AUTHOR=Shao Man , Liu Fuming TITLE=Slope deformation prediction based on noise reduction and deep learning: a point prediction and probability analysis method JOURNAL=Frontiers in Earth Science VOLUME=12 YEAR=2024 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2024.1399602 DOI=10.3389/feart.2024.1399602 ISSN=2296-6463 ABSTRACT=
Slope deformation, a key factor affecting slope stability, has complexity and uncertainty. It is crucial for early warning of slope instability disasters to master the future development law of slope deformation. In this paper, a model for point prediction and probability analysis of slope deformation based on DeepAR deep learning algorithm is proposed. In addition, considering the noise problem of slope measurement data, a Gaussian-filter (GF) algorithm is used to reduce the noise of the data, and the final prediction model is the hybrid GF-DeepAR model. Firstly, the noise reduction effect of the GF algorithm is analyzed relying on two actual slope engineering cases, and the DeepAR point prediction based on the original data is also compared with the GF-DeepAR prediction based on the noise reduction data. Secondly, to verify the point prediction performance of the proposed model, it is compared with three typical point prediction models, namely, GF-LSTM, GF-XGBoost, and GF-SVR. Finally, a probability analysis framework for slope deformation is proposed based on the DeepAR algorithm characteristics, and the probability prediction performance of the GF-DeepAR model is compared with that of the GF-GPR and GF-LSTMQR models to further validate the superiority of the GF-DeepAR model. The results of the study show that: 1) The best noise reduction is achieved at the C1 and D2 sites with a standard deviation