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This paper aims to achieve bedrock geologic mapping in the overburden area
using big data, distributed computing, and deep learning techniques. First, the
satellite Bouguer gravity anomaly with a resolution of 2′×2′ in the range of E66°-
E96°, N40°-N55° and 1:5000000 Asia-European geological map are used to
design a dataset for bedrock prediction. Then, starting from the gravity anomaly
formula in the spherical coordinate system, we deduce the non-linear functional
between rock density ρ and rock mineral composition m, content p, buried
depth h, diagenesis time t and other variables. We analyze the feasibility of
using deep neural network to approximate the above nonlinear generalization.
The problem of solving deep neural network parameters is transformed into
a non-convex optimization problem. We give an iterative, gradient descent-
based solution algorithm for the non-convex optimization problem. Utilizing
neural architecture search (NAS) and human-designed approach, we propose
a geological-geophysical mapping network (GGMNet). The dataset for the
network consists of both gravity anomaly and a priori geological information.
The network has fast convergence speed and stable iteration during the training
process. It also has better performance than a single neural network search or
human-designed architectures, with themean pixel accuracy (MAP) = 63.1% and
the frequency weighted intersection over union (FWIoU) = 42.88. Finally, the
GGMNet is used to predict the rock distribution of the Junggar Basin.

KEYWORDS

satellite gravity anomaly, deep learning, convolutional neural networks, geological
mapping, Junggar basin

1 Introduction

Cenozoic loose sedimentsmask the underlying geological information of the underlying
bedrock. Using geophysical detection as the forerunner, combined with the constraints of
prior geological-geophysical information, the overburden can be well stripped, revealing
deep hidden structures and bedrock (Deng et al., 2019). When using the Bouguer gravity
anomaly to map the bedrock in the overburden area, it is necessary to separate the
gravity anomaly to obtain the residual field of the target depth. We use edge detection
technology to obtain the physical boundary of the remaining Bouguer gravity anomaly.
Then, the interpreter combined the existing geological prior information and previous
interpretation experience to screen each physical property boundary one by one, and infer
the corresponding geological body boundary, stratigraphic age, lithology, etc. This problem
is summed up in two steps: accurate description of the outline of the geological body;
determining which stratigraphic age and lithology the geological body belongs to. The
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method require very high geological background knowledge of the
interpreter. Due to the limitation of the amount of data, it is difficult
to integrate the geological and geophysical data of the entire area.

The successful application of artificial intelligence technology
in the field of machine vision provides us with a new research
idea. Image semantic segmentation is performing a similar task:
segmenting the target and then classifying the resulting object at the
pixel level. This paper aims to propose an end-to-end convolutional
neural network for overburden area mapping using satellite gravity
big data and large-scale regional geological information.

2 Geological setting

The Junggar Basin and its surrounding basin-mountain belt
are located in the triangle zone of the Kazakhstan plate, the
Siberian plate and the Tarim plate. Since the Paleozoic Era, it
has undergone tectonic evolutionary processes such as oceanic
expansion, subduction and decay of the oceanic shell of the
ancient ocean basin, collision, and intraplate movement (Jinyi, 2004;
Wenjiao et al., 2006; Jian et al., 2014; Luo et al., 2016). Most of the
existing researches have focused on the well-exposed bedrock areas
in East andWest Junggar.Thehinterland of the basin and the shallow
cover area between East and West Junggar, which is covered by
Middle-Cenozoic loose sediments, have a relatively low level of basic
geological work. The lack of basic geological data has caused some
important basic geological issues to remain unresolved. Therefore,
this paper selects the Junggar Basin as the study area and predicts the
overburden area in the hinterland of the Basin through deep neural
network, so as to provide a reference for subsequent studies.

3 Methods and data

3.1 Theory

Gravity anomalies are closely related to the density and
spatial distribution of the earth’s internal matter. Heck et al. (2007)
proposed that in the spherical coordinate system the gravity can be
expressed as:

g = Gρ∭
v

r′2(r− r′ cos ψ)cos φ′dr′dφ′dλ′

𝓁3
(1)

where l is the Euclidean distance between the observation point P (φ,
λ, r) and the source point Q (φ′, λ′, r′); and ψ is the angle between
the position vectors of P and Q; G is the gravitational constant, ρ is
the density, φ is the latitude, λ is the longitude, and r is the radial
distance.

𝓁 = √r′2 + r2 − 2r′r cos ψ (2)

cos ψ = sin φ sin φ′ + cos φ cos φ′ cos(λ′ − λ) (3)

For

u =
r′2(r− r′ cos ψ)cos φ′

𝓁3
(4)

we have

g = Gρ∭
v

udr′dφ′dλ′ (5)

Density ρ can be expressed as a nonlinear function of variables
such as rock mineral composition m, content p, burial depth h, rock
formation time t, etc.

ρ = v(m,p,h, t) (6)

Inserting Eq. 6 into Eq. 5 yields

g = G ⋅ v(m,p,h, t) ⋅∭
v

udr′dφ′dλ′ (7)

The above integral equation can be abstracted as the following
nonlinear functional:

v = f(u,g) (8)

where u is related to the spatial location, g is the gravity anomaly, and
v is related to the rock properties.This nonlinear functional defines a
nonlinearmapping relationship from the spatial location and gravity
anomaly to lithology.

According to the universal approximation theorem (Cybenko,
1989; Hornik et al., 1989), a feedforward neural network with
a sufficient number of hidden units and a nonlinear activation
function can approximate any Borel function from one finite-
dimensional discrete space to another with arbitrary accuracy. In
other words, a deep convolutional neural network can be used to
approximate the mapping defined in Eq. 8.

In general, a convolutional neural network of depth n can be
represented as:

y = f(n)( f(n−1)(⋯ f(2)( f(1)(x;θ)))) = f(x;θ) (9)

The data sample x (gravity anomaly) is fed into a cascading n-
layer nonlinear transform network to obtain the desired output y
(lithologic distribution). The parameter θ is the learning parameter
of this nonlinear transformation. We use an optimizing the
algorithm to find θ so that the neural network can maximize the
approximation of the mapping defined in Eq. 8.

3.2 Gradient-based learning

The parametric model y = f (x; θ) defines a Conditional
probability distribution p (y | x; θ).We use the principle ofmaximum
likelihood to estimate it. The maximum likelihood estimator for θ is
then defined as

θML = argmax
θ

pmodel(𝕐|𝕏;θ)

= argmax
θ

m

∏
i=1

pmodel(y
(i)|x(i);θ)

(10)

where 𝕏 = {x(1),⋯,x(m)} is a set of m examples. The pmodel (y | x;
θ) is a parametric family of probability distributions indexed by θ
and it maps any configuration x to a real number estimating the true
probability pdata (y | x).
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The product of many probabilities is prone to numerical
underflow, which is not easy to calculate. We observe that the
logarithm of the likelihood does not change its arg max, but
conveniently transform the product into a summation:

θML = argmax
θ

m

∑
i=1

log pmodel(y
(i)|x(i);θ) (11)

Dividing by m, we obtain the expectation with respect to the
empirical distribution define by the training data as the estimation
criterion.

θML = argmax
θ
𝔼x∼p̂data log pmodel(y|x;θ) (12)

Deep neural network learning is estimating the parameter θ
using the principle of maximum likelihood. The essence of this
optimization problem is to maximize the log-likelihood, that is,
to minimize the negative log-likelihood, which is equivalent to
minimizing the cross entropy between the empirical distribution
defined by the training set and probability distribution defined by
model (Goodfellow et al., 2016).

The cost function is given by

J(θ) = −𝔼x,y∼p̂data log pmodel(y|x;θ) (13)

In order to enhance the generalization ability of the neural
network and avoid overfitting during the optimization, we add a
parameter regularization term to the cost function to obtain a new
objective function:

̃J(θ;x,y) = −𝔼x,y∼p̂data log pmodel(y|x;θ) + αΩ(θ) (14)

The problem of minimizing the objective function is a
nonconvex optimization problem. This means that we cannot
accurately obtain the global optimal solution of the problem.
Therefore, deep neural network training uses an iterative, gradient-
based optimization method to obtain a local optimal solution
that makes the objective function sufficiently small. The stochastic
gradient descent (SGD) algorithm is employed to solve the above
nonconvex optimization problem.

We decompose the cross-entropy cost function as a sum over
training examples of some per-example loss function.

J(θ) = −𝔼x,y∼p̂data log pmodel(x
(i),y(i),θ) = − 1

m

m

∑
i=1

log pmodel(x
(i),y(i),θ)

(15)

For these additive cost function, the gradient of the cross-
entropy cost function is:

∇θJ(θ) = −
1
m

m

∑
i=1
∇θ log pmodel(x

(i),y(i),θ) (16)

The above gradient is an expectation that we can approximately
estimate using a small set of samples. On each step of the
SGD algorithm, we can sample a minibatch of examples B =
{x(1),⋯,x(m

′)} drawn randomly from the training set. The estimate
of the gradient is formed as

gradient = − 1
m′
∇θ

m′

∑
i=1

log pmodel(x
(i),y(i),θ) (17)

The stochastic gradient descent algorithm then follows the
estimated gradient downhill:

θ← θ− ε ⋅ gradient (18)

where ε is the learning rate.
The stochastic gradient descent algorithm is sometimes very

slow or unreliable in the learning process. The method of stochastic
gradient descent with momentum (SGD with momentum) is
designed to accelerate learning (Robbins and Monro, 1951).
SGD with momentum can avoid training into saddle points
(Lee et al., 2016) and improve network generalization performance
(Hardt et al., 2015; Wilson et al., 2017). SGD scales the gradient
uniformly in all directions to determine the descending step size,
which can be particularly harmful to ill-conditioned problems.
Therefore, SGD needs to frequently modify the learning rate
according to the actual situation. To address this issue, adaptive
methods such as Adam (Kingma and Ba, 2015), Adagrad
(Duchi et al., 2011), and RMSprop (Tieleman and Hinton, 2012)
have been proposed that adaptively correct the learning rate during
training.

Although the convergence speed and generalization ability of
Adam and other adaptive methods are better than SGD in the initial
stage of training, their performance in the convergence part has
stagnated. A more natural strategy is to use the Adam algorithm to
initialize the training, which allows the model to converge quickly
and then convert to the SGD with momentum when appropriate
(Keskar and Socher, 2017).

3.3 Datasets

The satellite Bouguer gravity data are downloaded from
the website (https://bgi.obs-mip.fr/data-products/grids-and-
models/wgm2012-global-model/) with the resolution of 2′×2′

and the range of E65°-95°, N40°-55°. We obtained the regional
gravity anomaly by upward continuing the satellite Bouguer
gravity anomaly (Figure 1A) to 10 km. We subtract the regional
field from the total field to obtain the residual gravity anomaly
(Figure 1B). Considering that the resolution of the satellite Bouguer
gravity anomaly data used in this paper is 2′×2′, the matching
1:5000000 Asia-European geological map (Figure 2) is used as a
priori information for data annotation. In order to accurately depict
the boundary contours of the geologic body and accurately classify
it by stratum, we annotate the training data at the pixel level. The
labeling map adopts the index map mode. The specific categories
and index values are shown in Table 1.

In order to take into account the semantic segmentation
accuracy of both small and large targets and provide more
global semantic information to the network, we use a multi-
scale sliding window clipping method (Table 2) to clip the data
of the entire region. In order to preserve the details of the
remaining gravity anomalies, all image sizes are 2048×2048 pixels.
A total of 61 samples with bedrock outcrops less than 10% of the
total area of the whole map were used as a test set. There are
475 effective samples participating in network training, 15% are
randomly selected as the verification set, and the remaining are the
training set.
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FIGURE 1
(A) The satellite Bouguer gravity data of the study area with the resolution of 2′×2′ and the range of E65°-95°, N40°-55°. (B) The residual gravity
anomaly of the study area: The regional gravity field is obtained by upward continuing the satellite Bouguer gravity data to a depth of 10 km. The
residual gravity anomaly is subsequently calculated by subtracting the regional gravity field from the original satellite Bouguer gravity anomaly.

4 Deep convolutional neural network
architecture

The general semantic segmentation network mostly pre-trains
a backbone on the Imagenet dataset as a feature extractor to
obtain the feature map of the image, followed by the feature fusion
module and semantic segmentation head to achieve pixel-level
segmentation. The shape of satellite gravity anomaly corresponding
to each lithology is not the same, but the amplitude iswithin a certain
range. Our segmentation network should not be segmented based
on the outline of the target, but rather on the commonality of colors
in the same category and the relative position relationship between
different categories. In this way, we cannot directly use the existing
semantic segmentation network, but should design a personalized
network for the task data set.

Manually designing deep neural networks involves the
selection of hyperparameters such as the depth of the hidden

layer, the width of the network, and the downsampling rate,
which is extremely challenging. Neural architecture search
(NAS) can help us solve the above problems. Utilizing
neural architecture search and human-designed approach, we
designed a geological-geophysical mapping network (GGMNet)
(Figure 3A).

4.1 Feature encoder

The feature encoder uses a convolution operation to encode
the input 3-channel RGB image into a high-dimensional feature
map with 1/8 pixel size and 96 channels (Oktay et al., 2018). It
consists of three convolution modules, each of which contains a
convolution with the kernel size 3×3 and stride = 2, followed by a
batch normalization layer (BN) (Ioffe et al., 2015) and a rectification
linear unit (ReLU).
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FIGURE 2
The data annotation of the study area: Considering that the resolution of the satellite Bouguer gravity anomaly data used in this paper is 2′×2′, the
matching 1:5000000 Asia-European geological map is used as a priori information for data annotation.

TABLE 1 Category and index value of annotations.

Stratum/LithologyArchean
(Ar)

Proterozoic
(Pt)

Cambrian
(∈)

Ordovician
(O)

Silurian
(S)

Devonian
(D)

Carboniferous
(C)

Permian
(P)

Jurassic
(J)

Granite Cenozoic
(Q,N,E)

index 0 1 2 3 4 5 6 7 8 9 255

R 255 177 4 126 152 166 179 227 255 73 218

G 178 153 249 254 215 76 218 178 247 251 76

B 255 99 7 127 29 76 217 28 102 250 250

Percentage
(%)

0.6 7.2 10.3 4 7 20.3 30.9 2.1 2.3 15.3 —-

TABLE 2 Multi-scale sliding window clipping method.

Crop window size Sliding interval Number of samples Image pixel size

1°×1° 1° 450 2048×2048

5°×5° 2.5° 55 2048×2048

10°×10° 2.5° 27 2048×2048

15°×15° 5° 4 2048×2048

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2024.1407173
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2024.1407173

FIGURE 3
(A) GGMNet Network architecture consists of five modules: A feature encoder to encode the input 3-channel RGB image into a high-dimensional
feature map. A multi-resolution feature extraction module (MRFEM) is obtained by searching directly on the target dataset to extract coarse and fine
features. Attention Refinement Module is used to refine the features of each stage. A Feature Fusion Module to fuse the features of the three paths. The
semantic segmentation module is a matrix with the same size as the original image, and the number of channels is equal to the number of categories.
(B) Attention Refinement Module (ARM) employs global average pooling to remove the redundant information of the feature map. (C) Feature Fusion
Module: We concatenate branch outputs, apply batch normalization for scale balance, transform to a feature vector via global pooling, and compute a
1x1 convolution-based weight vector for feature re-weighting, effectively selecting and combining features.

4.2 Multi-resolution feature extraction
module

In semantic segmentation task, spatial location information,
contextual semantic information, and receptive fields are crucial
for segmentation accuracy. The increase of network depth can
obtain better contextual semantic information.The skip connections
(He et al., 2015; 2016) can enrich spatial location information. The
network depth, the size of the convolution kernel, and the position
of the skip connections will affect the receptive field of the feature
map used for segmentation. Increasing the width of the network
can improve the receptive field of the feature map, at the same
time, the number of network parameters also increase dramatically.
With limited data sets, it is difficult to train a large network with
strong generalization capabilities. It is a challenging task tomake the
network have rich contextual semantic information, precise spatial
location information, and sufficient receptive field, which is the
ultimate goal of network design.

With the increase of GPU computing power, neural architecture
search algorithms are more and more widely used. The Efficientnet
(Tan et al., 2019), MobilenetV2 (Sandler et al., 2018), Auto-
DeepLab (Liu et al., 2020) are all designed using neural architecture
search algorithms. They have achieved good performance in image
classification, detection, segmentation and other tasks. We adopt

the neural architecture search algorithm (Zoph and Quoc, 2016;
Brock et al., 2017; Bender et al., 2018; Pham et al., 2018; Gong et al.,
2019) to designmulti-resolution feature extractionmodule. Inspired
by Chen, (2019), a multi-resolution feature extraction module
(MRFEM) is obtained by searching directly on the target dataset.
In order to take into account the experience of manual design and
the flexibility of neural architecture search, we designed the search
space consists of 5 operators (Table 3).

The zoomed convolution, proposed byChen, (2019), reduces the
size of the input featuremapby bilinear downsampling, followed by a
convolution operation, and finally restores the output to the original
input size by bilinear upsampling.This special design enjoys a lower
calculation amount and 2 times larger receptive field compared to
standard convolution.

During the neural network search, we fix the network depth
of a multi-resolution branch and simultaneously search the paths
of three resolution branches with the sampling rates of 1/8, 1/16,
and 1/32. For each layer of a single branch, the expansion rate of
the network width can be any value in {2, 4, 6, 8}. The operation
type can be any one in the search space, and the position of the
skip connections can be selected arbitrarily. Since we are more
concerned with the accuracy of network segmentation, we use
weighted bootstrapped cross-entropy loss function in the search
process.
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TABLE 3 Search space and operators.

Search space Operators

Skip Connections Identity

3×3Conv Conv2d (3×3)+ BatchNorm2d + ReLU

5×5Conv Conv2d (5×5) + BatchNorm2d + ReLU

zoomed 3×3Conv bilinear downsampling + 3×3Conv +
bilinear upsampling

zoomed 5×5Conv bilinear downsampling + 5×5Conv +
bilinear upsampling

Downsampling with Conv2d (3×3) Conv2d (3×3) with stride of 2 +
BatchNorm2d + ReLU

Pooling Maxpool

4.3 Attention refinement module

In order to provide the maximum receptive field with global
context information,we useAttentionRefinementModule (Yu et al.,
2018) to refine the features of each stage. Attention Refinement
Module (ARM) employs global average pooling to remove the
redundant information of the feature map (Figure 3B). It extracts
the global context semantic information through the convolution
operation with a kernel size of 1×1.The attention vector is calculated
through the sigmoid function which is merged into the output to
guide the feature learning during the training process.

4.4 Feature fusion module

The features of the three paths are different in level of
feature representation. The 1/8 resolution branch represents the
relatively macroscopic and superficial semantic information, while
the 1/16 and 1/32 resolution branches focus on high-level
semantic information such as microscopic details and inter-pixel
relationships. Therefore, we cannot simply sum up these features.
Moreover, we also need to introduce spatial position information
for each resolution branch to achieve precise pixel positioning.
We employ the skip connection to integrate the original image
information into the output feature map, forming a new feature map
that contains rich semantic information and accurate spatial location
information.Therefore, we employ a specific Feature FusionModule
(Figure 3C) (Yu et al., 2018) to fuse these features.

We first concatenate the output features of each branch and
then utilize the batch normalization to balance the scales of the
features. Next, we use global pooling to transform the concatenated
feature to a feature vector. We compute a weight vector through the
convolution operation with a kernel size of 1×1. The weight vector
can re-weight the features, which amounts to feature selection and
combination.

4.5 Semantic segmentation head

Theoutput of the semantic segmentationmodule is amatrixwith
the same size as the original image, and the number of channels
is equal to the number of categories. Each element of the matrix
stores the category of the current pixel. A bilinear up-sampling of
the feature map after feature fusion is required to restore its size to
the original map. We bilinear upsample the 1/8 resolution feature
map to 1/4 size, and cascade it with the original 1/4 resolution feature
map through a long skip connection.The featuremap is sequentially
processed with the deformable convolution (Dai et al., 2017) with a
kernel size of 3×3, batch normalization layer (BN) and rectification
linear unit (ReLU). By doing the same operation on the feature map
with 1/4 and 1/2 resolution, the final feature map with the same size
as the original pixel is obtained. The network output is converted to
pixel classification results by a 1×1 convolution layer.

5 Experiments and discussion

In all experiments, we use Nvidia GeForce GTX 2080Ti GPU,
CUDA 10.0, and CUDNN V7. The deep learning framework is
PyTorch 1.4.0. Firstly, we introduce the implementation details
of GGMNet and the evaluation strategy. We conducted ablation
experiments to study the contribution of each component to the
network performance. Finally, we compare GGMNet with the
current well-performing excellent networks.

5.1 Implementation details

We trained all the models directly on the target data set without
pre-training. We initialized the network weight parameters by
random initialization.We use 4GPUs for parallel training, with each
card having a batch size of 4 and the training period is 600 epochs.
The specific training details are as follows.

5.1.1 Data augmentation
In general, successful neural networks have millions of

parameters. It needs a large amount of data to drive the optimization
of the network parameters. In reality, there is not as much data as
we need. When the training sample is limited, we will adopt a
data augmentation strategy during neural network training. Data
augmentation can increase the data diversity, prevent overfitting
of the training process, and make the neural network robust and
generalizable. In this paper, we use random cropping (1,024×1,024),
random Gaussian noise (1%–10%), random flip (horizontal,
vertical), random rotation (0°–180°), random translation, random
contrast increase or decrease (lower=0.5, upper=1.5), and random
brightness variation (lower=0.8, upper=1.2).

5.1.2 Loss function
The proportions of the various strata vary considerably in the

actual geological problem (Table 1). It leads to a serious category
imbalance in the training data.We adopt the weighted bootstrapped
cross-entropy loss function to solve the category imbalance problem
(Wu et al., 2016; Bulo et al., 2017; Yang et al., 2019).We calculate the
category weight wi based on the proportion of each category in the
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dataset. Then, we obtain the weighted cross-entropy loss for each
pixel and we sort the pixels based on the cross-entropy loss. We
only backpropagate the errors in the top-K positions (hard example
mining). We set K = 0.15 N, whereN is the total number of pixels in
the image.Moreover, we weigh the pixel loss based on instance sizes,
puttingmore emphasis on small instances. Specifically, the weighted
bootstrapped cross-entropy loss is defined by:

𝓁 = − 1
K

N

∑
i=1

wi ⋅ 1{pi,yi < tK} ⋅ log pi,yi (19)

where yi is the target class label for pixel i, pi,yi is the predicted
posterior probability for pixel i and class yi, and 1{x} = 1 if x is true
and 0 otherwise. The threshold tK is the posterior probability of the
top-K pixel in descending order according to the loss function.

5.1.3 Learning rate policy
We train the neural network by using both Adam and SGD

with momentum. When using the Adam algorithm, we set the
initial learning rate lr = 0.001 and the learning rate will be
adjusted adaptively during the training.When switching to the SGD
algorithm with momentum, the WarmupMultiStepLR learning rate
policy is used, with the initial learning rate is the final learning rate of
the previous phase,momentum=0.9, weight_decay = 5e-4.Warmup
was performed for the first 5 epochs, after which the learning rate is
decreased by a factor of 10 for every 50 epochs.

5.2 Evaluation metrics

For the problem of bedrock prediction in covered areas, which
is the focus of this article, it can be formulated as a semantic
segmentation task. The metrics employed to evaluate performance
include Mean Pixel Accuracy (MPA) and Intersection over Union
(IoU). Given the category imbalance present in our dataset, to
more objectively assess the network’s predictive efficacy, in addition
to the aforementioned evaluation criteria, we use Mean Pixel
Accuracy (MPA) and Frequency Weighted Intersection over Union
(FWIoU) as the evaluation metrics in order to evaluate the network
performance more objectively.

Mean Pixel Accuracy is the average ratio for all categories of
samples between the number of correctly classified pixels and the
total number of pixels.

MPA = 1
k

k−1

∑
i=0

pii
∑k

j=0
pij

(20)

Where k is the total number of categories; pij is the number of
pixels of class i but is predicted to be class j.

FWIoU is a weighted summation on the IOUi of each category
and its weight wi. Where wi is calculated according to the frequency
of each class in the data set.

IoU =
area(groundtruth) ∩ area(prediction)
area(groundtruth) ∪ area(prediction)

(21)

FWIoU =
k−1

∑
i=0

wi · IoUi (22)

Under the aforementioned training strategy and initial
conditions, the proposed GGMNet behaves stably during the

training process (Figure 4). At the beginning of training, the
Adam algorithm adaptively adjusts the learning rate, the network
converges rapidly, the loss function curve decreases linearly
(Figure 4A), and the frequency-weighted cross-parallel curve
rises rapidly (Figure 4B). When the loss function curve tends to
flatten, the optimization algorithm switches to the SGD algorithm
with momentum. After many iterations of the network, the
FWIoU curve becomes smooth which means that the network
performance is almost saturated. It is time to terminate network
training.

5.3 Results and discussion

5.3.1 Comparison with different depths of the
MRFEM

We study the effect of the depth of the multi-resolution feature
extraction module on the performance of the neural network, with
fixed parameters for the other modules of the network. We set the
initial depth to 16, and then increase the depth in increments of 2
until the depth is 24.The experimental results (Table 4) demonstrate
that in the depth range of 16–22, the number of parameters in
the network increases with depth, and its feature expression ability
increases. At this time, the network is able to extract richer feature
information, thus significantly improving the network performance.
When the network parameters are already sufficient to characterize
the dataset, the increase in depth leads to an excess of network
parameters. In this case, the dataset cannot drive the network to
learn sufficiently, resulting in network underfitting. Therefore, we
set the depth of the multi-resolution feature extraction module to
22 layers.

5.3.2 Ablation study for each component in
GGMNet

In this subsection, we detailed investigate the effect of each
component in our proposed GGMNet step by step. We use
the same training strategy to train 600 epochs on five control
networks and evaluate the performance of each one on the
validation set. We use the U-shape structure (Ronneberger et al.,
2015) as our baseline (Table 5a), in which the feature sequentially
processed with Encoder, MRFEM, Decoder and a 1×1
convolution layer. The b-d network adds modules in sequence to
the baseline.

The experimental results (Table 5) demonstrate that the addition
of the ARM increases the MPA from 48.38% to 52.5%, and the
FWIoU from 32.31% to 36.5%. The FFM enables the network to
well integrate features of different resolutions to achieve multi-scale
prediction with the MPA is increased by 4.12 and the FWIoU is
increased by 1.6. With the addition of deformable convolution, the
network’s receptive field is further enlarged, and the description
of irregular boundary contours is more accurate. The GGMNet’s
performance is greatly improved, with the MPA is increased by 4.2
and the FWIoU is increased by 2.2. The introduction of residual
connectivity allows the network to focus on the residuals between
input and output during the learning process, without having to fit a
large amount of redundant information. It also releases the learning
ability of the network, making the network training more stable
and faster.
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FIGURE 4
(A) Loss curves of GGMNet on training and validation sets. (B) The FWIoU curve of GGMNet on training and validation sets.

TABLE 4 The effect of the depth of the MRFEM on the performance of the neural network.

Depth of MRFEM Parameters (M) MPA (%) FWIoU (%)

16 4.7 50.9 36.8

18 6.5 55.3 38.33

20 8.6 59.8 40.31

22 10.3 63.1 42.88

24 12.4 61.5 41.12

TABLE 5 Ablation study for each component in GGMNet.

Method Attention
refinement
module

Feature
fusion
module

Deformable
convolution

Residual
connections

MPA (%) FWIoU (%)

a 48.38 32.3

b √ 52.5 36.5

c √ √ 56.2 38.1

d √ √ √ 60.4 40.3

ours √ √ √ √ 63.1 42.88

5.3.3 Comparison with state-of-the-arts
methods

In order to further validate the performance of the GGMNet on
the target dataset, we compared the proposed GGMNet with three
state-of-the-arts semantic segmentation networks. Table 6 shows
that the performance of the semantic segmentation networks on the
target datasets are unsatisfactory, with the MPA less than 60%. The
GGMNet, which is designed by utilizing neural architecture search
(NAS) and human-designed approach, has fewer parameters than
HRNetV1-W32. However, GGMNet has a better performance, with
the MPA = 63.1% and the FWIoU = 42.88.

Table 7 shows the IoU and MPA of each category on the
validation set. The Archean is unable to predict effectively because

of the small number of samples. The remaining 9 categories can
be successfully predicted by the GGMNet, and the accuracy of the
prediction is positively correlated with the number of samples. The
experimental results demonstrate the effectiveness and superiority
of the neural network design method which performed neural
network search directly on the target dataset and followed bymanual
optimization based on the target task characteristics. GGMNet’s
prediction results on the validation set (Figure 5) show that the
network has a strong predictive ability especially for categories
with a high percentage of pixels. GGMNet can accurately depict
the outline of the target body and accurately classify it. Compared
with ground truth, the prediction results give richer detailed
information.

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2024.1407173
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liu et al. 10.3389/feart.2024.1407173

TABLE 6 Performance comparison of the GGMNet against other state-of-the-arts semantic segmentation networks on the validation set.

Method Design approach Parameters (M) MPA (%) FWIoU (%)

FC-HarDNet-70 Human-designed 4.1 46.1 30.1

FasterSeg NAS 4.7 51.56 37.8

HRNetV1-W32 Human-designed 28.5 57.1 39.9

GGMNet, ours NAS and Human-designed 10.3 63.1 42.88

TABLE 7 The IoU and MPA of GGMNet for each category on the validation set.

Stratum
/Lithology

Archean Proterozoic Cambrian Ordovician Silurian Devonian Carboniferous Permian Jurassic Granite Validation
set

percentage
(%)

0.6 7.2 10.3 4 7 20.3 30.9 2.1 2.3 15.3

IoU —- 22.8 28.2 20.3 22.4 50.3 61.1 15.3 15.9 40.4 42.88

MPA (%) —- 55.8 62.5 51.4 53.6 82.7 90.2 46.8 48.6 76.3 63.1

FIGURE 5
GGMNet’s prediction results on the validation set. First row: the prediction. Second row: ground truth. Third row: the residual gravity anomaly.

5.4 Prediction of Junggar Basin

The residual Bouguer gravity anomalies in the Junggar Basin
and its surrounding areas are feed into the trained GGMNet for
prediction. Figure 6 is a visualization of the prediction results.
In the northern margin of the Junggar Basin, there is a local
high gravity anomaly in the south of Fuhai-Fuyun and north
of Kelamayi-Mulei. The GGMNet predicts the coexistence of
Carboniferous and Devonian strata. The North-East trending
Carboniferous and Devonian strata are also widespread in the
bedrock outcrops at the periphery of the basin. The local low
gravity anomaly is predicted to be granite. In the south of
Karamay-Mulei, there is a local negative anomaly area, which is

predicted to be Proterozoic, Cambrian strata and Granitic acidic
intrusive rocks.

Through deep neural network prediction, the distribution
of concealed formations or rock bodies throughout the entire
Junggar Basin has been ascertained. Within the basin, the major
north-northwest trending Kalamayi-Mulei-Hami fault serves as
a boundary; to its north, Carboniferous and Devonian strata
predominate, while to its south, amixture of Proterozoic, Cambrian,
and Ordovician strata dominate, with acid granite intrusions
occurring along the stratigraphic interfaces.Theprediction indicates
that in the Fuhai area along the northern margin of the Junggar
Basin, primarily Carboniferous and Devonian strata are present,
intermixed with granitic intrusions.This outcome is consistent with
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FIGURE 6
Prediction of Junggar Basin. GGMNet anticipates the presence of both Carboniferous and Devonian formations along the basin’s northern edge,
characterized by northeast-oriented outcroppings prevalent in the bedrock perimeter. Areas of diminished gravity are inferred as granite. In the south
of Karamay-Mulei, the prediction includes Proterozoic formations, Cambrian strata, and granitic acid intrusion rocks.

the deep geological structures revealed by traditional geophysical
methods.

Studies on the crystalline basement of the Junggar Basin
suggest the possible existence of a continental crustal crystalline
basement, with its lower portion consisting of strata predating
the Neoproterozoic and an upper section characterized by widely
distributed Devonian and Carboniferous folded basements. This
aligns well with the distribution of concealed geological bodies
beneath the Junggar Basin’s cover as predicted by our deep neural
network model, indicating a high degree of reasonableness in our
predictive results. This concurrence signifies that the predictions
made in this study offer a credible depiction of the basin’s sub-surface
geology.

6 Conclusion

In this paper, we systematically study the application of
deep learning in the overburden area geological mapping, and
successfully predict the bedrock of the Junggar Basin by using the
satellite Bouguer gravity anomaly and the 1:5000000 Asia-Europe
geological map.

Starting from the gravity anomaly formula in the spherical
coordinate system, we deduce the non-linear functional between
rock density ρ and rock mineral composition m, content
p, buried depth h, diagenesis time t and other variables.

We analyze the feasibility of using deep neural network to
approximate the above nonlinear generalization. The problem
of solving deep neural network parameters is transformed
into a non-convex optimization problem. We give an iterative,
gradient descent-based solution algorithm for the non-convex
optimization problem.

We design a dataset for bedrock prediction using both
the satellite Bouguer gravity anomaly with a resolution of
2′×2′ in the range of E65°-95°, N40°-55° and 1:5000000 Asia-
European geological map. The dataset contains 536 high-resolution
2048×2048 pixel samples at four scales: 1°×1°, 5°×5°, 10°×10°,
and 15°×15°.

Utilizing neural architecture search (NAS) and human-designed
approach, we propose a deep neural network (GGMNet) for
geological mapping. Experiments have demonstrated that our
proposedGGMNet has fast convergence and stable iterations during
training. GGMNet also has better performance than a single neural
network search or human-designed architectures, with the MAP =
63.1% and the FWIoU = 42.88.
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