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Existing studies on soil-pipe interaction due to tunneling mainly focus on short-
term responses. However, in areas with high water tables and low permeability
soil, long-term ground movement and associated pipe responses may occur
due to dissipation of excess pore pressure generated during tunnel construction.
In this paper, a Winkler solution with time-varying subgrade modulus and the
corresponding greenfield soil displacement formula are developed to investigate
the tunneling effects on existing pipelines. The pipe is considered as an
infinite Euler beam of finite width resting on a poroelastic half-space, and
adhesion and drainage effects between the pipe and soil are considered using
bounding techniques. The greenfield consolidation settlement is evaluated using
a modified Gaussian curve. The findings indicate that the subgrade modulus
decreases while greenfield soil displacement increases during the consolidation
process. The time-dependent behavior of the subgrade modulus is governed
by the drainage condition at the pipe-soil interface, whereas the greenfield soil
displacement is primarily influenced by the drainage condition at the tunnel-
soil interface. The study reveals that the bonded contact condition, hydraulic
boundary condition, and displacement constraint conditions all influence the
bending moment of the pipe.

KEYWORDS

seepage consolidation, winkler solution, tunneling effects, existing pipelines, bending
moment

1 Introduction

The tunnel construction causes volume loss of soil, and the surrounding soil deforms
into the gap between the tunnel wall and lining. Ground deformation causes soil
settlement around nearby underground facilities, e.g., the existing pipelines.The pipe suffers
deformation and bending moment when it is subjected to the soil settlement. To guide the
design of protective measures on the pipelines, it is of vital importance to develop predictive
methods to evaluate the tunneling effects on the existing pipelines.

The core of the problem at hand is the pipe-soil-tunnel interaction, of which a complete
description generally requires a continuum-theory based model including the three objects
at the same time. The most widely adopted approach should be the finite element method
(FEM). By discretizing the pipeline and soil in to shell and solid elements, respectively,
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Klar and Marshall (2008) investigated the deformation of the
pipeline when subjected to a nearby tunneling construction.
Based on a similar modeling technique, Marshall et al. (2010)
simulated the pipeline deformation caused by tunnel underpass and
compared to the observed mechanical behavior from a centrifugal
model test. Wang et al. (2011) conducted parameter analysis using
finite element software and obtained the relationship between the
normalized bendingmoment of the pipeline and the relative stiffness
coefficient between the pipe and soil. However, the preparing of
FEMmodel andmesh could be cumbersome especially at the design
stage, which involves a lot of parametric studies. Meanwhile, the
finite elementmethod is less effective in identifying nondimensional
parameters governing the pipe-soil-tunnel system. Alternatively, the
existing studies on this problem generally decouple the pipe from
tunnel by adopting relaxing assumptions, e.g., the pipe does not
affect the tunnel when the tunneling-induced ground displacement
happens (Mair et al., 2005); and the soil response to pipe loading at
the pipe level is not aware of the tunnel (Vorster et al., 2005).

With the above assumptions, the problem was solved using a
two-stepmethod in the literature: i) obtain the ground displacement
profile at the pipeline level (i.e., the so-called greenfield soil
displacement); ii) solve the pipe soil interactions using the greenfield
displacement as input.

At step i), only the tunnel and the ground are involved. The
tunneling induced ground displacement was evaluated using
either field observation method (Mair et al., 1993), Peck (1969)
and Schmidt (1969), after processing a large amount of surface
settlement data, believe that the cross-sectional surface settlement
curve caused by tunnel excavation can also be represented by
a Gaussian curve, analytical method (Loganathan and Poulos,
1998) or numerical method (Wongsaroj et al., 2013). Based on
field observations, the tunneling-induced ground settlement
is commonly fitted into empirical formulas, e.g., a Gaussian
curve (Peck, 1969). However, in some cases the Gaussian curve
is not satisfactory to accurately describe the soil settlement
(Celestino et al., 2000). Later, the Gaussian curve was modified by
Voster et al. (2005) and by Wei (2013) to admit more flexibility
in adjusting the shape of the ground settlement profile. It is
noted that the existing studies on the tunneling induced ground
displacement are generally focused on the short-term response,
which is caused by undrained shear deformation of soil happen
immediately after the tunnel construction. In comparison, the long-
term ground displacement would happen with the dissipation of
excess pore water pressure induced by tunneling. Actually, when
the pore water flows to the new drainage boundary imposed by
the tunnel, the soil consolidates, and the consolidation of the soil
leads to certain changes in the parameters of the soil, which in
turn leads to continued settlement of the soil (Venkata Vydehi et al.,
2022). Moreover, changes in the nature of the soil can have an
effect on the consolidation of the soil (Moghal et al., 2020). It
is demonstrated by Stallebrass et al. (2000) that the long-term
settlement (i.e., by the seepage consolidation) can be 30% larger
than the short term for soils of low permeability. In this paper, we
will consider the soil settlement due to the seepage consolidation
effect of the soil after shield excavation.

At step ii), the interaction problem between the pipe and soil
is solved using the tunneling-induced soil displacement as inputs.
The conventional approach for this problem is the Winkler-based

models (Attewell et al., 1986), i.e., the pipe is governed by the Euler
beam theory; and the soil is represented by a series of individual
springs connected to the beam. If the soil ismodeled as a continuum,
this problem can be solved in a more rigorous manner, which
leads to the elastic continuum solution developed by Vorster et al.
(2005). Later, the continuum-based solution has been extended to
include the effects of pipe joints (Klar et al., 2008) and elastoplastic
behaviors (Klar et al., 2007) on the pipeline responses.

When the Winkler-based model is adopted, the appropriate
spring coefficient (i.e., the subgrade stiffness) is of vital importance
for the accurate prediction of pipeline responses. Attewell et al.
(1986) suggested the use of Vesic (1961) equation for the subgrade
modulus. After comparing to the elastic continuum solution,
Klar et al. (2007) suggested a new equation for the subgrade
modulus. By considering the embedding depth of pipes, Yu et al.
(2013) proposed different equations for the subgrade modulus. It
is noted that the existing equations for the subgrade modulus are
obtained for the pipe (modeled as Euler beam) interacting with an
elastic continuum (representing the soil). As a result, the subgrade
modulus does not change with time (i.e., the pore water and seepage
are not considered). However, as mentioned in the above, the soil
would experience seepage consolidation, and thus the subgrade
modulus is subjected to change with the consolidation process.

To sum up, the two-step method is commonly adopted to
evaluate the tunneling effects on existing pipelines, in which
both the greenfield soil displacement and the subgrade modulus
are important intermediate results; however, they are generally
evaluated for the short-term responses. Once the soil layer that the
tunnel and pipelines are buried is of relatively low permeability,
the seepage consolidation of soil after the tunnel construction
would become important, and thus the time-dependent greenfield
displacement and subgrade modulus should be considered.

In this paper, a Winkler solution with time-varying subgrade
modulus and the greenfield soil displacement is developed to
investigate the tunneling effects on existing pipelines. In evaluating
the subgrade modulus, the pipe is treated as an infinite Euler beam
of finite width resting on a poroelastic halfspace. The influence of
adhesion anddrainage effects between the pipe and soil is considered
by bounding techniques for prescribing the boundary conditions on
the interface. As for the tunneling-induced consolidation settlement,
the evaluation method proposed by Laver et al. (2017) is followed.
Based on the developed Winkler solution, the time-dependent
bending moment responses of the existing pipeline induced by the
tunneling can be evaluated.

2 Analysis model and assumptions

The tunneling induced deformation of the ground and pipeline
is schematically shown in Figure 1. A new tunnel of diameter
D is excavated under an existing pipeline of diameter d. The
tunnel excavation generates soil displacement around the pipeline,
which causes the pipe to deform and suffer bending moment. The
burying depth of the pipe and tunnel (measured to the centerline)
are denoted as z0 and h (h ≥ z0), respectively. The centerlines
of tunnel and pipe are considered vertical to each other, which
represents the most unfavorable case of the tunneling effect on
pipelines (Attewell, 1981).
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FIGURE 1
Schematic representation of tunneling effects on existing pipeline.

According to the two-step approach, the assumptions widely
adopted in the literature are followed: a) the pipeline is continuous,
and it is buried in a homogenous ground; b) the pipe is always in
contact with the soil; c) the pipe does not affect the tunnel when
the tunneling-induced ground displacement happens; d) the soil
response to pipe loading at the pipe level is not aware of the tunnel.

Since the long-term responses of the tunnel-soil-pipe system
are considered herein, additional assumptions are needed for the
seepage consolidation analysis: e) the pipe does not affect the
seepage-deformation coupled process of ground when the pore
water flows to the new drainage boundary imposed by the tunnel; f)
the seepage consolidation of soil to the pipe loading at the pipe level
is not aware of the tunnel; g) the groundwater table is at the pipeline
level, and thus the soil is fully saturated; h) the pipe is impermeable,
and the tunnel is permeable. Essentially, assumptions e) and f) have
the same physics with assumptions c) and d), respectively. In other
words, if assumptions c) and d) are acceptable, assumptions e) and
f) become valid automatically.

Based on assumptions c) and e), the consolidation displacement
of ground can be evaluated without considering the pipe. While
assumptions d) and f) allow the interaction analysis between the pipe
and saturated soil without the tunnel. Thus, the tunneling effects on
the existing pipe considering the seepage consolidation of ground
can be analyzed by the classic two-step approach, which is elaborated
in the following sections.

3 Winkler model of pipe-soil
interaction analysis

The essentials of a Winkler model are an Euler beam of infinite
length representing the pipe and a series of independent springs
representing the soil. The governing equation of the Winkler model
reads:

EI
∂4wb(x, t)
∂x4
+K(t)wb(x, t) = K(t)U z(x, t) (1)

where EI is the bending stiffness of pipe; wb denotes the deflection
of pipe; K represents the subgrade modulus;Uz is the greenfield soil

displacement (i.e., the soil settlement at the pipe level if the pipe
did not exist); x axle is along the pipe centerline, and measures the
distance from the tunnel centerline; and t denotes time. K and Uz
become time dependent when the seepage consolidation of soil is
considered.

By introducing β = 4√ K
4EI

, Eq. 1 can be re-written as

∂4wb

∂x4
+ 4β4wb = 4β

4U z (2)

For an infinite Winkler beam, a concentrated load P induces a
bendingmomentMb of the followingmagnitude at a distance x from
the location of the load (Klar et al., 2007)

Mb =
P
4β

exp (−βx)(cos (βx) − sin (βx)) (3)

The infinitesimal concentrated loads dP(x) can be related to the
soil settlement by the subgrade modulus, i.e.,

dP(x) = KU zdx (4)

The maximum bending moment in the pipe occurs above
the tunnel centerline, referred to as the maximum sagging
moment. According to Eqs 2–4 and by integrating the
distribution of the infinitesimal concentrated loads, we can
obtain the maximum bending moment:

Mb|max = ∫
∞

−∞
dMb(x) = ∫

∞

−∞

KU z
4β

exp (−βx)(cos (βx) − sin(βx))dx (5)

4 Subgrade modulus

The knowledge of subgrade modulus K plays important in
evaluating the pipeline responses. The Vesic equation (1961) is
commonly adopted for the subgrade modulus, i.e.,

K =
0.65E0

1− v2
(
E0d

4

EI
)

1
12

(6)

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2024.1403663
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liang et al. 10.3389/feart.2024.1403663

FIGURE 2
Analysis model of a beam resting on a saturated poroelastic half-space (after Selvadurai and Shi, 2015): (A) longitudinal view; (B) cross section view.

inwhich,E0 and v are the drained elasticmodulus and Poisson’s ratio
of soil, respectively. As indicated by Klar et al. (2007), the physical
meaning of Eq. 6 is allowing a beam on Winkler foundation to
exhibit similar displacements and moments to those of a beam on
an elastic foundation when loaded with concentrated loads. In other
words, the subgrade modulus is evaluated by referring to a beam
resting on the surface of a halfspace.

In the literature the short-term settlement is routinely
considered, and thus Eq. 6 is obtained for a beam on an elastic
halfspace. The short-term settlement is caused by undrained shear
deformation of the soil, which happens immediately in the tunnel
construction process. However, when the seepage consolidation of
soil is involved, the subgrade modulus becomes time-dependent
(typically in soil layers of low permeability). Under this condition,
the subgrade modulus should be evaluated by referring to a beam
resting on a saturated poroelastic halfspace.

The analysis model of an infinite beam resting on the surface of
a saturated poroelastic halfspace is shown in Figure 2. A rectangular
section of width 2b (2b=d, d is the pipe diameter) is assigned to
the beam. The beam experiences flexure only in the longitudinal
direction (i.e., x axle), i.e., the beam section is infinitely rigid in the
transverse direction (no flexure in the y-z plane).

For convenience of presentation, the region of the surface
of the halfspace in contact with the beam is denoted by:
Γc (i.e., x ∈ (−∞,∞); y ∈ (−b,b); z = 0) and the combined
region of the half-space exterior to Γc is denoted by Γe (i.e.,
Γe = Γe1 ∪ Γe2 and in Γe1(x ∈ (−∞,∞);y ∈ (b,∞);z = 0) and in
Γe2(x ∈ (−∞,∞);y ∈ (−∞,b);z = 0).

4.1 Governing equations

The constitutive equations governing the seepage consolidation
response of a poroelastic halfspace,which consists of an isotropic soil
skeleton saturated with a compressible pore fluid, are expressed as

σ ij =
2vμ
1− 2v

εkkδij + 2μεij −
3(vu − v)

B(1− 2v)(1+ vu)
pδij (7)

p =
2μB2(1− 2v)(1+ vu)

2

9(vu − v)(1− 2vu)
ζv −

2μB(1+ vu)
3(1− 2vu)

εkk (8)

where p is the pore fluid pressure; ζv is the volumetric strain in
the pore fluid; σij is the total stress tensor. Also, εij represents the

soil skeleton strain defined by

εij = (ui,j + uj,i)/2 (9)

where ui (i = x,y,z) corresponds to displacement components and
the comma denotes a partial derivative with respect to a spatial
variable. In the absence of body forces, the quasi-static equations of
equilibrium take the forms

σ ij,j = 0 (10)

The equations governing the quasi-static fluid flow are defined
by Darcy’s law, which takes the form

vi = −kp,i (11)

where vi denotes the specific discharge vector in the pore fluid; k
is the hydraulic conductivity and γw is the unit weight of the pore
fluid. The continuity equation associated with the quasi-static fluid
flow is

∂ζv
∂t
+ vi,i = 0 (12)

The basic Equations 7–12 are characterized by five independent
material parameters which are the drained Poisson’s ratio,
the undrained Poisson’s ratio νu, the shear modulus μ ,
Skempton’s pore pressure coefficient B and the permeability
coefficient k.

According to assumption h), boundary Γc is impermeable;
while boundary Γe is permeable. For bonded contact
between an impermeable elastic beam and a poroelastic
halfspace where the exterior region is allowed to drain
freely, the following boundary conditions are applicable
(Biot, 1941):

uz(x,y,0, t) = wb(x, t); (x,y) ∈ Γc (13a)

ux(x,y,0, t) = uy(x,y,0, t) = 0; (x,y) ∈ Γc (13b)

σzx(x,y,0, t) = σzy(x,y,0, t) = σzz(x,y,0, t); (x,y) ∈ Γe (13c)

vz(x,y,0, t) = 0;  (x,y) ∈ Γc (13d)

p(x,y,0, t) = 0;  (x,y) ∈ Γ; ∀t ≥ 0 (13e)

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2024.1403663
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liang et al. 10.3389/feart.2024.1403663

As is evident, the poroelastic adhesive contact problem for the
infinite beam on a poroelastic halfspace defined by Eq. 13 has to
consider not only the mixed boundary conditions applicable to
u(x, t) and σ(x, t) but also a set of mixed boundary conditions
applicable to the pore fluid pressure p(x, t), which makes the
analysis extremely complex. Alternatively, we develop bounds to
the poroelasticity by prescribing free draining-frictionless (Case A),
impervious-frictionless (Case B), free draining-inextensible (Case
C) and impervious-inextensible (Case D) boundary conditions on
Γ (Selvadurai and Shi, 2015).
Case A: considering the shear traction free and pervious boundary
conditions prescribed over Γ, the resulting boundary value problem
is given by

uz(x,y,0, t) = wb(x, t); (x,y) ∈ Γc (14a)

σzx(x,y,0, t) = σzy(x,y,0, t) = 0; (x,y) ∈ Γ (14b)

σzz(x,y,0, t) = 0;  (x,y) ∈ Γe (14c)

p(x,y,0, t) = 0;  (x,y) ∈ Γ (14d)

Case B: considering the shear traction free and impervious
boundary conditions prescribed over Γ, the initial boundary value
problem is given by

uz(x,y,0, t) = wb(x, t); (x,y) ∈ Γc (15a)

σzx(x,y,0, t) = σzy(x,y,0, t) = 0;  (x,y) ∈ Γ (15b)

σzz(x,y,0, t) = 0; (x,y) ∈ Γe (15c)

vz(x,y,0, t) = 0;  (x,y) ∈ Γ (15d)

Case C: considering the inextensibility and pervious
boundary conditions prescribed over Γ, the initial
boundary value problem is given by

uz(x,y,0, t) = wb(x, t); (x,y) ∈ Γc (16a)

ux(x,y,0, t) = uy(x,y,0, t) = 0; (x,y) ∈ Γ (16b)

σzz(x,y,0, t) = 0;  (x,y) ∈ Γe (16c)

p(x,y,0, t) = 0; (x,y) ∈ Γ (16d)

Case D: considering the inextensibility and impervious
boundary conditions prescribed over Γ , the resulting initial
boundary value problem is given by

uz(x,y,0, t) = wb(x, t); (x,y) ∈ Γc (17a)

ux(x,y,0, t) = uy(x,y,0, t) = 0;  (x,y) ∈ Γ (17b)

σzz(x,y,0, t) = 0; (x,y) ∈ Γe (17c)

vz(x,y,0, t) = 0; (x,y) ∈ Γ (17d)

4.2 Fundamental solutions of the
poroelastic halfspace

For convenience, the beam half-width b, the shear modulus
μ and the consolidation coefficient c governing the soil-pipeline
interaction, where c is given in Eq. 18

c =
2μB2(1− ν)(1+ υu)

2k
9γw(υu − ν)(1− νu)

(18)

are introduced to render all physical quantities non-dimensional as

x∗ = x
b
, t ∗ = ct

b2
,w∗b =

wb

b
,u∗ = u

b
,σ ∗ij =

σ ij

μ
,p∗ =

p
μ
,k∗ =

μk
cγw

v∗ = bv
c
,EI ∗ = EI

μb4
,M∗b =

Mb

μb3
,q∗c =

qc
μb
,K ∗ = K

μ
(19)

In Eq. 19, q∗c = K
∗w∗b is the dimensionless contact force between the

beam and soil; and the other variables have been defined previously.
We adopt a method that involves the use of Fourier and

Laplace transforms to obtain the fundamental solutions of the
poroelastic halfspace. Adopting the relaxed boundary conditions
(Eqs 14a–17d), the pipe-soil interaction analysis will become
relatively easy. At the same time, the pipe-soil interaction solution
under the strict boundary condition (Eq. 13a) should be within
the range limited by the above four post-relaxation solutions.
Details of the derivation can be found in the paper by Selvadurai
and Shi (2015). The fundamental solutions of pore pressure, soil
displacement and traction stresses are expressed in the transform
domain, as shown in Supplementary Appendix SA1. The solutions
are expressed as functions of ξ, η, z and s along with undetermined
constants A1, A2, A3 and A4. It is noted that the counterparts of ξ, η
and s in the spatial-temporal domain are x∗ , y∗ and t∗ , respectively.

4.3 Evaluating subgrade modulus

The subgrade modulus in the transform domain can be
expressed as

K̃
∗
(ξ, s) =

q̃∗c (ξ, s)

w̃∗b (ξ, s)
(20)

where the tidal and bar above the symbol denote variable in the
transform domain. For the formulation of the subgrade modulus,
the contact force q∗c over Γc is assumed to be composed of a
number of strip loads of equal width and finite amplitude across
the beam section, and the contact stress distribution within each
strip is considered to be uniform, as shown in Figure 3A. The
number and amplitude of the strip loads are determined to yield an
approximately constant displacement w∗b of the beam at any cross
section by satisfying the displacement compatibility condition at
discrete middle points of the strips (see Figure 3B).

As can be seen from Figure 3, the beam-halfspace interface is
discretized into N  strips with equal width Δy∗ and the continuous
variable y∗ across the interface is changed into a discrete variable y∗n ,
which is expressed as

yn
∗ = −1+ 2n− 1

2
Δy∗ (21)

In Eq. 21, 1 ≤ n ≤ N; −1 ≤ y∗n ≤ 1 and N = 2/Δy∗ . The contact
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FIGURE 3
Discretization of contact boundary conditions over the beam-half space interface Γc: (A) contact normal stress; (B) beam section displacement.

normal stress and the displacement compatibility condition over the
interface Γc can then be readily obtained:

σzz
∗ (x∗ ,y∗ ,0, t ∗ ) = −

N

∑
n=1

qcn
∗ (x∗ ,yn

∗ , t ∗ )
Δy∗

H(Δy∗ −|y∗ − yn
∗ |);

(x∗ ,y∗ ,yn
∗ ) ∈ Γc

(22)

uz
∗ (x∗ ,yn

∗ ,0, t ∗ ) = wb
∗ (x∗ , t ∗ ); (x∗ ,yn

∗ ) ∈ Γc (23)

where q∗cn is the unknown contact force acting along the center line
of the nth strip.

After replacing the displacement compatibility condition in
Cases A to D by Eq. 23 and combining the left boundary conditions
in each case with Eq. 22, a set of algebraic equations can be formed
in Fourier-Laplace transform domain to evaluate the subgrade
modulus defined in Eq. 20.The details of derivation can be found in
the paper by Shi and Selvadurai (2015). Take Case A as an example,
the subgrade modulus can be obtained by solving

N

∑
n=1

−∞

∫
−∞

χA ×
sin(ηΔy∗/2)
γ2(ηΔy

∗/2)
× eiη(ym

∗−yn
∗ )dη×

q̃cn
∗ (ξ,yn

∗ , s)

w̃b
∗ (ξ, s)

= 4π

(24)

where 1 ≤m ≤ N. For Cases B to D, Eq. 24 still applies; however,
χA should be replaced by χB to χD, respectively, whose expressions
are given in Supplementary Appendix SA1. After solving Eq. 24, the
subgrade modulus in the transform domain can be obtained as

K̃
∗
(ξ, s) =

N

∑
n=1

q̃cn
∗ (ξ, s)

w̃b
∗ (ξ, s)

(25)

and its value (Eq. 25) in the spatial-temporal domain can be obtained
by performing inverse Fourier-Laplace transformations.

5 Greenfield soil settlement

It is a common practice to describe the short-term greenfield
soil settlement due to tunneling using a Gaussian curve. However,
as reported by Vorster et al. (2005) the Gaussian curve is not
satisfactory to accurately describe the soil settlement in many

cases. Instead, they proposed a modified Gaussian curve of the
following form

Sc(x) =
ωScmax

(ω− 1) + exp[α( x
i
)2]

(26)

in which, Scmax denotes the maximum settlement along the
settlement profile; i is the distance to the inflection point of
the greenfield settlement trough profile; ω is the shape function
parameter controlling the width of the profile, i.e.,

ω = eα 2α − 1
2α + 1
+ 1 (27)

In Eq. 27, α is a parameter to ensure i remains the distance to the
inflection point.

Following the same profile function, Wongsaroj et al. (2013)
investigated the long-term settlement induced by the dissipation
of the tunneling-generated excess pore water pressure towards the
drainage boundaries. Later, Laver et al. (2017) extended the work
of Wongsaroj et al. (2013), and proposed an empirical formula-
based chart for evaluating the consolidation settlement for both
transient and steady-state long-term conditions. Here, we follow
the chart by Laver et al. (2017), and list the main steps as follows

Step (1), evaluate the dimensionless settlement DS, i.e.,

DS = 1
1+ 1.4RP−1

(28)

In Eq. 28, RP is a dimensionless parameter measuring the relative
soil-lining permeability,

RP =
DK tγw
2k

ln(
2Cs

D
+ 1) (29)

In Eq. 29, Kt =
kt
γwtt

is the seepage coefficient of lining, kt and tt
denotes the permeability and thickness of the lining, respectively;
Cs = h− z0 −D/2 measures the thickness of soil between the tunnel
crown level and the water table.

Step (2), evaluate the steady state nondimensional settlement
NScmax (ssi) and NScmax (ssp) for the fully impermeable and
permeable lining cases, respectively, i.e.,

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2024.1403663
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Liang et al. 10.3389/feart.2024.1403663

{{
{{
{

NScmax(ssi) = 4.4VL

NScmax(ssp) = −0.25− 0.046
h
D

(30)

In Eq. 30, VL denotes volume loss of tunneling construction. It is
reported by Attewell et al. (1986) that the volume loss of tunneling
in clay soil is generally 0.5%–2.5%. Here, we take an average value,
i.e., VL = 1.5% .

Step (3), evaluate the steady state nondimensional settlement
NScmax (ss) at permeability of lining,

NScmax(ss) = NScmax(ssi) +DS(NScmax(ssp) −NScmax(ssi)) (31)

Step (4), according to Eq. 31, convert the nondimensional
settlement to actual settlement, i.e.,

Scmax(ss) =
5DLcγw

E0
NScmax(ss) (32)

In Eq. 32, Lc = h‐z0 is the tunnel axis depth below the water table.

Step (5), according to the actual steady-state settlement, find
the transient settlement at required time,

Scmax = [1−
2
3
exp[ln(3

2
)− 3ARST

BRS
v ]]Scmax(ss) (33)

In Eq. 33, Tv is the dimensionless consolidation time depending on
the permeability of the soil covering the tunnel and the drainage
distance from the soil to the tunnel; ARS and BRS are empirical
functions of h

D
and RP. Expressions of the above parameters are

given as

Tv =
ctt
C2
s

(34)

ARS =
{
{
{

0.5

0.12+ 0.055 h
D
; BRS = {

0.8
1
; for{

settlement,Scmax(ss) < 0
heave,Scmax(ss) ≥ 0

(35)

In Eq. 34, ct =
E0k
γw

denotes the consolidation coefficient governing
the soil-tunnel interaction.

Step (6), evaluate the transverse distribution of the transient
settlement at required time (i.e., the ground settlement profile
at particular time) according to the modified Gaussian curve.
By replacing i in Eq. 26 by KLh, we have

Sc(x) =
ωScmax

(ω− 1) + exp[α( x
KLh
)
2
]

(36)

In Eq. 36, KL and α can be empirically related to VL and RP,
respectively, i.e.,

KL = 0.8− 6VL; α =
{
{
{

−0.004 forRP < 0.1

0.1 forRP ≥ 0.1
(37)

FIGURE 4
Verification on subgrade modulus K.

Step (7), evaluate the transient settlement profile at the pipeline
level (i.e.,Uz(x, t) ), which is achieved by Eqs 33–37 and scaling
the maximum settlement Scmax and trough width KLh , i.e.,

U z =
ωχScmax

(ω− 1) + exp[α( x
KLh/χ
)
2
]

(38)

In Eq. 38, χ = 0.5h
0.5h−0.325z0

(Klar et al., 2008).

6 Verification

Since no results have been published on the consolidation effects
on the pipe-soil interaction problem due to tunneling, the solution
developed in this study will be simplified and then verified at
elementary levels: (1) the subgrade modulus; and (2) the bending
moment of pipeline subjected to short-term settlement caused by
tunneling.

(1) Verification on subgrade modulus K. The analysis consider
an infinite pipeline resting on a saturated homogeneous half-space
is considered.Thepipeline is of diameter d=2b=0.8 m,wall thickness
dt=20 mm, and bending rigidity EI=1.3×104 kN m2. The material
parameters of the saturated soil are as follows: E0=40 MPa, ν=0.3,
νu=0.5, k=5×10−8 m/s, μ=15.4 MPa, B=1, and γw=10 kN/m3.

As indicated in Figure 3, to establish a bonded contact condition
between the pipeline and the soil, the contact area is discretized
intomultiple strips, ensuring a constant displacement of the pipeline
across all sections. This contact condition can be simplified to
the “average contact” condition when N=1, where the contact
force q∗c over Γc is uniformly distributed, and the displacement
compatibility condition is satisfied only at the midpoint of the
beam section. It should be noted that the commonly used
Vesic equation (Eq. 6) was derived for the “average contact”
condition (i.e., N=1).

Using the aforementioned parameters, computational results for
the subgrademodulus K are presented in Figure 4 for Cases A and B.
The figure also includes the prediction from Vesic equation (Eq. 6).
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FIGURE 5
Verification on bending moment of pipeline subjected to transient short-term settlement: (A) Cases A; (B) Cases B.

Initially, the soil exhibits fully undrained behavior governed by
the undrained Poisson’s ratio vu. As consolidation occurs, the soil
behavior gradually transitions to a fully drained state governed
by the drained Poisson’s ratio v. As vu>v, the magnitude of
the subgrade modulus decreases with the consolidation of the
soil. The Vesic equation, based on the fully drained condition,
within the scope of “average contact” (N=1) and “bonded
contact” condition (N=20) calculations. The range calculated
by “bonded contact” condition (N=20) is greater than “average
contact” (N=1).

(2) Verification of bending moment of pipeline subjected
to short-term settlement. Wei et al. (2009) studied the bending
moment response of a pipeline, considering only the transient
soil settlement induced by tunneling. The tunnel and pipeline
axes have burying depth of h=5 m and z0=1.5 m, respectively. The
pipeline is of diameter d=0.8 m, wall thickness dt=0.12 m, and
bending rigidity EI=4.58×105 kN m2. The tunnel, constructed in
a homogenous elastic ground with elastic modulus E0=3.08 MPa
and Poisson’s ratio ν =0.35, is of diameter D=1.5 m. Wei et al.
(2009) employed a Gaussian curve to describe the short-term
greenfield soil settlement induced by tunneling. The maximum
greenfield settlement occurs right above the tunnel is related to
the volume loss VL by the equation Smax =

VL

i√2π
(1− z0

h
)−0.3. By

using the short-term greenfield soil settlement as input in the
developed solution, the distribution of bending moment along the
pipeline can be evaluated and compared to the results obtained
by Wei et al. (2009), as depicted in Figure 5. In our solution, the
bonded contact condition is established between the pipeline and
soil (N=20). It is seen that the results of Wei et al. (2009) are
encompassed within the computational results at both small and
large consolidation times from the developed solution presented
herein.

By conducting thorough verification on the subgrade
modulus and the bending moment of the pipeline
subjected to short-term settlement, it is established a strong
foundation for further investigation into the consolidation
effects on the pipe-soil interaction problem due to
tunneling.

FIGURE 6
The variation of subgrade modulus with the seepage
consolidation of soil.

7 Numerical results

By using the two-step method, the tunneling effects on an
existing pipeline striking perpendicularly to an underpassing tunnel
are investigated in this section.The burying depths of the tunnel and
pipeline axes are h=10 m and z0=1 m, respectively. The tunnel of
radiusD=6 m is constructed in a homogenous saturated poroelastic
ground. The tunnel lining is of thickness tt=0.2 m and permeability
kt=1×10

−9 m/s. The pipeline is of diameter d=2b=0.8 m, wall
thickness dt=20 mm and bending rigidity EI=1.3×104 kN m2.
Material parameters of the saturated soil are E0=40 MPa, ν=0.3,
νu=0.5, k=5×10−8 m/s, μ=15.4 MPa, B=1 and γw=10 kN/m

3.
As stated in Section 5, the volume loss of soil induced by tunneling
is VL=1.5%.

With the above parameters, the following intermediate
parameters can be evaluated: the thickness of soil between the tunnel
crown level and the water table CS=6 m; the relative soil-lining
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TABLE 1 Comparisons on subgrade modulus K between Cases A∼D.

Boundary
condition

Case A Case B Case C Case D Vesic equation
(Eq. 6)

At the beginning of
consolidation

72.88 73.18 72.89 73.18

57.81
At the end of
consolidation

46.26 46.71 56.12 56.49

FIGURE 7
Long-term greenfield settlement for the point of pipeline (x = 0) that is
right above the tunnel.

FIGURE 8
Distribution of steady-state long-term settlement along the pipeline.

permeability RP=23.1; the dimensionless settlement DS=0.54; the
distance to the inflection point of the greenfield settlement trough
profile i=10.65; the consolidation coefficients governing the tunnel-
soil and pipeline-soil interactions are ct=2×10−4 and c= 2.15×10−6,
respectively.

FIGURE 9
The development of maximum sagging moment of pipe with seepage
consolidation.

7.1 Subgrade modulus

With the above-listed parameters, the subgrade modulus K
resulting from the pipeline-soil interaction can be evaluated by
using the method provided in Section 4. Figure 6 presents the time-
dependent subgrade modulus under the four boundary conditions
(i.e., Cases A∼D). A decrease in the subgrade modulus can be
observed for all the four boundary conditions (i.e., Cases A∼D) with
the elapsing consolidation time. Initially (t ∗→0), the soil behaviors
fully undrained, and the soil is volumetrically incompressible due to
νu =0.5. Thus, the subgrade modulus K is of the same magnitude
between Cases A∼D. With the seepage consolidation of soil, it is
seen that the subgrade modulus associated with Cases B and D is
higher than that associated with Cases A and C. The difference is
due to the hydraulic boundary condition at the ground surface. In
Cases B and D, the surface is impervious, which implies that the
excess pore water pressure can only be dissipated into the infinity
of ground. In comparison, the surface is pervious in Cases A and C,
and thewater canflow freely out of the surface.Then, it is understood
that K of Cases B and D is large since the water flow (of nearly
zero compressibility) is constrained. When the time approaches the
end of consolidation, the subgrade moduli of Cases A and B (and
similarly Cases C and D) converge to a same limiting value. It
is seen that the limiting K (t ∗→∞) of Cases C and D is higher
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FIGURE 10
Distribution of bending moment along the pipeline at time instants t∗=10, 100 and 1,000: (A) Case A; (B) Case B; (C) Case C; (D) Case D.

than that of Cases A and B. The explanation is that an inextensible
ground surface (Cases C and D) would render a stiffer support to
the pipeline when compared to the ground of frictionless surface
(Cases A and B).

To facilitate the comparison, the magnitude of subgrade
modulus K is summarized in Table 1 for the beginning and end
of the seepage consolidation, respectively. Also included in Table 1
is the prediction by Vesic equation, which is well bounded by the
subgrade modulus associated with the four boundary conditions
(Cases A∼D).

7.2 Greenfield soil settlement

According to the steps listed in Section 5, the long-term
settlement induced by the dissipation of the tunneling-induced
excess pore water pressure can be obtained. It is noted that the
short-term settlement caused by undrained shear deformation of
soil during the tunnel construction is not considered. For the
point of pipeline that is right above the tunnel, its greenfield
settlement gradually increases with the seepage consolidation

TABLE 2 The maximum sagging moment of the pipeline associated with
the four boundary conditions.

Time Case A Case B Case C Case D

t∗=10 884.9 885.2 819.6 819.8

t∗=100 2,383.1 2,383.4 2,207.4 2,207.7

t∗=1,000 2,558.9 2,559.1 2,370.5 2,370.6

TABLE 3 The maximum hogging moment of the pipeline associated with
the four boundary conditions.

Time Case A Case B Case C Case D

t∗=10 230.2 230.2 213.2 213.1

t∗=100 620.3 620.3 574.3 574.3

t∗=1,000 666.2 666.2 616.8 616.8
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FIGURE 11
Development of maximum sagging moment with seepage
consolidation under four permeabilities of tunnel lining.

FIGURE 12
Distribution of bending moment along the pipeline under four
permeabilities of tunnel lining.

process, as shown in Figure 7. At initial stage of the seepage
consolidation, the gain in settlement is marginal, which is due to
the relatively large drainage distance Cs. Then, the consolidation
settlement develops quickly before it reaches a stable value at the end
of the consolidation (i.e., ln (t ∗ ) =6). The steady-state long-term
settlement reads 11 mm.

When the seepage consolidation is completed, the distribution
of the steady-state settlement along the pipeline is shown in Figure 8.
It is seen that the largest steady-state settlement happens right
above the tunnel (i.e., x=0). With the horizontal distance away
from the tunnel, the settlement decreases, which forms a typical
trough profile covering a range x=0–50 m. From the figure,
the distance to the inflection point of the settlement trough
profile is 25 m.

7.3 Bending moment of pipeline

With the subgrade modulus K and greenfield soil settlement
at the pipeline level Uz being determined in Sections 7.2, 7.3,
respectively, the bending moment response of the pipeline can
be evaluated by using the equations detailed in Section 3. The
development of the maximum sagging moment (i.e., the bending
moment in the pipe right above the tunnel centerline) (Eq. 5)
with the nondimensional time ln (t ∗ ) is shown in Figure 9. The
develop pattern of the maximum sagging moment resembles that
of the greenfield settlement (see Figure 8), i.e., the increasing of
bending moment is extremely slow before ln (t ∗ ) =0, after which
the bending moment gains until the time ln (t ∗ ) =5. The curves
associated with the four boundary conditions (Cases A∼D) basically
overlap before the time ln (t ∗ ) =2, even though obvious difference
between the subgrade moduli of the four cases exist (see Figure 7).
This observation implies that the bending moment response of the
pipeline is governed by the greenfield settlement input, especially
during the initial and middle stages of the seepage consolidation.
Towards the end of the consolidation, the maximum sagging
moment associated with Cases A and B is about 10% larger than that
with Cases C andD, which agrees with the finding that the pipe with
stiffer subgrade would suffer smaller bending moment (Zhang and
Huang, 2012).

As consolidation proceeds, the subgrademodulus decreases and
the soil settlement increases. The pipe bending moment is affected
by the soil settlement input and gradually increase, and its law
of change with time is consistent with the law of change of soil
settlement with time.

Since the bending moment develops quickly when the
nondimensional time ln (t ∗ )>2, the distributions of bending
moment along the pipeline are presented in Figure 10 for three
selected time instants, i.e., t ∗=10, t ∗=100, and t ∗=1,000. It
is seen that the maximum sagging moment (of positive value)
happens right above the tunnel (i.e., x=0 m), and the maximum
hogging moment (of negative value) occurs near the edge of
the settlement trough (i.e., x≈12 m). The maximum sagging
and hogging moments of the pipeline associated with the four
boundary conditions are summarized in Tables 2, 3, respectively.
The exact value of maximum bending moment of the pipeline
subjected to tunneling should fall within the bounds provided by
Cases A∼D. Take the sagging moment as an example, its exact
value at the steady state (i.e., t ∗=1,000) should be within the
range (2370 N m, 2559 N m), whose upper and lower bounds are
provided by Cases C and Case A, respectively. It is noted that this
range is narrow enough for an engineering judge on the failure
of pipeline.

7.4 Influence of permeability of tunnel
lining

As indicated by Wongsaroj et al. (2013), the consolidation
settlement by tunneling can be significantly influenced by the
permeability of tunnel lining. Here, we consider four permeability
of lining, i.e., kt=10−7 m/s, 10−8 m/s, 10−9 m/s and 10−10 m/s,
respectively. The other parameters of the soil, pipe and tunnel are
the same as those depicted at the beginning of Section 7. Take Case
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A as an example, the comparison on the maximum sagging moment
is presented in Figure 11. It is seen that the increase of bending
moment with time follows the same pattern between the four
permeabilities, i.e., the bending moment increases slowly initially
(ln (t ∗ ) <0), and then it grows quickly with time before it reaches
a stable value around ln (t ∗ ) =5. The steady-state value of sagging
moment increaseswith the increasing permeability. For example, the
steady-state sagging moment associated with kt=10−7 m/s is about 8
times that with kt=10−10 m/s.

When the seepage consolidation is completed, the distribution
of bending moment along the pipeline is presented in Figure 12.
Similar to the sagging moment, it is observed that the
maximum hogging moment also increase with the increasing
permeability of lining. For example, the hogging moment
associated with kt=10−7 m/s is about 6 times that with
kt=10
−10 m/s.

8 Conclusion

To overcome the deficiency that only transient response can be
considered in the analysis of the pipeline force caused by shield
excavation, the pipe-soil contact stiffness is first derived taking
into account the seepage consolidation effect of soft soil. Using the
“two-step method”, the deformation field resulting from seepage
consolidation in the adjacent layer due to shield excavation is input
to develop an analytical prediction method for the force exerted on
the adjacent pipeline. This approach takes full account of the effects
of seepage consolidation in soft ground. The following conclusions
are drawn:

(1) The subgrade modulus K decreases gradually with seepage
consolidation. Initially, the subgrade modulus K is the same
for the four boundary conditions. As the soil consolidates,
the subgrade modulus associated with Case B and Case
D are higher than that associated with Case A and Case
C. This is because the surface is impervious in Cases B
and D and pervious in Cases A and C. When the time
approaches the end of consolidation, the subgrade moduli
of Cases A and B (and similarly Cases C and D) converge
to a same limiting value. It is seen that the limiting K
(t ∗→∞) of Cases C and D is higher than that of Cases
A and B. The explanation is that an inextensible ground
surface (Cases C and D) would render a stiffer support to the
pipeline when compared to the ground of frictionless surface
(Cases A and B).

(2) The greenfield settlement increases gradually during the
consolidation process, with slow development in the early
stage, and accelerated growth in the middle stage.

(3) The development pattern of the maximum sagging
moment mirrors that of the greenfield settlement. The
increase in bending moment is initially slow, accelerates
during the middle stage, and eventually stabilizes. Under
four boundary conditions investigated, the difference
between the final stable maximum and minimum bending
moment is 10%.

(4) The steady-state value of sagging moment increases
with increasing permeability. Specifically, the steady-state

sagging moment associated with a larger permeability
of lining kt would be higher than that associated with
a lower kt.
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Glossary

b Beam half-width

B Skempton’s pore pressure coefficient

c consolidation coefficient

ct consolidation coefficient governing the soil-tunnel interaction

d diameter of pipeline

dt wall thickness

D diameter of tunnel

EI bending stiffness of pipe

E0 drained elastic modulus

h burying depth of the tunnel

i distance to the inflection point of the greenfield settlement trough profile

k hydraulic conductivity

kt permeability of the lining

K subgrade modulus

Lc tunnel axis depth below the water table

Mb bending moment

p pore fluid pressure

q∗c contact force

RP dimensionless parameter measuring the relative soil-lining permeability

Smax maximum settlement along the settlement profile

tt thickness of the lining

Tv dimensionless consolidation time

UZ greenfield soil displacement

VL volume loss of tunneling construction

z0 burying depth of the pipe

α a parameter to ensure i remains the distance to the inflection point

μ shear modulus

ω shape function parameter controlling the width of the profile

wb deflection of pipe

ν Poisson’s ratio of soil

vi specific discharge vector in the pore fluid

νu undrained Poisson’s ratio

ζv volumetric strain in the pore fluid

σ ij total stress tensor

εij soil skeleton strain

γw unit weight of the pore fluid

Γc region of the surface of the halfspace in contact with the beam

Γe combined region of the half-space exterior to Γc

NScmax(ssi) steady state nondimensional settlement for the fully
impermeable lining

NScmax(ssp) steady state nondimensional settlement for the permeable lining
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