
TYPE Original Research
PUBLISHED 10 October 2024
DOI 10.3389/feart.2024.1396612

OPEN ACCESS

EDITED BY

Ping Zhu,
Florida International University, United States

REVIEWED BY

Srinivas Desamsetti,
National Centre for Medium Range Weather
Forecasting, India
Feifei Shen,
Nanjing University of Information Science and
Technology, China

*CORRESPONDENCE

Jiayi Peng,
jiayi.peng@noaa.gov

RECEIVED 06 March 2024
ACCEPTED 13 September 2024
PUBLISHED 10 October 2024

CITATION

Peng J, Zhang Z, Wang W, Panda R, Liu B,
Weng Y, Mehra A, Tallapragada V, Zhang X,
Gopalakrishnan S, Komaromi W, Anderson J
and Poyer A (2024) HAFS ensemble forecast
in AWS cloud.
Front. Earth Sci. 12:1396612.
doi: 10.3389/feart.2024.1396612

COPYRIGHT

© 2024 Peng, Zhang, Wang, Panda, Liu,
Weng, Mehra, Tallapragada, Zhang,
Gopalakrishnan, Komaromi, Anderson and
Poyer. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

HAFS ensemble forecast in AWS
cloud

Jiayi Peng1*, Zhan Zhang2, Weiguo Wang3, Rajendra Panda4,
Bin Liu5, Yonghui Weng5, Avichal Mehra2, Vijay Tallapragada2,
Xuejin Zhang6, Sundararaman Gopalakrishnan6,
William Komaromi7, Jason Anderson7 and Aaron Poyer8

1AXIOM at Environmental Modeling Center, National Centers for Environmental Prediction, College
Park, MD, United States, 2Environmental Modeling Center, National Centers for Environmental
Prediction, College Park, MD, United States, 3SAIC at Environmental Modeling Center, National
Centers for Environmental Prediction, College Park, MD, United States, 4GDIT at Environmental
Modeling Center, National Centers for Environmental Prediction, College Park, MD, United States,
5LYNKER at Environmental Modeling Center, National Centers for Environmental Prediction, College
Park, MD, United States, 6Hurricane Research Division, Atlantic Oceanographic and Meteorological
Laboratory, Miami, FL, United States, 7I.M. Systems Group, Inc. at Office of Science and Technology
Integration, National Weather Service, Silver Spring, MD, United States, 8Office of Science and
Technology Integration, National Weather Service, Silver Spring, MD, United States

In the 2023 hurricane season, the Hurricane Analysis and Forecast System (HAFS)
based Ensemble Prediction System (EPS) was being ported to the Amazon Web
Service cloud. This relocation aimed to provide real-time hurricane probabilistic
forecast guidance for National Hurricane Center (NHC) forecasters. The system
comprises Stochastically Perturbed Physics Tendencies (SPPT), Stochastically
Kinetic Energy Backscatter (SKEB), and Stochastically Perturbed PBL Humidity
(SHUM). Initial and boundary conditions are derived from the National Centers
for Environmental Prediction (NCEP) operational Global Ensemble Forecast
System (GEFS) 21-member forecast data. The performance of HAFS-EPS
for 2023 Atlantic hurricane forecasts was compared with the global GEFS,
global ECMWF ensemble, and operational HAFS-A/B forecasts. This comparison
highlighted the advantages of higher-resolution regional ensemble forecasts
for hurricane track, intensity, Rapid Intensification (RI) probability, and various
hazards, including wind, wave, and storm surge probability guidance.

KEYWORDS

Hafs, ensemble, AWS cloud, hurricane, forecast

1 Introduction

The hurricane track forecast error has been significantly reduced in the past decades
through multi-model global deterministic and ensemble forecast guidance. This guidance
incorporates various models, including the National Centers for Environmental Prediction
(NCEP) Global Ensemble Forecast System (GEFS) as detailed by Zhou et al. (2017),
Zhou et al. (2022), the European Centre for Medium-Range Weather Forecasts (ECMWF)
Ensemble Forecast Suite (available at https://confluence.ecmwf.int/display/FUG/Section+
2.1.2.1+ENS+-+Ensemble+Forecasts), and the Canadian Meteorological Centre (CMC)
Ensemble Prediction System (EPS) described by Houtekamer et al. (1996). The global
EPS reduces the hurricane track forecast error and provides probability guidance for the
hurricane position forecasts. However, it is worth noting that it may exhibit a significant
bias in hurricane intensity forecasts due to its lower resolution of the horizontal grid.
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Three major mesoscale models were employed to establish
mesoscale ensemble forecast systems.TheNCEPHurricaneWeather
Research and Forecast model-based Ensemble Prediction System
(HWRF-EPS) was developed for hurricane forecasts during the
2011–2012 Atlantic hurricane seasons (Zhang et al., 2014). In
HWRF-EPS, uncertainties in initial and boundary conditions
were generated from the NCEP GEFS with randomly perturbing
initial TC positions and maximum wind speed in the best
track. The model physics uncertainty was accounted for through
stochastically perturbing the convective trigger function in the
cumulus convection parameterization scheme, and the surface
drag coefficients. However, the HWRF-EPS exhibited an overall
under-dispersion for track and intensity in the verifications of the
2011–2012 seasons. Torn (2016) utilized the Weather Research and
Forecasting (WRF) ensemble to examine uncertainties in Tropical
Cyclone (TC) intensity forecasts for multiple Atlantic storms
during 2008–2011. Torn’s evaluation indicated that atmospheric
perturbations contributed the most to intensity spread and
perturbing the drag coefficient proved beneficial in the first 48 h
of the forecast. Since 2014, the U.S. Naval Research Laboratory
has developed and upgraded the Coupled Ocean-Atmosphere
Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC)
ensemble to produce probabilistic forecasts of TC track, intensity,
and structure (Komaromi et al., 2021). The COAMPS-TC ensemble
integrates perturbations in initial and boundary conditions, the
initial vortex, and model physics to account for various sources
of uncertainty affecting track and intensity forecasts. Initial and
boundary condition perturbations contribute to track spread at
all lead times, and intensity spread from 36 to 120 h, while vortex
and physics perturbations are crucial for generating meaningful
spread in intensity predictions within the first 36 forecast hours.The
spread–skill relationship of the COAMPS-TC ensemble displays
a well-calibrated track forecast but an under-dispersive intensity
prediction.

TheU.S. Naval Research Laboratory’s COAMPS-TC 11-member
ensemble has been running in operation by the Fleet Numerical
Meteorology and Oceanography Center (FNMOC) since 2020
(Komaromi et al., 2021). This ensemble system, capable of running
up to two storms per cycle, allocates slots for National Hurricane
Center (NHC) and Central Pacific Hurricane Center (CPHC) basins
if not requested by the Joint Typhoon Warning Center (JTWC).
The standalone atmospheric HAFS-based ensemble system was
employed for the 2021 Atlantic storms as a real time parallel
experiment (Zhang et al., 2021). Despite these efforts, the lack of
a skillful high-resolution ensemble remains a significant challenge
for forecasters at NHC and JTWC when issuing forecasts related to
TC intensity, structure changes, and hazards such as wind, waves,
and storm surges (Brennan, 2023; Kucas, 2023). The absence of
a high-resolution regional ensemble poses a fundamental hurdle
for effective hazard risk communication. Without probabilistic
guidance on the magnitude, timing, and location of hazards,
NHC and JTWC forecasters face difficulties optimizing risk
communication (Hogsett, 2023). There has been a recent shift from
deterministic Impact-based Decision Support Services (IDSS) to
probabilistic/ensemble IDSS in hurricane forecasting, as outlined
in the National Weather Service (NWS) strategic plan for the
next 10 years (Graham, 2023). To address these goals and meet

the urgent demands from NHC/JTWC forecasters, the HAFS-
based EPS has been transitioned to the Amazon Web Service
(AWS) Cloud computing because of the limited resource in
NCEP operational super computer.This transition enables real-time
operation, providing hurricane probabilistic forecast guidance for
NHC forecasters during the 2023 hurricane season.

The configuration of the HAFS EPS is thoroughly documented
in Section 2, detailing the key elements that constitute the predictive
model. Section 3 delves into the major products generated from
HAFS-EPS, shedding light on the critical outputs contributing to
our understanding of hurricane probabilistic forecasts. In section 4,
we meticulously examine the performance of the HAFS-EPS during
the 2023 hurricane season, providing insights into its accuracy and
reliability. Finally, in Section 5, we draw our findings together to
present a conclusion that synthesizes the outcomes of our analysis.
Additionally, we outline potential avenues for future development,
paving the way for advancements in hurricane ensemble forecasting
methodologies. This comprehensive structure ensures a thorough
exploration of the HAFS-EPS and its implications for the 2023
hurricane season.

2 HAFS ensemble configuration in
AWS cloud

2.1 HAFS ensemble model overview

HAFS is a newly developed hurricane modeling system
featuring the Finite Volume Cubed Sphere Dynamical Core,
developed by Geophysical Fluid Dynamics Laboratory (GFDL)
(Lin and Rood, 1996; Lin and Rood, 1997; Lin, 1997; Lin, 2004;
Harris et al., 2021). The system became operational on 27 June
2023, with two deterministic configurations, namely, HAFS-A and
HAFS-B (Zhang et al., 2023). The HAFS ensemble, based on the
HAFS-A (version 1) configuration, incorporates the Common
Community Physics Package (CCPP, available at https://dtcenter.
ucar.edu/gmtb/users/ccpp/docs/sci_doc_v2/), encompassing key
components.

1) RapidRadiative TransferModel forGCMs (RRTMG) radiation
(Mlawer et al., 1997; Iacono et al., 2008).

2) Unified Gravity Wave Physics version 1 (uGWPv1) for
gravity wave drag.

3) GFDL single-moment microphysics (Lin et al., 1983;
Lord et al., 1984; Krueger et al., 1995; Chen and Lin, 2013).

4) Scale-aware Simplified Arakawa–Schubert (SAS)
parameterization for deep and shallow cumulus.

5) Scale-Aware Turbulent Kinetic Energy Eddy-Diffusivity/Mass-
Flux (Sa-TKE-EDMF) boundary layer with TC-related mixing
length adjustments.

6) Global Forecast System (GFS) surface layer, with
TC-specific sea surface roughness adopted from the
HWRF model (Wang et al., 2023).

The land and ocean are two-way coupled with the Noah
Land-Surface Model (Noah-LSM; Ek et al., 2003) and the HYbrid
Coordinate Ocean Model (HYCOM; Bleck, 2002), respectively. The
ice model (CICE4) and the wave model (WW3) are not included in
the HAFS ensemble system.The model operates on a single domain
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FIGURE 1
HAFS ensemble domain with 6 km resolution. The terrain height
(meter) is shaded.

FIGURE 2
Hurricane track ensemble forecast for storm “Idalia” initialized at 00Z
of 28 August 2023. The black: best track (observation); The red:
ensemble-mean track; The green: the stronger members with their
10-meter maximum wind speed greater than the ensemble mean
value; The gray: the weaker members with their 10-meter maximum
wind speed smaller than the ensemble mean value.

with an Extended Schmidt Gnomonic (ESG, Purser et al., 2020)
grid at 6 km horizontal resolution, as illustrated in Figure 1. The
atmospheric model has 65 vertical levels with a top layer at 2 hPa.

The atmospheric model physics uncertainties are accounted in
the HAFS ensemble system in three ways, i.e., the Stochastic Kinetic
Energy Backscatter scheme (SKEB; Shutts, 2005; Berner et al., 2009);
the Stochastic HUMidity perturbations in the boundary layer
scheme (SHUM;Tompkins andBerner, 2008); and the Stochastically
Perturbed Parameterization Tendencies (SPPT; Buizza et al., 1999).

SKEB was developed tomodel the upscale propagation of small-
scale variability commonly lost through numerical diffusion. SKEB
introduces random perturbations to the stream function with a
prescribed power spectrum and amplitude dependent on the local

FIGURE 3
Hurricane intensity ensemble forecast for storm “Idalia” initialized at
00Z of 28 August 2023. (A) Maximum 10 m wind speed. (B) Minimum
sea level pressure. The black: observation; The red: ensemble-mean
value; The green: the stronger members; The gray: the
weaker members.

dissipation rate to counteract excessive kinetic energy loss in regions
with significant dissipation. The stochastic patterns for SKEB in
the HAFS ensemble are correlated in the vertical by smoothing the
patterns in the vertical by approximately 30 passes of a 1–2–1 filter.
The random pattern for each level uses a length scale of 500 km and
a time scale of 6 h. The SHUM scheme is based on the idea that
the actual triggering of deep convection will happen from plumes
below the scale of the model grid. There is a stochastic aspect to
the sub-grid variability of temperature and moisture. The stochastic
effect of this sub-grid variability within the parameterization of deep
convection is estimated by directly perturbing the near-surface grid
scale humidity field, multiplying that field by a random pattern
with a mean of 1.0 and variance that decays exponentially with
height. A single random pattern is used, with a length scale of
500 km and a time scale of 6 h. SPPT represents uncertainty within
physical parameterizations. Random spatial patterns are multiplied
by the spatial patterns of the physical tendencies of model variables.
The random spatial patterns have a specified decay time and
spatial decorrelation scale but no vertical variability, except that
the amplitude is typically reduced near the surface and tapers to
zero above 100 hPa for numerical stability (Palmer et al., 2009). The
random pattern for each level uses a length scale of 500 km and a
time scale of 6 h.

The initial and lateral boundary uncertainties in the HAFS EPS
are generated from the NCEP GEFS. The initial condition and the

Frontiers in Earth Science 03 frontiersin.org

https://doi.org/10.3389/feart.2024.1396612
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Peng et al. 10.3389/feart.2024.1396612

FIGURE 4
Hurricane intensity change probability forecast for storm “Idalia” initialized at 00Z of 28 August 2023. The red bar: maximum 10 m wind speed change
exceed 30 kts in 24 h, which is the Rapid Intensification definition.

lateral boundary condition of the 20-member (perturbed) and 1-
control (unperturbed) are generated from the GEFS (20-member +
1-control) GRIdded Binary version 2 (GRIB2) dataset in 0.5-degree
resolution.There is no re-centering process in the current version of
the HAFS ensemble. Since the operational GEFS has 30 perturbed
members, the HAFS ensemble members are a subset of the GEFS
members, which may introduce a bias for the ensemble mean fields.
The initial ocean condition for the HYCOMmodel comes from the
analysis of the NOAA’s Global Real-Time Ocean Forecast System
(Global RTOFS).

2.2 Code porting to AWS cloud

The AWS provided the High-Performance Computing (HPC)
resources for the HAFS ensemble in the cloud via the Parallel
Works middleware platform. A permanent Lustre file system
containing 48 TB of disk space and 168 Amazon Reserved Instances
(nodes) were obtained to perform real-time forecasts for the 21-
member HAFS ensemble. A job-running environment, similar to
NOAA’s on-premisesmachines, is created by installing the necessary
modules/libraries and the HAFS ensemble workflow (Rocoto).
All forecast data generated by the HAFS ensemble was stored
in an AWS S3 bucket, facilitating accessibility for downstream
users such as NHC and the National Ocean Service (NOS) for
applications likewind, wave, and storm surge forecasts. Additionally,
a subset of files was transferred to the NOAA Research and
Development High-Performance Computing Systems (RDHPCS)
machine to generate the graphics and display them in the NCEP
Environmental Modeling Center (EMC) website (https://www.
emc.ncep.noaa.gov/HAFS/HAFSEPS/index.php). Details about the

primary HAFS ensemble products are presented in the following
section.

3 HAFS ensemble products

The hurricane forecasters at the NHC and JTWC rely on a
skillful and reliable high-resolution ensemble to issue forecasts for
hurricane intensity, structure, and hazards (wind, wave, and storm
surge) probabilities. The real-time HAFS ensemble was operated
in the AWS cloud for the storms in the 2023 hurricane season,
showcasing the advantages of high-resolution regional ensemble
forecasts for hurricane track, intensity, Rapid Intensification (RI)
probability, and hazard probability guidance.

3.1 Track and intensity forecast

Hurricane Idalia (AL10-2023) made landfall as a major
hurricane (category 3) in Florida during the 2023 Atlantic
hurricane season. Before its landfall at 12Z on 30 August 2023,
Hurricane Idalia underwent a RI process, experiencing a 40-
knot increase in its 10-meter maximum wind within 24 h,
spanning from August 29 (06Z) to August 30 (06Z). The storm
left a trail of significant damage across the Big Bend region
of Florida and southeastern Georgia, resulting in the damage
or destruction of thousands of structures and the unfortunate
loss of four lives due to storm-related incidents in these two
states. Early estimates pegged insured losses in the $2.2–5 billion
range. During this event, the HAFS ensemble prediction system
provided real-time probability guidance for Hurricane Idalia. This

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2024.1396612
https://www.emc.ncep.noaa.gov/HAFS/HAFSEPS/index.php
https://www.emc.ncep.noaa.gov/HAFS/HAFSEPS/index.php
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Peng et al. 10.3389/feart.2024.1396612

FIGURE 5
Hurricane surface wind probability forecast for storm “Idalia” initialized at 00Z of 28 August 2023. (A) Day 01; (B) Day 02; (C) Day 03; (D) Day 04; (E) Day
05 and (F) 5 days in total. The black lines: ensemble tracks. The shaded: the probability of the maximum 10-meter wind speed greater than 34 kts.

encompassed storm track predictions, intensity changes, wind,
and precipitation. Such information proved invaluable for NHC
forecasters, aiding in issuing hazard guidance (wind, wave, and
storm surge) for the residents of Florida and other states along the
East Coast.

Figure 2 displays Hurricane Idalia’s track ensemble forecast
initialized at 00Z on 28 August 2023.The envelopes of the ensemble
tracks cover the observed stormpositions.Also, the landfall time and
location of Idalia were predicted accurately by the HAFS ensemble
60 h before its landfall, which helped the emergency managers of
the Federal Emergency Management Agency (FEMA) and the local
government officers to plan ahead the evacuation of the residents
in Florida.

The HAFS ensemble intensity forecast for the same cycle is
demonstrated in Figure 3. The envelope of the ensemble intensity
(10-meter maximum wind speed in (Figure 3A) and minimum
sea level pressure (Figure 3B)) at each forecast hour covers the
observation intensity of Idalia. Also, the intensity change rate agrees
well with the observed intensity change. The probability of the
RI of Idalia is about 70% (Figure 4), which is a good indicator
for forecasters to issue the hazards (wind, wave, and storm surge)

guidance before Idalia actually made landfall on the west coast
of Florida.

3.2 Wind speed probability forecast

The HAFS ensemble also provides the probability of the 10-
meter winds greater than 34-knot, 50-knot, and 64-knot (Figure 5
for 34-knot). The orange to red region in Figure 5 indicates an
80% higher probability of the 34-knot surface winds. This product
would help NHC forecasters to issue wind damage warnings on
the ocean for ship voyages and the residents on land on the west
coast of Florida.Thefive-dimensionalwindfields and other variables
from the HAFS ensemble forecast could be applied to drive the
downstream wave and storm surge models, which will help NHC
forecasters issue the wave and storm surge probability guidance.

3.3 Precipitation probability forecast

The 5 days’ Probabilistic Quantitative Precipitation Forecasts
(PQPF) with the surface precipitation exceeding 1, 4, and 8
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FIGURE 6
Hurricane precipitation probability forecast for storm “Idalia” initialized at 00Z of 28 August 2023. (A) Day 01; (B) Day 02; (C) Day 03; (D) Day 04; (E) Day
05 and (F) 5 days in total. The black lines: ensemble tracks. The shaded: the probability of the 24-hour precipitation greater than 1 inch.

inches are another important products from the HAFS ensemble
forecasts (Figure 6 for 1 inch PQPF). The NWSWeather Prediction
Center (WPC) and NHC would use these forecasts to issue
the flooding warning before the landfall of Hurricane Idalia.
The 24-hour (30–31 August, 2023, 00Z) observation precipitation
from the NCEP Climatology-Calibrated Precipitation Analysis
(CCPA) dataset (Figure 7) indicates that the Day-3 HAFS ensemble
PQPF agrees well with the pattern of the observed heavy rainfall
in the east coast, including Florida, Georgia, and South/North
Carolina states.

4 Performance of the HAFS ensemble
in 2023 hurricane season

The current NOAA GEFS-v12 was implemented on 23
September 2020. It has 30 perturbed and 1 control member with
a 25 km horizontal resolution. ECMWF’s Integrated Forecasting
System (IFS) upgrade to Cycle 48r1 was implemented on 27 June
2023. In the meantime, the horizontal resolution of 51-member
ECMWF medium-range ensemble forecasts (ENS) has increased
from 18 km to 9 km. The forecasters from NHC and JTWC

usually apply the global ensembles’ track forecasts to generate the
probability guidance of hurricane positions. They also demand
a skillful high-resolution ensemble to predict TC intensity and
structure change, which helps them to issue the hazards’ probability
guidance for wind, wave, and storm surges. The HAFS ensemble
was running in real-time in the AWS cloud to meet the needs of our
forecasters.

4.1 Comparison to global ensembles

The performance evaluation of the HAFS ensemble forecasts
during the 2023 hurricane season involved assessing both control-
member and ensemble-mean forecasts, although the HAFS
ensemble could provide critical uncertainty information for
hurricane position, intensity, and structural changes. Even though
the initial and lateral boundary conditions of HAFS ensemble were
generated from GEFS forecast dataset, the comparative analysis
between GEFS and HAFS ensemble aimed to demonstrate the
advantages of the high-resolution regional ensemble for hurricane
intensity forecasts.
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FIGURE 7
The 24 h (30–31 August, 2023, 00Z) precipitation (unit: inch) from NCEP Climatology-Calibrated Precipitation Analysis (CCPA).

Figure 8B illustrates that the ensemble mean intensity errors are
notably smaller within 96 h compared to the corresponding GEFS
mean intensity errors.The bias of HAFS ensemble intensity remains
under 6 knots (see Figure 8C), while GEFS exhibits a larger bias,
approximately 14 knots, in the 2023 Atlantic hurricane intensity
forecasts. Notably, because the current HAFS ensemble does not
include Vortex Initialization (VI) and Data Assimilations (DA),
a negative bias is shown within the first 84 h. This limitation is
anticipated to be addressed and reduced in the next version of the
HAFS ensemble by invoking VI/DA processes.

On a different note, the HAFS ensemble track forecasts
exhibit some degradation compared to GEFS forecasts (Figure 8A).
The considerable track errors observed during the 2023 Atlantic
hurricane season, particularly for the challenging track-forecast
storm Philippe (AL17-2023), are attributed to its interaction with
another storm, Rina (AL18-2023), known as the Fujiwhara Effect.
Future updates for the HAFS model physic package are expected to
improve this aspect.

As mentioned, the 51-member ECMWF ensemble was
implemented with a 9 km horizontal resolution on 27 June 2023.
The HAFS ensemble ran on a single regional domain with a 6 km
horizontal resolution.This little difference in the resolution between
HAFS and ECMWF ensembles significantly affects their hurricane
intensity forecasts. The two ensemble forecast systems have many
differences in their physics schemes, which may play a significant
role in hurricane intensity forecasts. As shown in Figure 9A, the
ECMWF ensemble has much bigger intensity errors than the
HAFS ensemble in the first 84 forecast lead hours. The intensity
bias is less than 6 kts for the HAFS ensemble, which is much
smaller than the corresponding ECMWF ensemble with the 15 kts

intensity bias (Figure 9B). The forthcoming integration of VI/DA
utilities is expected to reduce the negative bias exhibited by the
HAFS ensemble.

4.2 Comparison to HAFS-A model

The physics configuration of the HAFS ensemble is derived
from the operational HAFS-A model, which features a parent
domain at 6 km resolution and a moving nested domain at 2 km
resolution. In contrast, the HAFS ensemble adopts a single uniform
domain with a horizontal resolution of 6 km. Another method for
evaluating the HAFS ensemble’s capability for intensity forecasts
involves comparing its performance with the operational HAFS-
A. Figure 10A reveals that the ensemble mean intensity errors of
the HAFS ensemble closely align with the HAFS-A intensity errors,
except for initial, more significant errors for the HAFS ensemble.
This discrepancy in initial errors is attributed to the fact that the
operational HAFS-A, benefiting from VI and DA in the nested
domain, starts with a model vortex intensity close to the observed
storm intensity. Conversely, the HAFS ensemble, lacking VI/DA
functions, exhibits a negative intensity bias within the first 84
forecast hours (Figure 10B).

4.3 The spread-skill relationship of HAFS
ensemble

The primary objective of the HAFS ensemble is to depict
the uncertainty inherent in hurricane forecasts, encompassing
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FIGURE 8
The 2023 Atlantic hurricane track error (A), intensity error (B) and
intensity bias (C) for the GEFS/HAFS ensemble mean (AEMN/HEMN)
and the GEFS/HAFS control-member (AC00/HC00) from the GEFS
and HAFS ensemble forecasts.

track, intensity, and structural changes. Typically, as forecast time
progresses, the ensemble mean forecast error tends to increase,
leading to a corresponding growth in uncertainty, represented by the
ensemble spread. Ideally, a direct correspondence between ensemble
spread and ensemble mean error should exist. Figure 11 illustrates
the spread-skill relationship of GEFS and HAFS ensemble forecasts
during the 2023 Atlantic hurricane season. As track errors expand
over forecast hours, the spread amplifies with time as well. Both
ensembles exhibit under-dispersive characteristics for hurricane
track forecasts, with the GEFS ensemble displaying a better
spread-skill relationship. On the other hand, the HAFS ensemble
demonstrates smaller intensity errors compared to the GEFS
ensemble. However, its intensity spread surpasses that of the GEFS
ensemble, resulting in a more favorable spread-skill relationship for
intensity forecasts with the HAFS ensemble. The HAFS ensemble’s
track and intensity forecasts exhibit under-dispersive characteristics,

FIGURE 9
The 2023 Atlantic hurricane intensity error (A) and bias (B) for the
ECMWF/HAFS ensemble mean (EEMN/HEMN) and the ECMWF/HAFS
control-member (EC00/HC00) from the HAFS and ECMWF ensemble
forecasts.

FIGURE 10
The 2023 Atlantic hurricane intensity error (A) and bias (B) for the
HAFS ensemble mean (HEMN) and control-member (HC00), and the
operational HAFS-A and HAFS-B forecasts.
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FIGURE 11
The 2023 Atlantic hurricane track error and spread (A), and intensity
error and spread (B) from the HAFS (red) and GEFS (blue) ensemble
forecasts.

which suggests the potential for improvement through advanced
Stochastic Parameter Perturbation (SPP) in the model physics.
Additionally, a comparison between the forecasts of the 21-member
and 31-member HAFS ensembles for select hurricanes in the 2023
Atlantic season indicates that the 31-member ensemble provides a
more robust Probability Density Function (PDF) and higher spread
than the 21-member ensemble (Figure omitted for brevity).

5 Conclusion

The absence of a skillful and reliable high-resolution ensemble
remains a substantial challenge for forecasters in the operational
centers when issuing forecasts for TC track, intensity, structural
changes, and associated hazards such as wind, wave, and storm surge
probabilities. In response to the challenge, the HAFS-based EPS
has been successfully transitioned to the AWS cloud. It operates in
real-time, providing NHC forecasters with probabilistic hurricane
forecasts throughout the 2023 hurricane season. Remarkably, the
stability of the 168 Amazon Reserved Instances (nodes) allocated
for the HAFS ensemble system ensured robust real-time forecasts
during the 2023 Atlantic hurricane season.

The HAFS-EPS incorporates atmospheric model uncertainty
through its stochastic physics suite, including Stochastically
Perturbed Physics Tendencies (SPPT), Stochastically Kinetic Energy
Backscatter (SKEB), and Stochastically Perturbed PBL Humidity
(SHUM). Initial and lateral boundary conditions are derived from
theNCEPoperationalGEFS 21-member forecasts. A comprehensive
performance comparison of HAFS-EPS with global GEFS, global
ECMWF ensemble, and operational deterministic HAFS forecasts
for the 2023 Atlantic hurricane season reveals the advantages of

higher resolution regional HAFS ensemble forecasts. Notably, the
current version of the HAFS ensemble lacks VI and DA, leading to
a significant bias in forecasting strong storms.

Both track and intensity spread of HAFS ensemble grow
with forecast hours, but exhibit under-dispersive characteristics,
indicating the need for more stochastic processes like SPP in the
new version of the HAFS ensemble. In the meantime, the under-
dispersive track forecasts can be addressed through perturbations
in the initial position and intensity of vortices within the VI process.
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