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Landslide susceptibility mapping
using multiple combination
weighting determination: a case
study of collector roads in
Pingshan County, Hebei
Province, China

Hui Li1, Kun Song2*, Xing Zhai1 and Mingjia Liang2

1Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection,
Shijiazhuang, China, 2Hubei Key Laboratory of Disaster Prevention and Mitigation, Yichang, China

The landslide susceptibility map estimates the quantitative relationship between
known landslides and control factors, and it has been used for site selection
of infrastructures and geo-disaster management. As landslides and rockfalls
occur frequently in mountainous areas in Hebei Province, China, due to road
construction, the managing government needs to evaluate the vulnerability
of geo-disasters in the road slopes to avoid unfavorable site selection for
subsequent road constructions. Some typical collector road slopes were
used as the study area in Pingshan County, Hebei Province. By analyzing
the landslide triggering factors, we determined classification criteria and
proposed a comprehensive method for determining the weighting. The
respective weighting was calculated by the AHP and CRITIC method, and
the combination weighting was determined by the game theory method. The
landslide susceptibility of collector roads was evaluated and mapped using
the ArcGIS platform. The susceptibility map was validated using landslide field
investigation. The validation results show the effectiveness of the susceptibility
methods, given the good number of correctly classified landslides. The landslide
susceptibility map could have a significant impact on reducing the vulnerability
of infrastructure to landslides in Hebei Province, China.

KEYWORDS

landslide susceptibility, collector roads,weightingdetermination, Extenics theory, game
theory

1 Introduction

In mountainous areas, many slopes are excavated during road construction. Cut slopes
are implemented to prevent failure disasters due to the high investments involved in
construction of expressways and highways. Various measures including flexible safety
protection nets, masonry, and reinforcement protection are employed. However, collector
roads connecting towns and villages are often rough and simply excavated, with little to no
protection due to budget constraints, especially in China and other developing countries.

Most of the collector roads in themountainous areas ofHebei Provincewere constructed
in the 1980s and 1990s, and the road surface was made of macadam without concrete or
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bituminous pavement. Although the road surface has been improved
to concrete pavement since the 2000s, the cut slopes were not
protected in order to save costs. The slopes are steep, and the rocks
and soils are exposed to the air. They are often impacted by slope
failure during heavy rain. The safety and stability of the slopes are
major concerns for the government (Zhang et al., 2024). Therefore,
it is crucial to systematically conduct landslide risk assessments of
cut slopes along collector roads in Hebei Province, China.

For risk assessment, landslide susceptibility is used to predict
“where” landslides are likely to occur (Guzzetti et al., 2005; Razavi-
Termeh et al., 2021; Zhang J. et al., 2023). After considerable effort
for more than 50 years, abundant research achievements have
been made on landslide susceptibility mapping. Brabb et al. (1972)
conducted a landslide susceptibility study in San Mateo city
and obtained a landslide susceptibility map. Reichenbach et al.
(2018) conducted a review of statistical methods for landslide
susceptibility modeling and associated terrain zonations. Most of
the research studies focus on landslide susceptibility methodologies
and models. The majority of the models are divided into two
categories: knowledge-based empirical models and data-driven
statistical models. The practical model relies on the accumulation
of knowledge and understanding of geological environmental
conditions, and the accuracy of predictions is directly determined
by expert experience (Pourghasemi et al., 2012; Zhu et al., 2014;
Kaur et al., 2017; Huang et al., 2020; Das et al., 2021). Data-driven
statistical modeling uses historical landslide data to establish the
mapping relationship between landslides and related factors. Many
researchers have utilized the logistic regression model (Wang et al.,
2023; Zeng et al., 2023), artificial neural networks (ANNs),
support vector machine (SVM) (Goetz et al., 2015; Dou et al.,
2020; Cao et al., 2023), random forest (RF) (Goetz et al., 2015;
Merghadi et al., 2018; Hong, 2023), decision trees (Tsangaratos and
Ilia, 2016; Park et al., 2018), extreme gradient boosting (XGBoost)
(Zhang X. et al., 2023; Cao et al., 2023), FR-TabNet (Chang et al.,
2023), and other machine learning methods (Chen and Wang,
2007; Merghadi et al., 2020; Du et al., 2021). The quality of the
models has improved over the years, but high-quality assessments
are rare (Reichenbach et al., 2018). Huang et al. (2024) reviewed
the landslide susceptibility prediction modeling and proposed a
semi-supervised imbalanced theory to overcome the uncertain
issues found in the previous study. In addition, various factors
affect the susceptibility to landslides in specific regions, and the
maps generated from the models also need to be validated through
field investigations before being submitted for landslide reduction
purposes.

In themountainous areas of Hebei Province in China, landslides
and rockfalls frequently occur in Pingshan County, particularly on
cut slopes along collector roads, where protection measures are
relatively simple. The risk evaluation lacks detailed classification
criteria, and the methods for weighting detection are incomplete.
Based on this, we will take the collector roads in Pingshan County
as an example. By analyzing the factors that influence landslides, we
established classification criteria and by using the ArcGIS platform
evaluated the landslide risks along the collector roads that connect
towns and villages. This work is significant for preventing and
reducing landslide occurrences in the mountainous areas of Hebei
Province.

2 Study area

Pingshan County (Figure 1) is situated in the western part
of Hebei Province, China, at the eastern foothills of the Taihang
Mountain. It is located at longitude 113°31′–114°15′E and latitude
38°09′–38°45′N. The county covers an area of 2,648 sq km. The
topography of Pingshan county gradually increases from east
to northwest, with elevations ranging from 112 m to 2,266 m.
The area features three main types of landforms, namely plains,
hills, and mountains, with approximately 17 mountains 1,000 m
above sea level.

The surface water in Pingshan county is part of the Haihe
River system, and the total length of rivers in the county is
1315.6 kilometers. The Hutuo River is the longest river in the
county, stretching 110 km from west to east. Pingshan County has a
typical warm temperate continental semi-humid monsoon climate,
characterized by hot, rainy summers and cold, dry winters.

According to statistics, the eastern parts of Pingshan county,
which are characterized by a plain landform, showed low
susceptibility to geological hazards. Geological hazards, including
landslides and rockfalls, frequently occur in the western parts of
the county, particularly on the slopes along the collector roads that
connect towns and villages. Therefore, a 1,000-m region on both
sides of the collector roads in the western mountainous area of
Pingshan county was selected as the study area.

The annual average precipitation of the study area is 525.8 mm,
and the maximum precipitation is 1,209 mm in 1996. Rainfall
mainly occurs in June to September, accounting for more than 80%
of the annual precipitation. The annual average precipitation of
Pingshan County is shown in Figure 2.

The stratigraphy of Pingshan county is Neoarchean,
Paleoproterozoic, Mesoproterozoic, Ordovician, and Quaternary.
The distribution is shown in Figure 3. Most parts of the study
area are Neoarchean leptynite and gneiss. There is some limestone
with Ordovician dolomite in the southern part of the area. The
Quaternary stratum is distributed in the eastern part, which includes
plains, and the stratum consists of fluvial deposits and Malan loess.

3 Methodology

The methodology followed in this research mainly comprised
the following steps: 1) the mapping units were prepared according
to the environmental and geological data of the study area; 2) the
matter element was used to quantify each landslide-influencing
factor based on the Extenics theory; 3) the factor weights were
determined by the analytic hierarchy process (AHP) and theCRITIC
method; and 4) the results were then compared using expert field
investigation.

3.1 Extenics theory

Extenics theory is a newly developing interdisciplinary subject
that combines mathematics, philosophy, and engineering. It was
introduced by Prof. Cai, (1999) of Guangdong University of
Technology (China) in 1983. It offers a valuable formalized model
for analyzing the extensibility of concepts. Additionally, it is an
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FIGURE 1
Study area map: (A) location; (B) elevation.

effective approach for generating originality and innovation to
quantitatively resolve conflicting issues.

The Extenics Theory describes matter in three elements: matter,
character, and corresponding character value. The matter element
denotes a logical cell of Extenics theory. It is assumed that
three elements together can qualitatively and quantitatively solve
contradictory and incompatible problems. Matter is represented as
N, character as c, and character value as v. Therefore, the matter
element is defined as R = [N, c, v].

3.1.1 Define classical domain
In the matter element R = [N, c, v], N denotes the assembling

itemwith its character c and value v. For the susceptibility evaluation
of the study area, the evaluated level N0j has m characters, and the
matter element is expressed by the following matrix (Eq. 1):

R0j = (N 0j,c,v0ji) =

[[[[[[[

[

N0j c1 v0j1
c2 v0j2
⋯ ⋯

cn v0jn

]]]]]]]

]

=

[[[[[[[

[

N0j c1 ⟨a0j1 ,b0j1⟩

c2 ⟨a0j2 ,b0j2⟩

⋯ ⋯

cn ⟨a0jn ,b0jn⟩

]]]]]]]

]
(1)

where N0j denotes the evaluated level, j (j = 1, 2, 3, m) is partition
levels, ci (i = 1, 2, 3, n) is the characters of the rank, and N0j
is the susceptibility degree. v0ji = ⟨a0ji,b0ji⟩ is a value scale of N0j
about character ci, which is the individual evaluation rank about the
corresponding factors.

3.1.2 Define segment domain
The define segment domain is calculated as Eq. 2.

Rp = (Np,c,vpi) =

[[[[[[[

[

Np c1 vp1
c2 vp2
⋯ ⋯

cn vpn

]]]]]]]

]

=

[[[[[[[

[

Np c1 ⟨ap1 ,bp1⟩

c2 ⟨ap2 ,bp2⟩

⋯ ⋯

cn ⟨apn ,bpn⟩

]]]]]]]

]
(2)

where P refers to the set of every rank about the evaluation ofmatter;
vpi = ⟨api,bpi⟩ is a value scale of P about ci, which represents the
segment domain of P.

3.1.3 Define evaluation of a matter element
For the evaluation of an object P, the collected data or analysis

results of a matter element thus obtained is assigned the expected
evaluation of the matter element R (Eq. 3).

R = (P,ci,vi) =

[[[[[[[

[

P c1 v1
c2 v2
…

cn

⋯

vn

]]]]]]]

]

, (3)

where P is an evaluated object, ci is the factor of effect degree, and vi
is P's value about the factor ci.
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FIGURE 2
Annual average precipitation of the study area.

3.1.4 Define the correlation of each rank about
the evaluation index

The correlation of each index vi about rank j is as follows Eq. 4:

K0j(vi) =

{{{{{{{
{{{{{{{
{

ρ(vi,v0ji)

ρ(vi,vpi) − ρ(vi,v0ji)
ρ(vi,vpi) − ρ(vi,v0ji) ≠ 0,

−ρ(vi,v0ji)

|v0ji|
ρ(vi,vpi) − ρ(vi,v0ji) = 0

(4)

ρ(vi,v0ji) = |vi −
a0ji + b0ji

2
| −

b0ji − a0ji,
2

ρ(vi,vpi) = |vi −
api + bpi

2
| −

bpi − api,
2

where K0j (vi) is the dependent degree of No. i index value vi; v0ji
refers to the value field of No. i index subjected to No. j rank; and
v0ji = ⟨a0ji,b0ji⟩ is the distance between No. i index value vi and the
classical domain of No. j effect degree grade. ρ(vi,v0ji) is the distance
between vi and v0ji.

3.2 Weighting determined method

The importance of each indicator varies in the evaluation
results, and it is necessary to determine the weight of each
indicator. To determine the weight, two types of methods are
employed: subjective and objective methods. The widely used
subjective methods include the analytic hierarchy process (AHP)
and decision-making trial and evaluation laboratory (DEMATEL),
while the objective methods include the CRITIC method, entropy
weight method (EWM), and principal component analysis (PCA)
(Goetz et al., 2015; Tsangaratos and Ilia, 2016; Park et al., 2018;
Cao et al., 2023; Hong, 2023). In this paper, the AHP and
the CRITIC method were used to determine the subjective
and objective weights, respectively. The game theory method
was used to calculate the subjective and objective combination
weights.

3.2.1 Analytic Hierarchy Process (AHP)
The analytic hierarchy process (AHP) is a subjective method

for assigning weights to indicators, which assesses the importance
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FIGURE 3
Geological map of the study area.

of each indicator and determines its weight based on the experts’
experience.

The importance of each criterion Bi for objective A
and the importance of each index Cij for criterion Bi were
compared in pairs. The importance rating criteria were
used in the 1–9 scale method (see Table 1) to create the
comparison matrix.

To check if the weights are reasonably assigned, a consistency
check is necessary for the comparison matrix (Eq. 5).

CR = CI
RI
, (5)

where CR is the random consistency ratio of the comparison
matrix and RI is the average stochastic consistency index of the
comparison matrix; the value is shown in Table 2. CI is the

general consistency index of the comparison matrix, which is
calculated as Eq. 6.

CI =
λmax − n
n− 1
, (6)

where λmax is the largest eigenvalue of the comparison matrix and n
is the order of the evaluation indicators.

When the CR is less than 0.1, the comparison matrix
is considered to have satisfactory consistency, indicating that
the weight coefficients are reasonably assigned. Otherwise, the
comparison matrix needs to be adjusted until a satisfactory level of
consistency is achieved.

3.2.2 CRITIC
The CRiteria Importance Through Intercriteria Correlation

(CRITIC) method proposed by Diakoulaki et al. (1995) is mainly
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TABLE 1 The 1–9 scale method and its meaning.

Scale Meaning

1 Both elements have the same importance compared to each other

3 Compared to the two elements, the former is slightly more
important than the latter

5 Compared to the two elements, the former is significantly more
important than the latter

7 Compared to the two elements, the former is strongly more
important than the latter

9 Compared to the two elements, the former is extremely more
important than the latter

2, 4, 6, 8 The critical value of the above adjacency judgment of two elements

TABLE 2 Average random consistency index RI of judgment Matrix.

n 1 2 3 4 5 6 7 8 9

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45

used to determine the weights of objectives. The distinction
in information among evaluation indicators is established by
assigning lower weights to indicators with significant horizontal
similarity and higher weights to indicators with substantial vertical
disparity. The weight of the indicators is determined by comparing
the strength and conflicting nature of each indicator. It not
only considers the disparity in values among indicators but
also analyzes their correlation. The CRITIC method is effective
for determining the objective weights of relative importance in
multicriteria decision problems. It can eliminate the adverse
effects caused by highly correlated evaluated indicators and reduce
overlapping information among them, promoting more credible
evaluation results.

Due to the varying dimensions of each attribute, the
CRITIC method primarily assigns weights based on the
disparity and information content of the data. However,
the difference in dimensions and magnitude makes them
incomparable. The dimension can eliminate the negative impact
and accurately reflect the true extent of objective empowerment.
This paper utilizes the extreme value method for dimension
estimation.

Assuming that there are m alternatives to be evaluated and n
evaluation criteria for slope risk assessment evaluation, the data
matrix is as follows (Eq. 7):

A = (aij)m×n, (7)

where aij is the corresponding value of the jth (j = 1, 2, …, n) index
of the ith (i = 1, 2, …, m) evaluation object.

Due to the differences in the nature and dimension of each
evaluation index, the weight of the evaluation index will shift. It
is necessary to normalize the data matrix to map the evaluation
index values to the interval [0,1], eliminate the influence of different

dimensions, and obtain the normalized matrix X. The formulations
are as follows (Eqs 8, 9):

For positive indicators:xij =
aij − min(aij)

max(aij) − min(aij)
, (8)

Fornegative indicators:xij =
max(aij) − aij

max(aij) − min(aij),
(9)

where x is the normalized treatment value and max (aij) and
min (aij) are the maximum and minimum values of a certain
evaluation index, respectively.

The dispersion degree is expressed in the form of standard
deviation, which is calculated as follows (Eq. 10):

{{{{{
{{{{{
{

xj =
1
n
∑n

i=1
xij

σj =
√∑

n
i=1
(xij − xj)

2

n− 1
.

(10)

The conflict degree is calculated by (Eq. 11)

Rj =∑
p
i=1
(1− rij), (11)

where rij represents the Pearson correlation coefficient of criteria i
and j and is calculated as follows (Eq. 12):

rij =
∑n

i=1
(xi − x)(yi − y)

√∑n
i−1
(xi − x)

2√∑n
i−1
(yi − y)

2.
(12)

The amount of information is calculated as follows (Eq. 13):

Cj = σj ×Rj (13)

The weight of the criterion is (Eq. 14).

ωj =
Cj

∑p
j=1
Cj
. (14)

3.3 Combination weight of game theory

To prevent information loss resulting from a single weighting
method and enhance the accuracy of the weights, the combined
weighting method of game theory is utilized to optimize the weights
obtained from the two methods.

The set of weight vectors ck = {ck1,ck2,ck3,⋯,ckm}(k = 1,2,⋯,L)
is calculated by different weighting methods, where L is the number
of weighting methods and m is the number of indicators. The linear
combination of the weight vectors is as follows (Eq. 15):

c =∑L
k=1

αkcTk ,ck > 0. (15)

Game theory is used to bring different weight vectors into
agreement and compromise. The goal of minimizing the deviation
of c and ck is achieved by optimizing the linear combination
coefficient αk (Eq. 16).

min ‖∑L
k=1

αkcTk − c
T
i ‖2(i = 1,2,⋯,L). (16)
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FIGURE 4
Relationship between evaluation indexes and geological disasters: (A) annual rainfall and landslide failure events; (B) angle between slope aspect and
stratum dip direction; (C) elevation; (D) slope angle; (E) profile curvature; (F) distance to faults; (G) aspect; (H) NDVI.
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TABLE 3 Classification standard of evaluation indexes for landslide risk.

Evaluation index Low Medium High Very high

Rainfall (c1)/mm < 500 500–600 600–700 > 700

Angle between slope aspect and stratum dip direction (c2)/° 120–180 60–120 30–60 0–30

Elevation (c3)/m > 1,000 750–1,000 < 500 500–750

Slope angle (c4)/° 0–15 15–30 30–45 45–90

Profile curvature (c5) < 0.5 0.5–3.0 3.0–8.0 > 8.0

Distance to faults (c6)/m >2,000 1,000–2,000 500–1,000 < 500

Aspect (c7)/° 270–360 0–90 180–270 90–180

NDVI (c8) > 0.4 0.2–0.4 0.1–0.2 < 0.1

TABLE 4 Transformed classification standard (normalized).

Evaluation index Low Medium High Very high

Rainfall (c1)/mm 0.6–1 0.4–0.6 0.2–0.4 0–0.2

Angle between slope aspect and stratum dip direction (c2)/° 0–0.3333 0.3333–0.6667 0.6667–0.8333 0.8333–1

Elevation (c3)/m 0–0.5263 0.5263–0.6579 0.7895–1 0.6579–0.7895

Slope angle (c4)/° 0.8125–1 0.625–0.8125 0.4375–0.625 0–0.4375

Profile curvature (c5) 0.9833–1 0.9–0.9833 0.7333–0.9 0–0.7333

Distance to faults (c6)/m 0–0.75 0.75–0.875 0.875–0.9375 0.9375–1

Aspect (c7)/° 0–0.25 0.75–1 0.25–0.5 0.5–0.75

NDVI (c8) 0–0.3333 0.3333–0.6667 0.6667–0.8333 0.8333–1

According to the differential properties of the matrix, the first-
order derivative condition of the above formula optimization is
shown as follows (Eq. 17).

∑L
k=1

αkcicTk = cic
T
i . (17)

The linear equations corresponding to the above formula are as
follows (Eq. 18):

[[[[[[[

[

c1 ∙ cT1 c1 ∙ cT2 ⋯ c1 ∙ cTL
c2 cT1 cT1 c2 ∙ cT2 ⋯ c2 ∙ cTL
⋮ ⋮ ⋮ ⋮ ⋮

cL cT1 cT1 cL ∙ cT2 ⋯ cL ∙ cTL

]]]]]]]

]

[[[[[[[

[

α1
α2
⋮

αL

]]]]]]]

]

=

[[[[[[[

[

c1 ∙ cT1
c2 ∙ c

T
2

⋮

cL ∙ cTL

]]]]]]]

]

(18)

Normalize the linear combination coefficient (Eq. 19).

α′k =
αk
∑L

k=1
αk
. (19)

Calculate the combined weight (Eq. 20).

c′ =∑L
k=1

α′kc
T
k . (20)

4 Selection of susceptibility evaluation
indexes and classification standards

4.1 The selection of evaluation indexes

The evaluation indexes were chosen based on the investigation
of landslides on collector roads in Pingshan County, in conjunction
with geological surveys conducted in previous years. In Pingshan
County, the primary evaluation indexes for landslides include the
slope angle, aspect, elevation, profile curvature, angle between the
slope aspect and stratum dip direction, Normalized Difference
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TABLE 5 Weighting of evaluation indexes by AHP.

Evaluation index Weighting (α)

Rainfall (c1) 0.3173

Angle between slope aspect and stratum dip direction
(c2)

0.2116

Elevation (c3) 0.1652

Slope angle (c4) 0.0793

Profile curvature (c5) 0.0705

Distance to faults (c6) 0.0635

Aspect (c7) 0.0529

NDVI (c8) 0.0397

Vegetation Index (NDVI), distance to faults, and rainfall (total
average annual precipitation). As the rock lithology in the study
area consists of similar hard metamorphic rock groups, it is not
considered in risk evaluation.

4.2 Standards for classification of
evaluation indexes

Forthefactors(e.g., slopeangle,aspect,elevation,profilecurvature,
angle between slope aspect and stratumdip direction, NDVI, distance
to faults, and rainfall), the values are calculated using the Statistics
tool in ArcGIS software. These indexes need to be classified. Based
on field investigations, experts’ experiences, and several examples
in the literature, the threshold value for each category was initially
determined using the natural breakpoint method. Subsequently, it
was slightly adjusted by calculating the number of historical landslides
withineachcategory tobetter alignwith theactual situation (Figure 4).
All eight evaluation indexes were categorized into four groups
corresponding to the four risk levels of low, medium, high, and very
high in landslide susceptibility (Table 3).

Rainfall is one of the primary factors that trigger geological
disasters in Pingshan County. The higher the intensity of
rainfall, the greater the likelihood of occurrence of geological
disasters (Figure 4A). Therefore, the average annual rainfall data
were classified into four categories: <500 mm, 500–600 mm,
600–700 mm, and >700 mm.

The angle between the slope aspect and the direction of stratum
dip influences slope stability and potential failure modes, such as
planar, wedge, and toppling failures. After conducting kinematic
analysis using stereographic projection (Wyllie and Mah, 2017),
the angle between the slope aspect and stratum dip direction
was classified into four categories: 0°–30°, 30°–60°, 60°–120°, and
120°–180° (Figure 4B). The slope angle of 0°–30° is considered a
transitional slide and has a very high risk of landslide susceptibility.
Otherwise, a reverse slope with an angle of 120°–180° may result in
a failure of the toppling mode and pose a low risk.

The elevation affects the landform and slope stability. In the study
area, the occurrence of landslide geological hazards follows a normal

distribution in relation to the elevation (Figure 4C). It was mainly
distributed in the range of 500 to 750 m, which included areas of
human farming activities, level terraced fields, and roads. Based on
the current situation in Pingshan County, elevation is classified into
four categories: <500 m, 500–750 m, 750–1,000 m, and >1,000 m.

Slope is one of the most critical factors influencing landslides.
The slope data in this studywere calculated using the ArcGIS surface
analysis tool based on the digital elevation model (DEM) data.
The classification is divided into four categories: 0°–15°, 15°–30°,
30°–45°, and 45°–90° (Figure 4D). The landslide at 15°–30° has the
most advanced development among them.

The profile curvature indicates the rate of local topographic
changes in slope. A steeper curvature results in increased localized
stress on the slope, which can be harmful to slope stability. We
calculated the profile curvature of the study area (Figure 4E) and
classified it into four categories: <0.5, 0.5–3.0, 3.0–8.0, and >8.0.

The distance to faults significantly affects the integrity of rock
and soil. Generally, the rock mass is more fractured near faults,
leading to the development of more geological disasters. The
landslide percentage is calculated in four categories and is shown
in Figure 4F. The distances were categorized into four groups: <
500 m, 500–1,000 m, 1,000–2,000 m, and >2,000 m.

The aspect of the slope of the study area was calculated using
ArcGIS.The statistical results were then classified into four categories
with intervals of 90° within the range of 0° to 360°, as illustrated
in Figure 4G: 0°–90°, 90°–180°, 180°–270°, and 270°–360°.

The Normalized Difference Vegetation Index (NDVI) is
commonly used to estimate the amount of vegetation present at
any given location. We classified the NDVI map into four categories
with the following values: <0.1, 0.1–0.2, 0.2–0.4, and >0.4. Most of
the geological disasters occurred in areas in Pingshan County with
an NDVI of 0.2 to 0.4 (Figure 4H).

To reduce data discreteness, eight factors were normalized after
reclassifying the data. The classification index values of these factors
were then linearly transformed tofitwithin the [0, 1] interval (Table 4).

5 Results

5.1 Matter elements according to Extenics
theory

According to the classification standardsof landslide susceptibility
evaluation indexes, we calculated the classical domain (R01–R04) and
segment domain (Rp) of landslide hazards of collector roads in the
Pingshan County.These are shown in Eq. 21 and Eq. 22 (only some of
the results for simplicity).

R01 =

[[[[[[[[[[[[[[[[[[[

[

N01 c1 (0.6,1)

c2 (0,0.3333)

c3 (0,0.5263)

c4 (0.8125,1)

c5 (0.9833,1)

c6 (0,0.75)

c7 (0,0.25)

c8 (0,0.333)

]]]]]]]]]]]]]]]]]]]

]

(21)
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TABLE 6 Weighting of evaluation indexes by the CRITIC method.

Evaluation index Dispersion degree Conflict degree Amount of information Weighting

Rainfall (c1) 0.226 6.902 1.56 0.1362

Angle between slope aspect and stratum dip
direction (c2)

0.224 7.113 1.592 0.1391

Elevation (c3) 0.173 7.103 1.227 0.1071

Slope angle (c4) 0.203 6.498 1.318 0.1151

Profile curvature (c5) 0.124 6.479 0.802 0.0700

Distance to faults (c6) 0.232 6.632 1.536 0.1341

Aspect (c7) 0.28 7.333 2.057 0.1796

NDVI (c8) 0.175 7.765 1.36 0.1188

TABLE 7 Combination weights determined by the game theory.

Evaluation index Weighting by AHP Weighting by CRITIC Optimized linear
combination
coefficient

Combination
weighting

Rainfall (c1) 0.3173 0.1362

α1=0.9043
α2=0.0957

0.2999

Angle between slope aspect
and stratum dip direction (c2)

0.2116 0.1391 0.2047

Elevation (c3) 0.1652 0.1071 0.1596

Slope angle (c4) 0.0793 0.1151 0.0827

Profile curvature (c5) 0.0705 0.0700 0.0705

Distance to faults (c6) 0.0635 0.1341 0.0703

Aspect (c7) 0.0529 0.1796 0.0650

NDVI (c8) 0.0397 0.1188 0.0473

RP =

[[[[[[[[[

[

NP

c1
c2
c3
c4
c5
c6
c7
c8

(0,1)
(0,1)
(0,1)
(0,1)
(0,1)
(0,1)
(0,1)
(0,1)

]]]]]]]]]

]

. (22)

The study area was gridded by using ArcGIS software, and the
total number of grids was 9,987,000, with the size of 10 m × 10 m.
Then, the grid cells were introduced to be the basements to calculate
the matter elements. Taking the ith cell as an example, the matter
element to be evaluated is Eq. 23.

R = (P,ci,vi) =

[[[[[[[[[

[

P

c1
c2
c3
c4
c5
c6
c7
c8

0.5000
0.5167
0.5532
0.6954
0.9786
0.7500
0.7667
0.5403

]]]]]]]]]

]

. (23)

5.2 Combination weighting determination

Based on the AHP, the judgment matrix A (Eq. 24) was
constructed, and the weighting of each evaluation index was
obtained.

A =

[[[[[[[[[[[[[[[[[[[

[

1 3/2 2 4 9/2 5 6 8

1 4/3 8/3 3 10/3 4 16/3

1 2 9/4 5/2 3 4

1 9/8 5/4 3/2 2

1 10/9 4/3 16/9

1 6/5 8/5

1 4/3

1

]]]]]]]]]]]]]]]]]]]

]

. (24)
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FIGURE 5
Landslide susceptibility map of the collector roads.

Where the consistency check ratio CR = 0.0041, the
weightings were reasonably assigned. Therefore, the weightings
of each evaluation index could be calculated and are listed
in Table 5.

Another weighting determination method for each evaluation
index was based on the CRITIC. The results such as dispersion
degree, conflict degree, amount of information, and weighting are
listed in Table 6 according to Eqs 7–14.

After the weightings of each evaluation index were determined
by the AHP and CRITIC method, the combination ones were
calculated based on game theory.According toEqs 15–20, the results
were calculated and are listed in Table 7.

5.3 Landslide susceptibility map

The landslide susceptibility map of collector roads in Pingshan
County was created following the methods described in this paper
(Figure 5). ArcGIS software and the natural breakpoint method

were used to reclassify susceptibility into four categories: low,
medium, high, and very high. It can be observed that the study
areas are primarily distributed in regions of medium and low
levels of susceptibility to landslides. The regions with very high
and high levels of susceptibility are distributed in the northern
part of the county. This area has the highest elevation with steep
slopes in Pingshan County (see Figure 1). It also experiences heavy
rainfall during the summer season and has the largest annual
average precipitation. The landslide susceptibility map has been
verified through field investigation by engineers and submitted to
the transport authority and local government to mitigate geological
disasters.

6 Conclusion

Landslide susceptibility assessment is essential for effective
landslide disaster management. The evaluation indexes were
determined to include eight influencing factors, namely slope
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angle, aspect, elevation, profile curvature, angle between slope
aspect and stratum dip direction, Normalized Difference Vegetation
Index (NDVI), distance to faults, and rainfall (total average annual
precipitation), after analyzing the relationship between factors and
landslide failure events in Pingshan County, Hebei, China.

After statistical analysis of the eight influencing factors, the
criteria for classifying evaluation indexeswere established.The study
area was gridded by ArcGIS, and we calculated the classical domain,
segment domain, and the matter element of landslide hazards of
collector roads in Pingshan County using the Extenics theory.

A comprehensive method for determining the weight was
proposed, which involved combined weighting using game theory
based on the respective weights calculated by the AHP and CRITIC
methods. This method synthesizes the experts’ knowledge and the
objective benefits of the evaluation indexes. The proposed method
was used to map the landslide susceptibility of the cut slopes along
the collector roads. The results have been verified through field
investigation and submitted to mitigate geological disasters.
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