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Slope deformation prediction
based on noise reduction and
deep learning: a point prediction
and probability analysis method
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2Hunan Water Planning and Design Institute Co., Ltd., Changsha, China

Slope deformation, a key factor affecting slope stability, has complexity and
uncertainty. It is crucial for early warning of slope instability disasters to master
the future development law of slope deformation. In this paper, a model
for point prediction and probability analysis of slope deformation based on
DeepAR deep learning algorithm is proposed. In addition, considering the noise
problem of slope measurement data, a Gaussian-filter (GF) algorithm is used
to reduce the noise of the data, and the final prediction model is the hybrid
GF-DeepAR model. Firstly, the noise reduction effect of the GF algorithm is
analyzed relying on two actual slope engineering cases, and the DeepAR point
prediction based on the original data is also compared with the GF-DeepAR
prediction based on the noise reduction data. Secondly, to verify the point
prediction performance of the proposedmodel, it is comparedwith three typical
point prediction models, namely, GF-LSTM, GF-XGBoost, and GF-SVR. Finally, a
probability analysis framework for slope deformation is proposed based on the
DeepAR algorithm characteristics, and the probability prediction performance of
the GF-DeepAR model is compared with that of the GF-GPR and GF-LSTMQR
models to further validate the superiority of the GF-DeepAR model. The results
of the study show that: 1) The best noise reduction is achieved at the C1
and D2 sites with a standard deviation σ of 0.5. The corresponding SNR and
MSE values are 34.91 (0.030) and 35.62 (0.674), respectively. 2) A comparison
before and after noise reduction reveals that the R2 values for the C1 and D2
measurement points increased by 0.081 and 0.070, respectively. Additionally,
the MAE decreased from 0.079 to 0.639, and the MAPE decreased from 0.737%
to 0.912%. 3) The prediction intervals constructed by the GF-DeepAR model
can effectively envelop the actual slope deformation curves, and the PICP
in both C1 and D1 is 100%. 4) Whether it is point prediction or probability
prediction, the GF-DeepAR model excels at extracting feature information from
slope deformation sequences characterized by randomness and complexity.
It conducts predictions with high accuracy and reliability, indicating superior
performance compared to other models. The results of the study can provide a
reference for the theory of slope deformation prediction, and can also provide
a reference for similar projects.
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1 Introduction

The stability of slopes is crucial for engineering safety
(Peng et al., 2019; Qiu et al., 2024). Influenced by a variety of
environments, the originally stable slopes are prone to lose their
original equilibriumunder the action of external or internal stresses,
which may lead to disasters such as landslides and collapses.
For example, in September 2008, landslides occurred in Jintou
Mountain in the southern part of the Taipei Basin, which greatly
impacted the safety of the residential community in the downslope
location (Nguyen et al., 2022). On 17 September 2011, a landslide
occurred in Baqiao District, Shaanxi, China, which causing severe
casualties in terms of people and property (Lin et al., 2017), and
on 28 June 2016, a landslide occurred in Xinlu Village, Shuicheng,
Chongqing (Zuo et al., 2022). Currently, advance identification and
trend prediction of disasters is one of the most important means
to avoid losses and casualties caused by slope disasters. Slope
deformation, as a key factor affecting its stability, has complexity
and uncertainty, and mastering its future development pattern is
crucial for early warning of slope instability disasters.

In recent years, many intelligent prediction algorithms have
been applied to slope deformation prediction (Deng et al., 2021).
Initially, more applications are static models such as the Support
Vector Machine Regression (SVR) algorithm (Xu et al., 2022), the
Autoregressive Moving Average (ARMA) algorithm (Shen et al.,
2018), and the Backpropagation (BP) algorithm (Zhang et al., 2023).
Since 2006, Deep Learning has achieved great success in the field
of machine learning (Lasantha et al., 2023). Deep learning-based
recurrent neural network (RNN) models with deeper network
structures and more powerful representation learning capabilities
are particularly favored by researchers (Cao et al., 2023). Currently,
RNNmodels have achievedmore research results in the field of slope
deformation prediction (Xie et al., 2019). Long Short-TermMemory
(LSTM) is a kind of RNN, Xi et al. (2023) established an LSTM
slope deformationmodel based on the time-series deformation data
from seven on-site monitoring points of Huanglianshu landslide
and found that the prediction accuracy was better. Wang et al.
(2024) used the LSTM algorithm to predict and analyze the
deformation data of complex road graben slopes and compared it
with other kinds of prediction models, and found that the LSTM
slope deformation prediction model proposed in this paper is
more accurate. Zhang et al. (2024) proposed a slope deformation
prediction method based on LSTM for the stability of loosely
stacked body slopes and demonstrated that the method can be
used as an effective measure to mitigate landslide losses. The above
studies demonstrate the applicability of deep learning models in
slope deformation prediction and promote the progress of research
work in this field, but there are still several problems need to be
optimized. Firstly, although the LSTMmodel is capable of capturing
the long-term dependence of slope deformation, it is relatively
weak in handling mutations or outliers (Zhu et al., 2024), leading to
limitations in its prediction accuracy (Chen et al., 2019). Secondly,
the monitoring data used to train the prediction model is easily
affected by conditions such as monitoring equipment and field
environment, leading to the problem of data noise (Dong et al.,
2023). This in turn affects the quality of the dataset and leads
to unsatisfactory prediction results. Thirdly, the prediction results
obtained from the existing studies are all point prediction results,

resulting in low credibility of the results, which in turn limits the
value of popularization and application.

DeepAR algorithm is an improved algorithm based on RNN
and LSTM (Salinas et al., 2020). The algorithm was first proposed
by Salina et al., in 2017 (Schaduangrat et al., 2023). The DeepAR
algorithm contains a recurrent neural network structure inside,
which has the same memory and parameter sharing as LSTM
(Singh et al., 2024). In addition, DeepAR can adjust the probability
distribution by probability modeling, which allowing it to learn
the inherent laws and patterns of the slope deformation sequence
data, rather than just simple linear relationships or trends.
Hence, the DeepAR algorithm is able to capture this change and
flexibly adjust according to the previously learned patterns, thus
provide more robust predictions (Chang and Jia, 2023), when
there is a sudden change in the original data. Currently, the
DeepAR algorithm has been successfully applied in the fields
of healthcare (Schaduangrat et al., 2023), finance (Soliman et al.,
2023), and environmental protection (Jiang et al., 2021), and can
also provide an effective means for accurate and reliable prediction
of slope deformation. In addition, the current slope engineering
measurement data are susceptible to noise problems due to a
variety of conditions, limiting the accuracy of slope deformation
prediction (Ma et al., 2021). Including deep learning algorithms
such asRNN, LSTM,DeepAR, etc., the above-mentioned algorithms
are single prediction algorithms and cannot pre-process for the
dataset before doing prediction analyses. Therefore, it is of great
significance to propose a hybrid algorithm that guarantees the
quality of prediction input data and provides prediction analyses
based on established high-precision prediction algorithms.

To address the above issues, a model for prediction and
probability analysis of slope deformation points based on GF and
DeepAR algorithms is proposed. The structure of the paper is
organized as follows: Section 2 provides a detailed introduction
to the newly proposed method, which consists of three parts:
filtering and noise reduction processing based on the GF algorithm,
slope deformation prediction based on DeepAR, and point
prediction performance assessment and comparison analysis.
Section 3 shows the noise reduction results, prediction results,
and comparison analysis results of the GF-DeepAR model on
two real slope engineering cases. Section 4 proposes a probability
analysis framework for slope deformation based on the GF-DeepAR
model and compares the performance of other probability analysis
models to further validate the superiority of the GF-DeepARmodel.
Section 5 concludes this work. Section 6 compares the study in this
paper with existing similar studies, and also compares the prediction
accuracy at different time steps, and finally discusses the future
research outlook.

2 Hybrid GF-DeepAR prediction
approach

2.1 DeepAR algorithm

DeepAR is a time series prediction method based on deep
learning, which has a significant advantage in predicting the
nonlinear features of the series and can well perform point
prediction and probability prediction (Cao et al., 2023). The

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2024.1399602
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Shao and Liu 10.3389/feart.2024.1399602

FIGURE 1
DeepAR network architecture.

structure of the DeepAR model is shown in Figure 1. Define
the value of the ith slope deformation sequence at the moment
t as Zi,t . The goal of the prediction model is to obtain the
joint probability distribution P(zi,t:T|zi,t−1, zi,1:T) of the unknown
sequenceZi,t:T through the known slope deformationdataZi,1:t-1 and
covariates xi,1:T . Assume that the distribution of the unknown slope
deformation sequence is QΘ(zi,t:T|zi,t−1,xi,1:T), and its probability
distribution as shown in Eq. 1:

QΘ(zi,t:T|zi,t−1,xi,1:T) =
T

∏
t=t0

QΘ(zi,t|zi,1:t−1,xi,1:T) (1)

And represent this distribution by a parametric likelihood
function with, as shown in Eqs 2, 3:

T

∏
t=t0

QΘ(zi,t|zi,1:t−1,xi,1:T) =
T

∏
t=t0

𝓁(zi,t|θ(hi,t,Θ) ) (2)

hi,t = h(hi,t−1,zi,t−1,xi,t,Θ) (3)

Where h is the implied state function of the RNN neural
network, θ is the output state function, and Θ is the network
structure parameters.

It is worth noting that the model 𝓁(z|θ ) should choose the
likelihood function that best matches the statistical properties
of the data, such as the Gaussian distribution likelihood
function, the Bernoulli distribution likelihood function, and the
negative binomial distribution likelihood function. Considering
the characteristics of the data used in the study, Gaussian
distribution is used as the likelihood model for slope deformation
probability prediction, with the likelihood parameters θ = {u,σ},
u as the expectation and σ as the standard deviation. Each
likelihood function has its corresponding activation function,
in which to ensure that σ is positive, the activation function
of the output layer must be set as an exponential function
(exponential activation function, softplus activation function),
in this paper, we use the softplus as its activation function, as
shown in Eq. 4:

𝓁(z|u,σ ) = 1
√2πσ2

exp[
−(z− u)2

2σ2
] (4)

Where exp [] is a power function with e as the base.

2.2 GF algorithm

Gaussian-filter is a linear filtering technique with a probability
density function obeying a normal distribution, which can
be used to attenuate Gaussian noise interference in pit
deformation data (Selva et al., 2020). The core idea of the Gaussian-
filter algorithm is to iteratively convolve the original signal through
the Gaussian kernel function, and use the weighted average of the
neighborhood of a data point instead of that data point to obtain the
filtered and noise-reduced signal.

Considering that the slope deformation data is a one-
dimensional sequence, it is processed using a one-dimensional
Gaussian function, as shown in Eq. 5:

g(t,σ) = 1
√2πσ

exp(−
(t− t0)

2

2σ2
) (5)

Where: t is the sampling point for pit deformation monitoring,
and t0 is the mean value of t. Since the calculation takes the current
sampling point as the origin, t0 =0. Its first-order derivative g(1)(t,σ)
is calculated as shown in Eq. 6:

g(1)(t,σ) = −t
√2πσ3

exp(− t2

2σ2
) (6)

Where: g(1)(t,σ) is a Gaussian filter, and the slope
deformation sequence function f(t) is noise-reduced
by g(1)(t,σ), further, S(t,σ) can be calculated as shown
in Eq. 7:

S(t,σ) = f(t) ∗ g(1)(t,σ) (7)

Where: ′∗′ is the convolution operator; σ is the standard
variance of the Gaussian function; the smoothing effect of the
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FIGURE 2
Problems with the LSTM model and advantages of the GF-DeepAR model (A) Problems with the LSTM model; (B) Advantages of the GF-DeepAR model.

Gaussian filter is characterized by σ. The larger σ is, the larger the
local influence range of the Gaussian kernel function is, and the
better the smoothing degree of the signal is, and the smaller σ is,
the more the mutation information of the data is amplified.

2.3 GF-DeepAR hybrid model

Figure 2 shows the problems with the LSTM model and the
advantages of the GF-DeepAR model. In view of the problems in
previous studies, a model for point prediction and probabilistic
analysis of slope deformation based on DeepAR deep learning
algorithm (GF-DeepAR) is proposed. Firstly, the model can be
used to reduce the noise of the monitoring data through the GF
algorithm, which can improve the quality of the data on the one
hand, and improve the prediction accuracy on the other hand.
Secondly, the model is centered on DeepAR algorithm for slope
deformation prediction, which can not only solve the problem
of data mutation but also provide probability prediction results.
Among them, the details about probability prediction will be

elaborated in Section 4, and Sections 2 and 3 mainly elaborate point
prediction related contents.

The GF-DeepAR hybrid model-building process
is shown in Figure 3. It mainly includes three parts:
filtering and noise reduction processing based on the GF
algorithm, slope deformation prediction based on DeepAR,
and point prediction performance evaluation and comparative
analysis.

2.3.1 Filtering and noise reduction process based
on GF algorithm

The core of the GF algorithm for noise reduction lies in
determining the weight matrix of the Gaussian kernel function
wk(x+ i,σ). Firstly, the filter window length (2L+1), the number of
iterations K, and the standard variance σ of the slope deformation
sequence function f(x) are defined. Calculate the weight matrix
centered on the sampling point with Gaussian kernel function
influence radius L. Normalise the weight matrix so that the sum
of the weights is equal to 1 to get the final weight matrix, multiply
the weight matrix with the corresponding points of the original
data and then accumulate them to calculate the filtered output value
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FIGURE 3
GF-DeepAR hybrid model.

FIGURE 4
Slope engineering and deformation measurement point layout map-Case 1 (A) Actual site view; (B) Placement of deformation measurement points.
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FIGURE 5
Change rule of slope cumulative deformation-Case 1 (A) C1 measurement point; (B) C2 measurement point.

fk+1(x) of the slope deformation sequence function f(x), as shown
in Eq. 8:

fk+1(x) =
L

∑
−L

fk(x+ i)wk(x+ i,σ) (8)

Repeat the above steps until the number of iterations k=K to
get the slope deformation sequence after noise reduction by the GF
algorithm. The signal-to-noise ratio SNR and mean square error
MSE are used as noise reduction performance evaluation metrics
to select the optimal noise reduction data (Chicco et al., 2021;
Kononchuk et al., 2022).Where SNR andMSE are defined, as shown
in Eqs 9, 10:

SNR = 10 ∗ lg[
N

∑
i=1

x2i /
N

∑
i=1
(di − xi)

2] (9)

MSE = 1
N

N

∑
i=1
(di − xi)

2 (10)

Where: x is the initial slope deformation sequence, di is the slope
deformation sequence after noise reduction, and N is the length of
the slope deformation sequence. If the corresponding SNR andMSE
of the noise reduction data are larger and smaller, it indicates that the
noise reduction effect is better, and the data with the optimal noise
reduction effect is selected for the next processing.

2.3.2 DeepAR-based slope deformation
prediction

The noise-reduced slope deformation sequences are input into
theDeepARmodel and the data set is constructed based on the input
sequences. In the specific construction process, the sliding window
method is used to construct the input features and output features
for slope deformation prediction.The input features S1,S2,S3......St−1
of the data set consist of historical slope deformation values, and the
time step of historical slope deformation is set to 8 with reference to
the established research (Muneeb, 2022; Liu et al., 2024).The output
features St consist of slope deformation values at time t. Further, the
data set is divided on the basis of the constructed data set using
the Holdout method (Mao et al., 2019), which divides the data set
into training and testing sets in the ratio of 7:3 according to the
chronological order.

The training set is input into themodel to perform the training of
the prediction model. It is worth noting that the DeepARmodel has
many hyperparameters, such as the number of network layers (num_
layers), the number of cells (num_cells), the dropout rate (dropout_
rate), the learning rate (learning_rate), and the number of training
rounds (epochs). In this paper for more efficient implementation
of hyperparameter setting, genetic algorithm (GA) (Cai et al., 2020)
is introduced for hyperparameter optimization. After completing
the DeepAR model training, the optimal hyperparameters and test
set are sent to the model to perform test predictions of the model.
In addition, the computing environment is configured in Windows
11 using python 3.10, Core i9-14900KF, RTX4090D, 64 GB DDR5.
Computational libraries such as tensorflow, pandas, etc. are used
during the computation.

2.3.3 Evaluation and comparative analysis of
point prediction performance

The goodness of fit (R2), mean absolute error (MAE), and mean
absolute percentage error (MAPE) are selected to assess the point
prediction performance of the model, which are defined as shown
in Eqs 11–13:

R2 = 1−

N

∑
i=1
(yt − ̂yt)

2

N

∑
i=1
(yt − y)

2

(11)

MAE = 1
N

N

∑
t=1
|yt − ̂yt| (12)

MAPE = 100%
N

N

∑
t=1
|
yt − ̂yt
yt
| (13)

Where: the larger the value of R2, the higher accuracy of the
predictionmodel.MAE andMAPE are the errormetrics, the smaller
its value, the smaller the prediction error. N is the number of
predicted samples, yt is the measured slope deformation value, ̂yt is
the predicted slope deformation value, and y is the average of the
measured slope deformation value.

To further validate the prediction performance of the DeepAR
model, the prediction performance of three typical prediction
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FIGURE 6
Noise reduction results of GF algorithm for slope deformation-Case 1 (A) C1 measurement point -σ2.0; (B) C2 measurement point -σ2.0; (C) C1
measurement point -σ1.0; (D) C2 measurement point -σ1.0; (E) C1 measurement point -σ0.5; (F) C2 measurement point -σ0.5.

algorithms, LSTM, XGBoost (Asselman et al., 2023), and SVR, was
compared based on the above three metrics.

3 Case studies

3.1 Case 1

3.1.1 Overview of works
To verify the effectiveness of the proposed hybrid GF-DeepAR

slope deformation prediction model, a cut slope is selected as an
example of a work point. As shown in Figure 4A, the slope is a

secondary slope with an overall height of 8–10 m, with a wide
platform of about 1.5 m in the middle. The slope is composed of
vegetative fill, pebble soil, and gravel soil in order from top to
bottom. The slope is protected by a slurry masonry schist retaining
wall, but under the influence of the external environment, there
are localized outgrowths and damages of the schist on the slope
surface, which seriously affects the overall stability of the slope
and the retaining wall. Therefore, two surface deformation gauges
of model JMYC-623000AD, C1 and C2, are deployed at the top
of the primary and secondary slopes, to monitor the deformation
values of the slopes. The monitoring cycle is 200d in total, the
monitoring frequency is 4h/time, the monitoring frequency can
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FIGURE 7
Optimization results of GA algorithm on C1 and C2
measurement points.

be appropriately strengthen according to the development of slope
deformation, and the daily monitoring value is taken as the average
of all the monitoring values of the day. The technical parameters
of the surface deformation gauges and their specific placement can
be found in Figure 4B.

The change rule of C1 and C2 measurement points is plotted
as shown in Figure 5. The deformation of the secondary slope
(measurement point C2) is larger than that of the primary slope
(measurement point C1) in the figure, and this rule agrees with
the established studies (Liu et al., 2024; Ye et al., 2024). Among
them, the deformation of the C2 measurement point is gradually
stabilized with the accumulation of time, but the fluctuation of the
value before 100 days is larger, which is mainly considered to be
caused by the freezing and expansion due to the environmental
conditions of the site. Since then, the deformation of the C2
measurement point has gradually leveled off, but there is also a small
fluctuation phenomenon, mainly considering the effect of noise
(Ali et al., 2020; Duan et al., 2024). Similar to the C2 measurement
point, the deformation of the C1 measurement point also tends to
stabilize with time, and the cumulative deformation of the whole
process is within 15 mm, but there are fluctuations in the value of
the change process.

3.1.2 Results of noise reduction analysis
TheGF-DeepAR hybrid model is used to firstly reduce the noise

of the originalmonitoring data setsData_set_C1 andData_set_C2 of
C1 and C2measurement points respectively (the standard deviation
σ is set to be divided into 2.0, 1.0, and 0.5), and then the relationship
between the noise-reduced slope deformation series and the original
noise-containing slope deformation series is shown in Figure 6.

As shown in Figure 6, the noise-reducing deformation series
retains the characteristics of the deformation trend of the original
series, and at the same time, the noise-reducing deformation series
has a better smoothness than the original series, and the noise-
reducing effect is better. At the C1 measurement point, SNR and
MSE are 23.53(0.408), 26.16(0.223), and 34.91 (0.030) for the
three different standardized variances, respectively. As the standard

variance σ decreases, SNR gradually increases from 23.53 to 34.91,
and MSE gradually decreases from 0.408 to 0.030, indicating that
the noise reduction effect gradually becomes better, considering that
the noise reduction effect obtained by continuing to reduce the
standard variance σ is gradually stable, the noise reduction data
under the condition that the standard variance σ is 0.5 can be
selected as the data for the subsequent prediction and analysis of
the C1 measurement points. At the C2 measurement point, SNR
andMSE are 21.316(8.502), 23.754(4.849), and 32.38 (0.666) for the
three different standardized variances, respectively. As the standard
variance σ decreases, SNR gradually increases from 21.316 to 32.38,
and SNR gradually decreases from 8.502 to 0.666, indicating that the
effect of noise reduction gradually becomes better. Hence, the noise
reduction data under the condition of standard variance σ of 0.5 is
selected as the data for the subsequent prediction and analysis.

In summary, the data preprocessing part of the GF-DeepAR
hybrid model can pre-filter the original monitoring data set, which
retains the characteristics of the deformation trend containing the
original series. At the same time, it can better eliminate the noise
information hidden in it, which ensures the quality of the data
for the subsequent deformation prediction and analysis of slope
engineering.

3.1.3 Results of slope deformation prediction
The optimization results of the GA algorithm on the C1

and C2 measurement points are shown in Figure 7. The analysis
shows that the fitness value (MAE) decays rapidly as the number
of optimizations increases and stabilizes after 25 generations,
indicating that the prediction error of the DeepAR model can be
reduced by the GA algorithm. At the end of the optimization, the
optimal hyperparameters on theC1measurement point are obtained
as num_layers=2, num_cells=120, dropout_rate=0.2, learning_
rate=0.00136, and epochs=500, and the optimal hyperparameters
on the C2 measurement point are obtained as num_layers=3, num_
cells=200, dropout_rate=0.2, learning_rate=0.0008, epochs=500.

After obtaining the optimal hyperparameters, they are input
into the DeepAR model. The DtestC1 and DtestC2 of C1 and C2
measurement points after the noise reduction process are input
into the trained DeepAR prediction model respectively, and the
corresponding slope deformation prediction results are calculated.
To visualize the prediction ability of the GF-DeepAR model, the
predicted results of the model at the C1 and C2 measurement
points are plotted as shown in Figures 8A, B, with the horizontal
axis representing the slope deformation obtained from the actual
monitoring, and the vertical axis representing the slope deformation
obtained from the prediction.Generally, a largerR2 indicates a better
nonlinear mapping ability of the model, and the noise-reduced
values of C1 and C2 measurement points are 0.956 and 0.929,
respectively, which are greater than 0.9, indicating a high prediction
accuracy. Meanwhile, at the C1 and C2 measurement points, most
of the data points are around the 45° median axis, indicating that
the GF-DeepAR model has a strong ability to fit the nonlinearities
against the slope deformation.

Further, the comparison of the predicted and measured values
of slope deformation at the C1 and C2 measurement points
are shown in Figures 8C, D.The analysis shows that the GF-DeepAR
prediction model can well reflect the upward and downward
fluctuations of slope deformation, and the predicted values match
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FIGURE 8
GF-DeepAR model slope deformation prediction results-Case 1 (A) C1 Measurement point- Scatter comparison of measured and predicted values; (B)
C2 Measurement point- Scatter comparison of measured and predicted values; (C) C1 Measurement point- Comparison of measured and projected
value trends; (D) C2 Measurement point- Comparison of measured and projected value trends.

the overall trend of the measured values with high correlation.
Meanwhile, the residuals at the C1 and C2 measurement points are
overall controlled within a small range, with a small mean absolute
errorMAE of 0.107 and 0.238, respectively.

In summary, the GF-DeepAR prediction model effectively
solves the problem of accuracy improvement caused by poor data
quality in slope engineering. The GF-DeepAR model shows high
generalization ability on the two slope deformation measurement
points, high overall prediction accuracy and small prediction error,
which can well support the prediction of slope deformation.

3.1.4 Comparative analysis of slope deformation
prediction before and after noise reduction

The results of the slope deformation prediction accuracy
assessment before and after noise reduction at the C1 and C2
measurement points are shown in Figures 9A, B. The R2, MAE,
and MAPE obtained from the C1 measurement point before noise
reduction are 0.875, 0.186, and 1.552%, respectively, and the R2,
MAE, and MAPE obtained after noise reduction are 0.956, 0.107,
and 0.913%, respectively, with an increase of 0.081 in R2, which
indicates that the prediction accuracy of the C1 measurement point
has been improved after the noise reduction treatment, while the
MAE andMAPE have decreased by 0.079% and 0.639%, respectively.
indicating that the prediction error of the C1 measurement point
was controlled after noise reduction treatment. Similarly, after the

noise reduction treatment, the C2 measurement point R2 increased
by 0.089, while MAE and MAPE decreased by 0.184% and 0.581%,
respectively, indicating that the prediction accuracy and prediction
error of the C2 measurement point were also improved after the
noise reduction treatment.

This is mainly due to three advantages of combining GF
algorithms with machine learning algorithms. Firstly, the noise in
the slope deformation data can be removed byGF algorithm,making
the slope deformation closer to the real situation (Innes et al.,
2021; Richardson et al., 2022). Secondly, the GF algorithm not
only reduces noise but also helps to highlight the intrinsic
characteristics of the data (Noguer et al., 2022; Guan et al., 2024).
During the filtering process, the algorithm is able to retain the
main trends in the data while weakening random fluctuations. This
makes it easier for machine learning algorithms to capture key
information about the data during subsequent predictions, thereby
improving prediction accuracy (Demšar and Zupan, 2021; Peng
and Lee, 2021). Finally, with the GF algorithm, the risk of
overfitting of machine learning predictive models can be reduced,
and the generalization ability of the model can be improved
so that it can maintain a high prediction accuracy in the face
of new data.

The comparison between the predicted and measured values
of slope deformation at C1 and C2 measurement points before
noise reduction is shown in Figures 9C, D. The analysis shows
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FIGURE 9
Comparison of slope deformation prediction results before and after noise reduction- Case 1 (A) C1 Measurement points - accuracy assessment of
slope deformation prediction results before and after noise reduction; (B) C2 Measurement points - accuracy assessment of slope deformation
prediction results before and after noise reduction; (C) C1 Measurement points - before and after noise reduction; (D) C2 Measurement points - before
and after noise reduction.

FIGURE 10
Comparison of prediction performance between different point prediction models (A) C1 measurement point; (B) C2 measurement point.

that although the prediction results and the measured values are
more closely matched as a whole, there are fluctuations at more
positions, i.e., the residuals of the data are larger, while the prediction
results after noise reduction have a very high correlation between
the predicted values and the measured values as a whole, and the
prediction effect is better. In addition, the C1 and C2 measurement
points experienced relatively large mutation phenomena in the
interval segment from the 17th day to the 25th day, which is mainly
considered to be the influence of themonitoring equipment, external

environment (Yu et al., 2021; Yang et al., 2023). The GF-DeepAR
prediction model can well control the unfavorable effects of the
mutation data, and the prediction results still fit closely with the
measured results. On the contrary, the single DeepAR prediction
model without a noise reduction process has a large prediction error
in this interval, limiting the overall prediction accuracy.

In summary, the GF-DeepAR prediction model can perform
noise reduction for the original dataset, which guarantees the quality
of the input dataset, and the resulting prediction accuracy is higher
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FIGURE 11
Slope engineering and deformation measurement point layout - Case 2 (A) High Steep Slope Site View; (B) Slope step cracks; (C) Deformation
measurement point layout.

FIGURE 12
Change rule of slope cumulative deformation-Case 2 (A) D1 measurement point; (B) D2 measurement point.
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FIGURE 13
Noise reduction results of GF algorithm for slope deformation - Case 2 (A) D1 Measurement points -σ2.0; (B) D2 Measurement points -σ2.0; (C) D1
Measurement points -σ1.0; (D) D2 Measurement points -σ1.0; (E) D1 Measurement points -σ0.5; (F) D2 Measurement points -σ0.5.

than that of the single DeepAR predictionmodel, and the prediction
error is lower than that of the single DeepAR prediction model.

3.1.5 Comparative analysis of the results of slope
deformation prediction

To verify the superiority of the DeepAR model over the
classical LSTM, XGBoost, and SVR prediction models, the same
GF algorithm is used to optimize the LSTM, XGBoost, and SVR.
A comparison analysis is performed with the GF-DeepAR hybrid
model, and the results are shown in Figure 10. Taking the C1

measurement point as an example, the model with the smallest
prediction error MAE and MAPE is the GF-DeepAR model, with
MAE and MAPE of 0.107% and 0.913%, respectively, followed by
the GF-LSTM model (0.151, 1.287%), then the GF-XGBoost model
(0.164, 1.413%), and finally the GF-SVR model (0.891, 1.601%).
Meanwhile, the prediction accuracy metric R2 of each model is
compared and it is found that the highest prediction accuracy is also
achieved by the GF-DeepAR model. Hence, it can be obtained that
the GF-DeepAR model has a better advantage in slope deformation
point prediction than the classical LSTM,XGBoost and SVRmodels.
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FIGURE 14
Optimization results of GA algorithm on D1 and D2
measurement points.

3.2 Case 2

3.2.1 Overview of works
Similarly, to verify the effectiveness of the proposed hybrid GF-

DeepAR model, a high slope in a mountainous area is selected as
an engineering example as shown in Figures 11A, B. The slope is a
naturally high steep slope, the steepest part of the slope is as high
as 76 m, according to the engineering geological conditions and the
height of the slope to adopt step-type slope, the slope rate is set at
1:0.75 and 1:0.5. After operating for some time, there are large cracks
appeared on the slope steps, and the whole slope is extruded and
deformed at the foot of the slope after lateral shift, with poor slope
stability.The slope is relatively high and steep, with a high-risk factor,
and the consequences would be very serious in case of a landslide.
To ensure the normal operation of the line, deformation monitoring
is carried out for this slope.

Two GPS points, D1 and D2, are placed at the middle and top
of the high slope to monitor the deformation value of the slope,
where the GPS receiver is modeled as NETS2.The monitoring cycle
is 195 d. The monitoring frequency is set to 6 h/time, influenced
by the solution cycle, and the daily monitoring values are averaged
over all the monitoring values for the day. The technical parameters
of the surface deformation gauges and their specific placement can
be found in Figure 11C.

The change rule of D1 and D2 measurement points is plotted
as shown in Figure 12. In the figure, the deformation at the top of
the slope (measurement point D2) is larger than the deformation in
the middle of the slope (measurement point D1), and this pattern is
consistent withmeasurement points C1 andC2.The deformations at
both D1 and D2 measurement points are cumulative over time, and
there are certain fluctuations, so D1 and D2 measurement points
can be used as typical measurement points to verify whether the
proposed GF-DeepARmodel can accurately and reliably predict the
development trend of cumulative deformation of slopes.

3.2.2 Results of noise reduction analysis
The GF-DeepAR hybrid model is used to first reduce the noise

of the original monitoring data sets Data_set_D1 and Data_set_
D2 at D1 and D2 respectively (the standard deviation σ is set to
2.0, 1.0, and 0.5), and the relationship between the noise-reduced
slope deformation series and the original noise-containing slope
deformation series is shown in Figure 13.

As shown in Figure 13, the noise-reduced slope deformation
series retains the characteristics of the changing trend of the original
series while better removing the noise information hidden in it as
in Case 1. Taking the D1 measurement point as an example, under
three different standard variances, SNR andMSE are 22.88(12.643),
26.43(5.599), and 35.62 (0.674) for the three different standardized
variances, respectively. SNR gradually increases from 22.88 to
35.62, and MSE gradually decreases from 12.643 to 0.674 as the
standard variance σ decreases, which indicates that the effect of
noise reduction becomes better. Similarly, the results of the noise
reduction performance of D2 and D1 are consistent. Considering
that the noise reduction effect obtained by continuing to reduce
the standard variance σ is gradually stable, the noise reduction data
under the condition that the standard variance σ is 0.5 can be
selected as the data for the subsequent prediction analysis of the D1
measurement point and D2.

3.2.3 Results of slope deformation prediction
Similarly, the optimization results of GA algorithm on D1

and D2 monitoring points are obtained as shown in Figure 14.
Similar to the results for the C1 and C2 measurement points, the
fitness value (MAE) decays rapidly as the number of optimizations
increases and stabilizes after 25 generations. At the end of the
optimization, the optimal hyperparameters on the D1measurement
point are obtained as num_layers=3, num_cells=67, dropout_
rate=0.2, learning_rate=0.00230, and epochs=300, and the optimal
hyperparameters on the D2 measurement point are obtained
as num_layers=2, num_ cells=156, dropout_rate=0.2, learning_
rate=0.0050, epochs=600.

Similarly, the sequences of D1 and D2 measurement points
after the noise reduction process are input into the trained
DeepAR prediction model respectively, and the corresponding
slope deformation prediction results are calculated and plotted
as shown in Figure 15A, B. The R2 after noise reduction at the
D1 and D2 measurement points are 0.968 and 0.974, respectively,
which are greater than 0.95, indicating a high prediction accuracy.
Further, the comparison of the predicted and measured values
of slope deformation at the D1 and D2 measurement points
are shown in Figures 15C, D.The analysis shows tat the GF-DeepAR
prediction model can well reflect the upward and downward
fluctuations of slope deformation, and the predicted values match
the overall trend of the measured values with high correlation.
Meanwhile, the residuals at the D1 and D2 measurement points are
overall controlled within a small range, with a small mean absolute
errorMAE of 0.811 and 0.760, respectively.

In summary, the GF-DeepAR prediction model also effectively
solves the problem of accuracy improvement due to data quality
issues and the shortcomings of overfitting or underfitting of the
predictionmodel in the high slope project in thismountainous area.
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FIGURE 15
GF-DeepAR model slope deformation prediction results - Case 2 (A) D1 Measurement Points - Scatter Comparison of Measured and Predicted Values;
(B) D2 Measurement Points - Scatter Comparison of Measured and Predicted Values; (C) D1 Measured points - comparison of measured and predicted
trends; (D) D2 Measured points - comparison of measured and predicted trends.

3.2.4 Comparative analysis of slope deformation
prediction before and after noise reduction

The results of slope deformation prediction accuracy assessment
before and after noise reduction at D1 and D2 measurement points
are shown in Figure 16A, B. Taking the D1 measurement point
as an example, the R2, MAE and MAPE obtained before noise
reduction are 0.897, 1.548, and 1.929%, respectively, and the R2,
MAE and MAPE obtained after noise reduction are 0.967, 0.811,
and 1.017%.The increase of R2 by 0.070 indicates that the prediction
accuracy of the D1 measurement point is improved after the noise
reduction treatment, whereas the decrease of MAE and MAPE by
0.737% and 0.912%, respectively, indicates that the prediction error
of the D1 measurement point is controlled after the noise reduction
treatment. The same as Case 1, the prediction accuracy of GF-
DeepAR model can be effectively improved because of the three
advantages of reducing noise interference, highlighting data features
and improving model generalization ability.

A comparison of the predicted and measured values of slope
deformation at the D1 and D2 measurement points before noise
reduction is shown in Figure 16C, D. Taking the D1 measurement
point as an example, the analysis shows that the fluctuation between
the prediction result and themeasured value exists atmore positions,
and the R2 is lower than 0.9, which mainly considers the influence
of the data noise and restricts the fit between the prediction result
and the measured value; while the overall correlation between the

predicted value and the measured value after the noise reduction is
extremely high, and the prediction result is better. In addition, D1
and D2 measurement points experienced relatively large mutations
in the interval segment from the 16th day to the 27th day. As with
the results obtained inCase 1, theGF-DeepARpredictionmodel can
well control the unfavorable effects of the mutation data, while the
single DeepAR prediction model without a noise reduction process
has a large prediction error in this interval.

3.2.5 Comparative analysis of the results of slope
deformation prediction

Similarly, to verify the superiority of the DeepAR model
over the classical LSTM, XGBoost, and SVR models, the
performance assessment results of each model are calculated
as shown in Figure 17. Taking the D1 measurement point as an
example, the model with the smallest prediction error MAE and
MAPE is the GF-DeepAR model, with MAE and MAPE of 0.811%
and 1.017%, followed by the GF-LSTMmodel (0.951, 1.197%), then
the GF-XGBoost model (1.234, 1.501%), and finally the GF-SVR
model (1.340, 1.723%). Similarly, the prediction accuracy metric R2

of eachmodel is compared and it is found that the highest prediction
accuracy is also achieved by the GF-DeepAR model. Hence, it can
be obtained that the GF-DeepARmodel has a better advantage over
the classical LSTM, XGBoost, and SVR models in the prediction of
slope deformation points.
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FIGURE 16
Comparison of slope deformation prediction results before and after noise reduction-Case 2 (A) D1 Measurement points - accuracy assessment of
slope deformation prediction results before and after noise reduction; (B) D2 Measurement points - accuracy assessment of slope deformation
prediction results before and after noise reduction; (C) D1 Measurement points - before and after noise reduction; (D) D2 Measurement points - before
and after noise reduction.

FIGURE 17
Comparison of prediction performance between different point prediction models (A) D1 measurement point; (B) D2 measurement point.

4 Framework for probability analysis
of slope deformation based on the
GF-DeepAR model

Compared with GF-LSTM, GF-XGBoost, and GF-
SVR models, the GF-DeepAR model has better prediction

performance. Moreover, the GF-DeepAR model can take
into account the uncertainty of slope deformation prediction
and provide the probability distribution of the slope
deformation prediction results, which is more conducive
to making safety precautionary decisions (Deng et al.,
2023).
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FIGURE 18
Framework for probabilistic analysis of the GF-DeepAR model.

FIGURE 19
Probabilistic prediction results for C1 and D1 measurement points (A) C1 probability prediction results; (B) D1 probability prediction results.

The probability analysis framework of the GF-DeepAR
model is shown in Figure 18. In this paper, we use historically
measured slope deformation data to predict the slope deformation
sequence probabilistically based on the GF-DeepAR model,
and assess the prediction performance by using three metrics,
namely, the prediction interval coverage (PICP), the normalized
average width of the prediction interval (PINAW), and the
coverage width criterion (CWC) (Shi et al., 2022; Schmidinger
and Heuvelink, 2023). The specific calculations are as shown in
Eqs 14–18:

PICP = 1
N

N

∑
k=1

Rk (14)

Rk =
{
{
{

1,Y(k) ∈ [Ylow,Yhigh]

0,Y(k) ∉ [Ylow,Yhigh]
(15)

PINAW = 1
N(Ymax −Ymin)

N

∑
k=1
(Yhigh −Ylow) (16)

CWC = PINAW[1+ I(PICP)e−p(PICP−ν)] (17)

I(PICP) =
{
{
{

1,PICP < ν

0,Others
(18)
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FIGURE 20
Comparison of prediction performance between different probabilistic prediction models (A) C1 measurement point; (B) D1 measurement point.

Where: Yhigh, Ylow are the maximum and minimum values of
a sample prediction interval in the slope deformation sequence
Ymax, Ymin are the maximum and minimum values of all predicted
samples. ν is set as the nominal confidence level, p is the penalty
parameter for the probability of failure intervals, which ranges from
50 to 100, and is taken as 50 here. A larger PICP indicates that
there are more true values in the prediction interval, and a smaller
PINAW has a smaller range of the prediction interval, which is more
favorable for decision making. PICP and PINAW can be combined
through CWC, and the smaller the value of CWC, the better.

The probability prediction analysis is carried out on the C1
and the D1 measurement point in Case 1 and Case 2, based
on the GF-DeepAR model. The probability prediction results
under the condition of 95% confidence are obtained as shown
in Figure 19. The prediction intervals constructed in Figure 19,
indicate that the PICP in both C1 and D1 measurement points
are 100%, which is far from meeting the requirement of a 95%
confidence level, implying that the prediction intervals constructed
by the GF-DeepAR model can effectively envelope the actual slope
deformation curves, and the PINAW are low, which are 0.330%
and 0.256% respectively. It indicates that the upper and lower
boundaries of the interval can be used as optimistic and conservative
estimation quantities for slope deformation prediction. Taking the
C1 measurement point shown in Figure 19A as an example, when
the boundary value of the interval is lower than the corresponding
engineering deformation warning index, it means that the actual
deformation has a corresponding probability of being in the safe
range. Hence, the probabilistic prediction provides an effective
method for quantitatively evaluating the safety risk of slopes.

As shown in Figure 18, to verify the superiority of GF-DeepAR
model in probability prediction, GF-GPR and GF-LSTMQRmodels
are used for the comparation analysis of slope deformation
probability prediction. The results of the comparison of prediction
performance between different probability prediction models are
obtained as shown in Figure 20. The PICP of the GF-DeepAR and
GF-GPR models can reach 100% at both C1 and D1 measurement
points, followed by the GF-LSTMQR model (C1: 96.97%, D1:

94.73%). Meanwhile, it can be found that the width of the GF-
LSTMQRmodel is much larger than that of the remaining two types
of models by PINAW values, which suggests that the GF-LSTMQR
model has a larger degree of uncertainty. From the comparison
analysis of the reliability and uncertainty of the intervals, the
CWC values of the GF-DeepAR model proposed in this paper are
0.330% and 0.256% in the two measurement points of C1 and D1,
respectively. They are smaller than the rest of the two types of
models, indicating that the method in this paper not only meets
the requirement of the reliability of the confidence level but also
constructs intervals with the smallest uncertainty.

In summary, it indicates that the GF-DeepAR model is superior
in probability prediction and better compared to the GF-GPR
and GF-LSTMQR models. In addition, the GF-DeepAR probability
prediction model also provides managers with an effective tool to
quantify the uncertainty of the model output results, which can be
used to analyze the main factors that cause uncertainty in the results
on time according to the probability of interval coverage and the
width of the intervals, to carry out timely regulation and reduce the
risk of decision-making.

5 Discussions

In order to better highlight the research innovation of this paper,
it is discussed and analyzed in three parts: comparison with similar
studies, the processing of the input data comparison of prediction
accuracy at different time steps and future outlook.

5.1 Comparison with similar studies

As shown in Table 1, a comparison of the established studies
and the study in this paper is organized. The established studies
include ACO-SVM model, SVM model, WD-IPSO-LSTM model,
Transformer model and BiLSTM model, and in this paper, we
study the GF-DeepAR model. By organizing the point prediction
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FIGURE 21
Different slope deformation time step under the R2 change rule.

assessment results of each model, it is found that the R2, MAE, and
MAPE of theGF-DeepARmodel are optimal, indicating that theGF-
DeepAR model can achieve better prediction accuracy and lower
prediction error. Meanwhile, another advantage of the GF-DeepAR
model over established studies is the probability prediction, and the
GF-DeepARmodel can provide highly reliable and clear probability
prediction results with a PICP of 100%.

5.2 The processing of the input data
comparison of prediction accuracy at
different time steps

In order to analysis the prediction performance of the
GF-DeepAR model with different input parameters, the R2 of
the prediction results is calculated from the setup of different
slope deformation time steps (3–13). Obtained different slope
deformation time step under the R2 change rule as shown in
Figure 21, the analysis shows that when the time step between 3
and 8, R2 fluctuates up and down, and reached the best when
the time step is 8. Then, as the time step increases, R2 gradually
decreases, mainly considering that the longer and farther away from
the predicted target time the slope deformation has less influence on
the predicted target (Liu et al., 2020).

5.3 Future outlook

In this paper, a slope deformation prediction method based on
the GF-DeepAR hybrid model is proposed, which can be used for
noise reduction of slope noise data and provide highly accurate
and reliable prediction results. However, the monitoring data of the
underlying project only includes slope deformation data and the
core point of this paper focuses on the noise reduction algorithm
and prediction analysis, the input features of the GF-DeepAR hybrid
model are only slope deformation, and the influencing factors
of slope deformation are not considered. In general, water has a T
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FIGURE 22
Future outlook.

great influence on soft rock slopes, loose accumulation slopes, and
landslide slopes, etc. (Zhang et al., 2022; Yu et al., 2023). In addition,
the deformation of slopes is susceptible to rainfall, water level, water
content, and other factors related to water, which can lead to sudden
changes or anomalies in deformation (Lo et al., 2023), which in turn
affects the performance of slope deformation prediction models. It
is worth noting that rainfall characteristics may contain multiple
metrics such as rainfall intensity, rainfall on the same day, rainfall
over multiple days, etc., and water level characteristics may also
containmultiple metrics such as the amount of change in water level
and the cumulative amount of water level. To represent the influence
of the main control features of slope deformation more accurately, it
is necessary to screen for numerous influencing factors (Mali et al.,
2021; Zhuang et al., 2023)Hence, the sensitivity analysismethod can
be introduced based on the existing methods to optimize the best
input features for slope deformation prediction, and then carry out
the subsequent point prediction and probability prediction analysis,
as shown in Figure 22.

6 Conclusion

It is important for early warning of slope instability risk to
understand future patterns of slope deformation. Currently, the
susceptibility of slope monitoring data to noise problems limits
the accuracy and reliability of slope deformation prediction. In
this paper, a slope deformation point prediction and probability
analysis model based on the GF-DeepAR algorithm is proposed
and validated relying on two real slope engineering cases. Some
conclusions are as follows:

1) The best noise reduction is achieved at the C1 andD2 sites with
a standard deviation σ of 0.5.The corresponding SNR andMSE
values are 34.91 (0.030) and 35.62 (0.674).

2) A comparison before and after noise reduction reveals that the
R2 values for the C1 and D2 measurement points increased
by 0.081 and 0.070, respectively. Additionnally, the MAE
decreases from 0.079 to 0.639, and the MAPE decreases from
0.737% to 0.912%, which indicates that the accuracy of point
prediction and prediction error of each measurement point is
improved after noise reduction treatment.

3) Theprediction intervals constructed by theGF-DeepARmodel
can effectively envelop the actual slope deformation curves,
and the PICP in both C1 andD1 are 100%, which is far enough
tomeet the requirement of 95% confidence level.ThePINAW is
low,measuring 0.330% and 0.256% forC1 andD1, respectively.

4) Whether it is point prediction or probability prediction, the
GF-DeepAR model excels at extracting feature information
from slope deformation sequences characterized by
randomness and complexity. It conducts predictions with
high accuracy and reliability, indicating superior performance
compared to other models.
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