
denoising results of NSST, DnCNN, FFDNet, and the proposed

method. The lower part is the amplitude spectra corresponding to
the upper part.

Figure 10 shows the change curve of the model loss function
with the number of training epochs. As can be seen from the figure,
at the beginning of training, the loss function value was 1.35, and
after 58 epochs of training, the loss function value dropped to 0.03,
with a decline rate of 98%.

5 Conclusion and prospect

The proposed denoising method combines the advantages of
NSST, Huber norm, and FFDNet. The seismic signal and random
noise are extracted from multi-scale and multi-direction high and
low-frequency sub-bands decomposed by NSST, and the joint
denoising of multi-scale geometric analysis and deep learning is
realized. The joint denoising method can suppress high-frequency
noise while retaining more edge details, and the subjective vision
and objective evaluation indicators are better than the denoising
methods of other multi-scale geometric analyses combined with
deep learning. The introduction of BN into the network alleviates
the gradient diffusion problem caused by the increase of network
layers, and it has been widely used in the field of denoising. The
adjustable noise level map can effectively improve the denoising
performance of different noise levels, and its blind denoising effect
is better than the traditional optimal denoising method BM3D.
The Huber norm, introduced into the loss function, can effectively
reduce the sensitivity of the network to abnormal data and improve
its robustness. The proposed method in this paper involves deep
learning, which has shortcomings of depending on large datasets
and a time-consuming training process. If the proposed method
is combined with transfer learning technology, it can effectively
reduce the dependence on large data sets and further improve
computational efficiency, which will be our next research direction.
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