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Bayesian maximum entropy
interpolation analysis for rapid
assessment of seismic intensity
using station and ground motion
prediction equations

Dengjie Kang, Wenkai Chen* and Yijiao Jia

Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou, China

In this paper, we explored the combination of seismic station data and ground
motion prediction equations (GMPE) to predict seismic intensity results by
using Bayesian Maximum Entropy (BME) method. The results indicate that:
1) In earthquake analysis in Japan, soft data has predicted higher values of
intensity in disaster areas. BME corrected this phenomenon, especially near the
epicenter. Meanwhile, for earthquakes in the United States, BME corrected the
erroneous prediction of rupture direction using soft data. 2) Compared with
other spatial interpolation methods, the profile results of Japan earthquake and
Turkey earthquake show that BME ismore consistent with ShakeMap results than
IDW and Kriging. Moreover, IDW has a low intensity anomaly zone. 3) The BME
method overcomes the phenomenon that the strength evaluation results do
not match the actual failure situation when the moment magnitude is small.
It more accurately delineates the scope of the disaster area and enriches the
post-earthquake processing of disaster area information and data. BME has a
wide range of applicability, and it can still be effectively used for interpolation
analysis when there is only soft data or few sites with data available.

KEYWORDS

spatial interpolation, bayesian maximum entropy, GMPE, seismic intensity, disaster
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1 Introduction

Seismic intensity is the most intuitive parameter used to reflect the strength of ground
motion and its influence.TheUnited States (US) first released the ShakeMap system in 1999.
US states have established a network with numerous stations; the system quickly obtains
seismic ground motion parameters, such as peak ground acceleration (PGA), peak ground
velocity (PGV), and peak grounddisplacement (PGD), at stations after an earthquake and an
intensity distribution map is created by combining this instrument-based ground motion
data with theoretical interpolation (multivariate normal (MVN)) results (Worden et al.,
2010). Many early warning stations have also been deployed in Chinese Taiwan, and the
seismic intensity rapid reporting system is mainly composed of a rapid reporting system
(RSS) and an early warning system (EWS) (Kinoshita, 1998); this approach is older and
more comprehensive than that employed in mainland China. At present, some scholars
have developed rapid seismic intensity assessment methods based on real-time seismology
(source rupture process) (Smith and Mooney, 2021), and these studies have explored rapid
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seismic intensity assessment methods and achieved fruitful results
(Chen et al., 2022a; Chen et al., 2022b; Peng et al. 2023), which have
been well applied in practical earthquake emergency response cases
(Chen et al., 2022c). In addition to these methods, other seismic
intensity assessment methods based on network surveys (Did You
Feel It?) (Atkinson andWald, 2007) and remote sensing information
extraction (optical remote sensing, radar, interferometric synthetic
aperture radar (InSAR) have been developed (Wang et al., 2015;
Xiao et al., 2022; Guo et al., 2024). China is expected to
build nationwide earthquake early warning stations in 2023.
Although stations in the network are relatively abundant, the
geographical distribution varies considerably, with most located
in the southeastern coastal areas of China and the Qinghai-Tibet
Plateau and on the Loess Plateau in western China (Wang et al.,
2017; Peng et al., 2021). Using unevenly distributed seismic stations
to combine existing knowledge to carry out postearthquake
emergency response has quickly has become a pressing problem.
This paper explores a spatial interpolationmethod based on existing
station data combined with a seismic ground motion prediction
equation (GMPE). Gehl used Bayesian networks (BNs) based on
continuous Gaussian variables to predict the spatial distribution
of ground motion parameters; this approach exploits the spatial
distribution of intraevent and interevent errors in a ground motion
prediction equation and can predict uncertain variables based
on given observations, but BNs are computationally expensive
(Gehl et al., 2017).The ShakeMap systemuses theMVNdistribution
proposed by Worden for weighted interpolation, which is a way of
combining stations with the GMPE and requires the selected data
to be normally distributed. The Bayesian maximum entropy (BME)
discussed in this paper does not require the data to be normally
distributed and is more comprehensive regarding data availability.

Although classic geostatistics has matured, there are still some
defects in the application process, such as the inability to use
empirical data other than sampled data, the need for stationary
assumptions or Gaussian assumptions; moreover, the use of the
best linear unbiased estimate (BLUE) can cause the smoothing of
predicted values (Christakos and Li, 1998). Given these defects,
in the early 1990s, Christakos proposed a new concept of spatial
valuation: the BME method (Christakos, 1990). The established
BME-based geostatistical method adopts the Bayesian method
in statistics and the concept of entropy in information theory
to recognize and deal with spatiotemporal variables, which are
an integral part of modern spatiotemporal geostatistics. The
BME theory is rooted in the spatiotemporal random field model
(S/TRF). This model expands upon the spatial random field
(SRF) concept from classical geostatistics by incorporating the
temporal dimension, conceptualizing natural processes as fields
comprised of random variables across both space and time. After
more than 10 years of development, the BME-based geostatistical
method has been successfully applied in fields such as soil
science, environmental science, and infectious diseases control
(Douaik et al., 2005; Wibrin et al., 2006; Couliette et al., 2009; Yu
et al., 2011). Compared with the traditional kriging interpolation
method, the BME approach does not require assumptions about
linear estimation, spatial homogeneity or a normal distribution
and can integrate hard and soft data to improve the analysis
accuracy. Christakos et al. (2004) constructed soft data based on the
relationship between tropopause pressure and total ozone to predict

the spatiotemporal distribution of total ozone in the US. They used
the relatively accurate total ozone obtained by remote sensing
satellites as hard data for BME analysis. Money et al. (2009) used
site data as hard data and model estimations as soft data to conduct
a spatiotemporal analysis of Escherichia coli concentrations in the
Raritan River watershed in New Jersey, United States from 2000
to 2006, and their results showed that the BME analysis improved
accuracy by 30%. The successful application of the BME method in
various fields has confirmed that the BME method is reliable, and
the most significant advantage is that the application of soft data
is flexible.

The BME and ShakeMap algorithms are both based on
probability density functions (PDFs). However, there is no apparent
connection between the weighted interpolation approach used in
the ShakeMap algorithm and the spatial correlation coefficient used
in the BME method, which makes direct comparison of the two
methods complicated. In this paper, the Wells empirical formula
(Wells and Coppersmith, 1994) can be used to quickly obtain
the GMPE results after an earthquake, and the predicted ground
motion parameters can be obtained within a few minutes after the
station data are obtained. The ground motion map produced by
ShakeMap after an earthquake is the result of combining MVN
and GMPE information. Similarly, the predicted seismic motion
map in this article combines BME and GMPE data. However, it
is worth noting that the use of GMPE in this article differs from
that of ShakeMap. ShakeMap primarily relies on GMPE models
from NGA-West2, such as CB2014 and BSSA 2014 (Boore et al.,
2014; Campbell and Bozorgnia, 2014). These GMPE predictions are
based on finite fault models, requiring many input parameters,
including the fault layer’s dip angle, slip angle, width of fault
rupture, earthquake magnitude, shortest fault distance, shortest
fault projection distance, and more. In contrast, the Si model used
in this article simplifies the process, requiring only three parameters:
magnitude, shortest fault projection distance (Rjb), and Vs30.
Therefore, the calculation parameters of ShakeMap with NGA-
West 2 GMPE are more complex. In this article, the BME method
uses a simplified GMPE (SI model), providing a faster and more
direct calculation process for post-earthquake seismic intensity
assessment. The combined GMPE method in this article is not
as complex as the method in ShakeMap. This simplified method
can quickly generate prediction results after earthquakes, and its
prediction accuracy can be comparable to ShakeMap.

In this paper, Section 2 introduces the data sources and
the modeling methods. In Section 3, the 2016 Kumamoto Mw7
earthquake in Japan, the 2019 CaliforniaMw7 earthquake in the US,
and the 2023 Turkey Mw7.8 earthquake are selected as examples to
show the application effect and accuracy of the proposedmethod. In
Section 4, the reliability and applicable conditions of the proposed
method are discussed. Finally, a summary of the research is provided
in Section 5.

2 Materials and methods

2.1 Materials

Due to the difficulty obtaining strong ground motion data in
many areas, the 2016 Kumamoto earthquake in Japan (hereinafter
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referred to as the Japan earthquake), the 2019 California earthquake
in theUS (hereinafter referred to as theUS earthquake), and the 2023
Turkey Mw7.8 earthquake (hereinafter referred to as the Turkey
earthquake), which occurred on 6 February 2023, are selected as the
earthquake cases. The earthquake magnitudes, epicenter locations,
and focal depths are all provided by ShakeMap.The isoseismals used
in this paper are also provided by ShakeMap (Modified Mercalli
Intensity (MMI)). Many scholars have established the relationship
between the duration of strong ground motion acceleration,
velocity, and displacement, as well as the MMI (Trifunac and
Brady, 1975; Atkinson and Sonley, 2000; Worden et al., 2012). For
the soft data, the formula released by Si in 1999 is used as the
GMPE (Si and Midorikawa, 1999); it has been verified in many
earthquake cases, and the results have been proven to be reliable
and applicable (Chen et al., 2022b; Zhao et al., 2022; Kang et al.,
2023; An et al., 2023; Peng et al., 2023; Chen et al., 2023; Zhou
et al., 2024; Jia et al., 2024). The ground motion value mainly
used in this article is the PGV. In order to achieve faster seismic
intensity assessment, we performed linear field correction on
PGV (PGA is usually non-linear field correction) (Chen et al.,
2022b). Both GMPE and instrument records were calculated
using PGV as the input value. Among them, the conversion from
PGV to MMI is based on conversion relationship (Worden et al.,
2012). PGV values recorded at the stations with strong ground
motion data are used as the hard data (https://earthquake.
usgs.gov/earthquakes/eventpage/us6000jllz/ShakeMap/stations).
ArcGIS is used to extract the soft data, and finally, an intensity
map is output to test the prediction results. The test data mainly uses
the measured data by stations and the isoseismals downloaded
from ShakeMap. The implementation of the BME method is
mainly realized in SEKS-GUI software, which is based on the
modern geostatistical theory proposed by Christakos in 1990 and
demonstrated by examples (Christakos, 2000; Yu et al., 2007). The
site amplification factor describes the amplification effect of seismic
motion when geological conditions change. This is crucial for
assessing the seismic risk of buildings and infrastructure, and can
also be used to explain the changes in seismic intensity in geographic
space.The amplification factor of different locations on the same site
may be different, which can lead to differences in seismic intensity
in different areas on the same site, and the site amplification factor
is often related to Vs30 (Krinitzsky and Chang, 1988; Yaghmaei-
Sabegh and Hassani, 2020). The Vs30 data used for field corrections
are obtained from the US Geological Survey (https://earthquake.
usgs.gov/data/vs30/). All seismic data are listed in Table 1.

2.2 Methods

2.2.1 BME
2.2.1.1 BME analysis

In the BME method, the acquired information or knowledge
is generally divided into two categories. One is called general
knowledge G, which usually includes common sense, physical laws,
scientific theories, and statistical data. The other is called specific
knowledge S, which represents a specific phenomenon or thing,
such as the hard data and soft data mentioned above. General
knowledge G and specific knowledge S together form knowledge set
K, that is, K = G∪ S. The BME process is a logical reasoning process

that considers the use of overall knowledge K and the way to use
knowledge to solve problems, with threemain stages: the prior stage,
meta-prior stage, and posterior stage. In the prior stage, the principle
of maximum entropy is used to find the prior PDF fG, and thus,
the maximum of G is close to the real value to the greatest extent
possible. In the meta-prior stage, the form of specific knowledge S
is converted, and in the posterior stage, fG and S are combined to
update fG based on a generalized Bayesian formulation to obtain
the posterior PDF fK. The procedure is shown in Figure 1. If there
are m spatiotemporal points in S/TRF, i.e., [p1 · · · pm]T, mh pieces of
hard data, andms pieces of soft data, then χdata = [χhard,χso ft], where
χdata = [x1 · · · xm]T, χhard = [x1 · · · xmh]T, and χso ft = [xmh

· · · xm]T

are all data, hard data, and soft data, respectively. χk represents the
predicted value of the point to be estimated, fG(χmap) is the prior
PDF of χmap based on G, and fK(χk) is the posterior PDF of χk based
on K. The corresponding formulas are as follows:

Px(χ) = Prob[χ1 < x1 < dχ1, ...,χm < xm < dχm] = fx(χ)dχ (2-1)

fK(χk) =
∫
I
fG(χk,χdata)dχso ft

∫
I
fG(χdata)dχso ft

(2-2)

where fx(χ)dχ is the multipoint PDF for [P1 · · ·Pm ]T. In general,
the expectation and covariance of a spatiotemporal random field
are often used to represent the overall trend, spatiotemporal
structure, and spatiotemporal correlation. In practice, the
expectation and covariance at each point cannot be obtained, so
the global expectation and covariance are used in calculations.
I represent the interval combination of all interval-type soft
data. fG(χdata) and fG(χk,χdata) represent the probability density
functions before and after the incorporation of knowledge K,
respectively.

2.2.1.2 Hard and soft data
With the development of science and technology, data collection

has become more diverse, faster, and more accurate and the scale
range has expanded. In the BME method, data can be divided into
two types according to the level of accuracy. One type is hard data,
for which errors can be ignored or the accuracy is relatively high.
These data are oftenmeasured by instruments or recorded at stations
and include rainfall, pollutants, air pressure, and humidity recorded
at meteorological stations, and ground motion parameters recorded
at seismic stations, etc. The other type is soft data, for which errors
are large or accuracy is relatively low; soft data are often obtained
by empirical formulas, conclusions based on empirical intuition,
or measurements with poor precision. The reason for describing
the accuracy of data in this way is that, although the difference
between hard and soft data is often quite clear, in some cases, it is
a relative concept without a clear dividing line. This is similar to the
nonexistence of observation instruments that can measure the true
value without any error. The method of dividing data into hard and
soft, as described, differs somewhat from the classification by Luo
and Pei (2009) of data with definite true values (hard data) and data
in “set” form (soft data). Hard data may objectively contain some
errors, which are unavoidable, and to a certain extent, such results
represent the true values, which fluctuates with conditions in real-
word scenarios. In the data used in this paper, the results obtained
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TABLE 1 The earthquake cases.

Data Country Latitude Longitude Magnitude Type Station number

20160415 Japan 32.791 130.754 7 Reverse 125

20190706 US 35.77 −117.599 7.1 Strike slip 129

20230206 Turkey 37.226 37.014 7.8 Strike slip 138

FIGURE 1
BME flow chart. BME mainly includes three stages: prior stage, meta-prior stage, and posterior stage. In the prior stage, maximum entropy is used to
find the maximum amount of G information, while in the meta-prior stage, the data is expressed as specific knowledge S. In the posterior stage, fG and
S need to be combined.

from GMPE are less accurate than those obtained from seismic
stations, so the GMPE results are soft data and the seismic network
results are hard data. The forms of soft data often include interval
data, probability data, and functional data, which are expressed
by the following formulas. The distribution of soft data is shown
in Figure 2.

(1) functional data, where l and u represent the lower and upper
bounds of the interval, respectively

χso ft = [xmh
· · · xm]

T;χi ∈ Ii = [li,ui], i =mh+1...m (2-3)

(2) interval data, where Fi(ζi) is the cumulative
distribution function

χso ft = [xmh
· · · xm]

T;P(χi < ζi) = Fi(ζi), i =mh+1...m (2-4)

(3) probability data, where P(χi ∈ Ii) = pi is a known function

χso ft = [xmh
· · · xm]

T;P(χi ∈ Ii) = pi, i =mh+1...m (2-5)

2.2.2 GMPE
This paper uses the GMPE as soft data. Si et al. used multiple

earthquake datasets in Japan, including crustal, intraplate and
interplate earthquakes, and selected many close-range strong
ground motion records for numerical simulation. The datasets have
three characteristics, including strong ground motion records near
the epicenter, an earthquake magnitude range of 5.8–8.3, and many
types of seismogenic faults, and the focal depth distribution range
is wide (6–120 km). After considering the epicenter characteristics,
propagation characteristics, and site effects, we propose distance
attenuation formulas for peak ground acceleration (PGA) and PGV
based on the shortest distance from the fault, which are applicable
to the epicenter region, i.e., the attenuation model for ground
motion parameters (hereinafter referred to as the Si model). This
model has achieved good application results for the 2008 Wenchuan
earthquake (Si et al., 2010; Chen et al., 2022c).

logA = b− log (X+ c) − kX (2-6)

c = c110c2
Mw (2-7)
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FIGURE 2
Distribution locations of the hard and soft data for the Japan earthquake, US earthquake, and Turkey earthquake. (A) is the Japan earthquake, (B) is the
US earthquake, and (C) is the Turkey earthquake.The red pentagram is the epicenter, the red circles denote the distribution of hard data, and the blue x
symbols denote the distribution of soft data.

TABLE 2 Model parameters.

a h
d

e
Crustal Interplate Lntraplate

Peak ground acceleration

0.50 0.0043 0.00 0.01 0.22 0.61

Peak ground velocity

0.58 0.0038 0.00 −0.02 0.12 −1.29

b = aMw + hD+∑diSi + e+ ε (2-8)

log (AMP) = 1.83− 0.66 lg(vS30) (2-9)

PGV_VS30 = AMP · PGV (2-10)

where A is the PGA or PGV, m/s2 and m/s; PGV_VS30 is the PGV
after considering the site amplification effect,m/s;Mw is themoment
magnitude of the earthquake; c1 and c2 are regression coefficients,
and the c1 in PGA is 0.0055, in PGV is 0.0028, and c2 is both 0.5; D
is the focal depth, km; X is the shortest fault projection distance, km;
AMP is the factor for the amplification effect; Vs30 is the equivalent
shear wave velocity within the depth range of 30 m; and the k value
is set to 0.003 for PGA and 0.002 for PGV, as shown in Table 2.

2.2.3 Wells empirical relationships
In Eqs 2–6, the earthquake fault distance is used to calculate

the ground motion parameters, and the actual surface rupture
zone is obtained in the actual investigation after an earthquake.
The investigation period is approximately several weeks to several
months, so the actual earthquake rupture zones cannot be obtained
shortly after an earthquake. To consider the time cost after an
earthquake, the Wells surface rupture empirical formula is used to
obtain the surface rupture length instead of the actual length, and the

final GMPE result can be obtained in seconds after an earthquake. In
1994, Wells used the epicenter parameters of historical earthquakes
worldwide to establish the empirical relationships between moment
magnitude and surface rupture length, subsurface rupture length
and rupture area, and empirical relationships for strike slip faulting
(SS), reverse faulting R), and normal faulting N) were established
(Wells and Coppersmith, 1994). In this study, the rupture zones
obtained based on the Wells formula are sampled uniformly at a
distance of 1 km to calculate the shortest fault projection distance
for each site. The fracture formulas are as follows:

SS:M = 5.16+ 1.12lg(L) (2-11)

R:M = 5+ 1.22lg(L) (2-12)

N:M = 4.86+ 1.32lg(L) (2-13)

where L is the length of rupture, M is the moment magnitude.

3 Results

3.1 BME analysis results

Figure 3 represents the results of the covariance model, with
the horizontal axis indicating the lag distance and the vertical axis
displaying covariance values.This graph is generated through station
data computations and involves two main steps: 1. Calculate the
lag distance, which is the geographical distance between two data
points, and 2. Calculate the covariance value for each lag distance.
Covariance refers to the average of the squared differences between
data points at the same lag distance.The following formula expresses
this process:

Cov(z(x),z(x+ h)) = E{z(x) −E[z(x)]}{z(x+ h) −E[z(x+ h)]} (3-1)

where h is the distance between one random variable to another
random variable. z(x) and z(x+ h) and are the values of random

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2024.1394937
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Kang et al. 10.3389/feart.2024.1394937

FIGURE 3
Fitting results for three seismic covariance models. The red circles are the all-directions empirical results, and the blue line is the covariance model
fitting line. (A) is the Japan earthquake, (B) is the US earthquake, and (C) is the Turkey earthquake.

variables at spatial locations x and x+ h, respectively. E[z(x)] and
E[z(x+ h)] are themeans at spatial locations x and x+ h, respectively.

Curve fitting is employed to derive a mathematical equation,
which is used to describe the relationship between covariance and
lag distance, as described in the article.This curve can be utilized for
interpolation and prediction purposes. A prior PDF is established
through a covariance model of hard data. In the most affected
areas of earthquakes, the seismic intensity is elliptically distributed,
and for moderate and strong earthquakes. Several countries such
as Japan, the US, and China are mainly affected by moderate
earthquakes. According to Wells and Coppersmith (1994), the
calculated rupture length for moderate earthquakes (magnitude
6.5-7.5) is generally about 100 km. So, the length of the hardest-
hit area along the long axis is approximately 100 km. Therefore,
correlations within a spatial range of approximately 100 km are
selected to establish the empirical covariance model, and the results
are shown in Figure 3. The Japan and US earthquakes are both
Mw7 earthquakes.The curves in Figures 3A, B are roughly the same.
The station values of the Japan earthquake within 30 km of the
epicenter are relatively discrete, but they do not affect the overall
spatial correlation. Due to the differences in geological structures
and site conditions between Japan and the US, the attenuation
details of the covariance models between the two are not exactly
the same. As shown in Figure 3C, the magnitude of the Turkey
M7.8 earthquake in 2023 is relatively large; earthquakes with large
variable ranges attenuate faster for a certain distance, and the
fitting of the covariance model is thus better. However, spatially
correlated details for factors associated with large earthquakes are
often overlooked. Figure 3 illustrates the strong spatial correlations
among groundmotion parameters, and the use of appropriate spatial
interpolation methods can compensate for the shortcomings caused
by an insufficient seismic station layout.

According to the BME conditional probability formula, the
prior PDF is modified considering both hard and soft data, and
the posterior PDF is obtained. According to the research, the
appropriate BME prediction results are obtained with fK(χk); i.e.,
the prediction with the largest probability can be obtained from
the prediction mode. Additionally, the prediction with the smallest
mean square error can be obtained from the prediction mean, and
the formula is the indefinite integral of the product of a random

variable χk with the posterior PDF fK(χk), the prediction with the
smallest mean absolute error (MAE) can be obtained from the
prediction median. In this paper, the minimum mean square error
is selected as the BME prediction result. The results are shown
in Figure 4. Figures 4A, C, E show the prediction means of the
three earthquakes, and b), d), and f) are three-dimensional (3D)
maps of the standard deviation (SD) of the prediction results. The
unit of SD here is consistent with the unit of PGV, both in m/s.
The predicted SD of the three earthquakes within the epicenter
region is high, and the SD of the low-intensity zones away from the
epicenter is extremely low and tends to be close to zero. For the
7.8-magnitude earthquake in Turkey, in the hard-hit area (longitude
36°–38°E and latitude 36°–38°N), the SD of predictions reaches 0.76,
which seriously exceeds the mean SD. The SD of the Japan and US
earthquakes is lower, and the prediction effect is better, particularly
compared to that of the Turkey earthquake, Notably, for the 7-
magnitude US earthquake, SD < 0.3. The magnitude and affected
area of the Turkey earthquake are larger than those of the Japan and
US earthquakes; therefore, with the same number of stations, the
BME prediction results for the Turkey earthquake are not as good
as those for the Japan and US earthquakes.

3.2 Intensity analysis results

Contour lines are generated at an interval of 0.1 (Figures 4A–C);
however, it is impossible to see the pros and cons of the
prediction results for actual earthquakes based on contour lines
alone. ShakeMap is used internationally as an important seismic
service platform that can support different seismic assessments for
earthquakes in various regions and at various levels. One of the
main assessment methods involves reclassifying ground motion
parameters according to the MMI and standardizing the extent of
the hardest-hit areas of earthquakes, with MMI values ≥ degree
VIII defined as moderately or severely damaged. Thus, focus is
placed on events with values ≥ degree VIII. The prediction results in
Figures 4A–C are converted into MMI results for unified evaluation
and compared with the ShakeMap results, as shown in Figure 6.

To test whether ShakeMap results can be used to verify the
BME analysis results, the root mean square error (RMSE) is selected
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FIGURE 4
BME analysis results and 3D maps of BME SD. The contour line interval in a, c, and e is 0.1. (A) is the BME result for the Japan earthquake; (C) is the BME
result for the US earthquake; (E) is the BME result for the Turkey earthquake; (B) is the BME SD result for the Japan earthquake, with red representing
higher values and blue representing lower values; (D) is the BME SD result for the US earthquake; (F) is the BME SD result for the Turkey earthquake.

as an indicator, and the BME and ShakeMap results for the Japan
earthquake are evaluated. According to the calculation results, for
the Japan earthquake, the RMSEs of the BME prediction result and
ShakeMap prediction result are 0.07 and 0.06, respectively, which
verifies that the accuracy of ShakeMap is slightly higher than that
of the BME method. In addition, to better illustrate the similarities
between the BME and ShakeMapmethod, a residual analysis process
was implemented (Figure 5). For the Japan earthquake and the
US earthquake, there are no significant differences between the
results obtained with the BME and ShakeMap method. In the
case of the earthquake in Turkey, when compared to the BME
results, the ShakeMap predictions show an overall trend of residuals
approaching zero. However, within 100 km of the epicenter, there

is still no noticeable difference between the two sets of results, and
the BME prediction accuracy remains within 0.6.The high degree of
similarity between the results from the BME and ShakeMap method
is evident from the residual analysis, underscoring the utility of
ShakeMap for validating the prediction results in this study.

The BME prediction results for the Japan, US and Turkey
earthquakes are converted into MMI values and compared with the
ShakeMap results, as shown in Figures 6A–C. Figures 6D–F shows
the soft data results corresponding to the three earthquakes. In
Figures 6A, D, for the Japan earthquake, the predictions based on
the BME results and soft data results for the areas < degree VIII are
consistent. Based on both the BME results and soft data results, the
hardest-hit areas are overpredicted in comparison to those based on
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FIGURE 5
Residual analysis. The abscissa is the epicenter distance, and the ordinate is the logarithmic ratio of the measured data to the predicted data.
Comparison of the results of the ShakeMap and BME method for the (A) Japan earthquake, (B) US earthquake and (C) Turkey earthquake.

the ShakeMap results. For the soft data results, the intensity to the
southwest of the epicenter is high, withmany degree-IX areas, which
differ significantly from the ShakeMap results; additionally, the
intensity to the northeast of the epicenter is in comparatively better
agreement with the ShakeMap results. For the BME results, there is
only a degree-IX area at the epicenter, and there is an extended zone
of degree-VIII areas to the southwest; however, compared to the
soft data results, the BME results provide a more reliable direction
and scope for postearthquake emergency response. According to
Figures 6B, E, the US earthquake is similar to the Japan earthquake,
but the BME results are not ideal due to the deviation between the
rupture directions predicted based on the US earthquake soft data
and the ShakeMap results. However, the degree-VIII and degree-IX
areas mispredicted in the soft data results are largely corrected with
the BME method. The results for the Turkey earthquake show that
the BMEmethod corrects some of the degree-IX areas, but the effect
on the overall results is small. The BME correction strength for large
earthquakes is not as significant as that for small earthquakes, which
may be related to the large area of large earthquakes and the lack
of updating of soft data results due to a limited number of stations,
indicating that the method proposed in this paper can be reliably
used to determine the extent of the hardest-hit areas of moderate to
strong earthquakes.Therefore, the soft data have a large effect on the
final posterior PDF fK(χk).

4 Discussion

4.1 Reliability analysis

Zhao et al. (2023) analyzed the profiles of theMaduo earthquake
and the Maerkang earthquake in China, and the analysis method
used clearly and directly verified the reliability of the two sets of
seismic intensity assessment results. In this paper, a profile line is
drawn along the long axis of the ShakeMap isoseismal lines for the
Japan, US andTurkey earthquakes, inverse distanceweighted (IDW)
and kriging interpolations are performed using hard data, and the
interpolation results and BME results are analyzed. Figures 7A–C
shows that, although the IDW and kriging results for the Japan
earthquake are consistent with the ShakeMap results at the epicenter,
they are one degree lower than the ShakeMap results in other areas.

In practice, this difference can be ignored because the area is close
to the epicenter. In addition, the BME results in some degree-
VIII areas and the half of the remaining areas are inconsistent
with the ShakeMap results, generally indicating that the evaluation
results are satisfactory. For the US earthquake, the highest intensity
estimated with the three prediction methods is consistent with that
based on the ShakeMap results, but there are inconsistencies in
other directions, which are caused by the inconsistency between
the assessment direction of and the rupture direction, and the
results of the three methods are less than satisfactory, as shown in
Figures 7D–F.The profiles of the 2023 Turkey earthquake are shown
in Figures 7G–I. The highest intensity results of the three methods
for the IDW, kriging, and BME methods are all consistent. The BME
results are similar to the ShakeMap results, and IDW may yield
intensity anomalies in low-intensity areas; therefore, the IDWresults
cannot be used. The profile results of the three earthquakes directly
or indirectly reflect the reliability of the BME approach in seismic
intensity assessment.

Compared to the MAE, the RMSE is calculated with
a differentiable function, which makes it easy to perform
mathematical operations. Therefore, in many models, although
RMSE is more difficult to interpret than MAE, it is used as the
default metric for establishing the loss function, as shown in
Figure 8. Residual error generally refers to the difference between
the predicted and observed values, and is also one of the important
indicators used to evaluate the quality of a prediction result, as
shown in Figure 9.TheBMEanalysis in this paper ismainly Bayesian
estimation. The predicted value is obtained from a PDF based on a
combination of softdata andhard data, and hard data are not directly
used to obtain the prediction result. Hard data are often limited and
difficult to obtain. To consider the accuracy of the prediction results
and the comprehensiveness of the evaluation, in this paper, data
from no stations are retained for testing; thus, hard data are only
used for residual analysis and RMSE analysis of stations.

According to the RMSE results, the prediction effects for the
Turkey earthquake (Figure 8C) and US earthquake (Figure 8B) are
not as good as those for the Japanese earthquake (Figure 8A). The
highest RMSE for the Turkey earthquake reaches approximately
1.1, and that for the US earthquake exceeds 0.7; however, the
RMSE for the Japan earthquake is higher than 0.2 at only two
stations, indicating that the prediction effect is comparatively better.
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FIGURE 6
Comparison of the BME analysis results and the soft data results obtained with ShakeMap, the blue line is the MMI result obtained with ShakeMap. The
converted MMI results from the BME method for the (A) Japan earthquake, (B) US earthquake and (C) Turkey earthquake are shown; The converted
MMI result from soft data for the (D) Japan earthquake, (E) US earthquake and (F) Turkey earthquake.

The RMSE of the three earthquakes is overestimated around the
epicenter, and the RMSE in the far-field range does not exceed
0.2, which shows that the evaluation of ground motion parameters
near major faults is difficult. When stations are located near the
epicenter, limited station data are obtained, with many outliers,
leading to the above phenomenon. Based on the prediction results of
the three earthquakes, the BME method still yields good predictive
power for moderate and strong earthquakes. As shown in Figure 9,
the residuals of the Japan earthquake in Figure 9A are between
−0.6 and 0.4, those of the US earthquake in Figure 9B are between
−0.6 and 0.6, and those of the Turkey earthquake in Figure 9C
are between −0.4 and 0.8, indicating that the BME-based values
for major earthquakes are mainly underpredicted. Due to the
prediction direction problem encountered for the US earthquake,
the phenomenon of overprediction at the epicenter occurs. The
prediction mean for the Japan earthquake at 50 km is close to
0, indicating that the calculated ground motion is close to the
observed value, which verifies the stability of the method proposed
in this paper.

4.2 Applicable conditions

The BME spatial interpolation method based on the attenuation
formula combined with the strong ground motion data presented in
this paper requires the observation results at seismic stations to be
obtained during and immediately after an earthquake. Additionally,

a sufficient number of stations must be available; otherwise, the
posterior PDF cannot be obtained through updating the prior
PDF (or the results are dominated by soft data-based results).
Notably, due to various uncontrollable factors, the quality of
station monitoring data varies, so it is particularly important to
consider how to screen high-quality stations and determine whether
the station data are seismic intensity anomalies in the context
of providing a rapid postearthquake emergency response. Peak
Ground Acceleration (PGA) is one of the important indicators for
measuring earthquake intensity. It reflects the maximum ground
acceleration during an earthquake, and higher PGA values are
usually associated with more severe seismic intensity. Especially
for building and infrastructure engineering, PGA is one of the
key factors in evaluating whether the structural design is strong
enough to withstand earthquake forces. Experts use PGA values
to determine the design parameters of structures such as buildings
and bridges to ensure their safety during earthquakes (Tselentis and
Danciu, 2008;Murphy andO’brien 1977;Campbell, 1997).However,
some studies have shown that the correlation between PGV and
seismic damage statistics is closer than that of PGA (Wu et al., 2003).
Therefore, in this section, we will discuss the applicability of PGA
in BME. As shown in Figure 10 below, the PGA result of the US
earthquake in Figure 10B is obviously inferior to that of the Japanese
earthquake and the Turkey earthquake. By comparing the PGV
residual results in Figure 9, we can find that the PGV results of both
the Japanese earthquake and the American earthquake are better,
and the PGV results of the Turkey earthquake are better, which
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FIGURE 7
Seismic intensity profile. The solid black line represents the location of the profile, and the red line is the profile produced by the model. (A), (B), and (C)
are the profiles obtained with the IDW, kriging, and BME methods for the Japan earthquake; (D), (E), and (F) are the profiles obtained with the IDW,
kriging, and BME methods for the US earthquake; and(G), (H), and (I) are the profiles obtained with the IDW, kriging, and BME methods for the Turkey
earthquake.

FIGURE 8
RMSE and MAE analysis diagram, where red is MAE and blue is RMSE. The RMSE and MAE results for the (A) Japan earthquake, (B) US earthquake, and
(C) Turkey earthquake.

can certainly indicate that the PGA results are more accurate in the
case of catastrophic earthquake. The research results for the three
earthquakes (Japan, US and Turkey earthquakes) clearly show that
when the station data are similar, the BME method is not ideal
for predicting the ground motion from the earthquakes with larger
areas but performs better for moderate and strong earthquakes.
Therefore, in a large-earthquake cases, the prediction results of the
attenuation formula are sufficient to make a basic assessment of the
large earthquake. Compared with that for the US earthquake, the
prediction effect for the Japan earthquake was better. We speculate

that the attenuation formula in this paper was established by Si
based on the Japan dataset, so the results are more suitable for
earthquakes in Japan; therefore, if different attenuation formulas are
used for different regions, the accuracy of BME predictions may be
improved. In the US earthquake, the direction of the earthquake
rupture is inconsistent with the predicted direction, resulting in low
prediction accuracy, which is caused by the inconsistency in the
direction of the nearest fault selected around the epicenter. Due to
the presence of many active faults around the earthquake, which
makes it difficult to select the correct faults in the blind period
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FIGURE 9
Residual analysis for PGV. The abscissa is the epicenter distance, and the ordinate is the logarithmic ratio of the measured data to the predicted data.
The residual results for the (A) Japan earthquake, (B) US earthquake and (C) Turkey earthquake.

FIGURE 10
Residual analysis for PGA. The abscissa is the epicenter distance, and the ordinate is the logarithmic ratio of the measured data to the predicted data.
The residual results for the (A) Japan earthquake, (B) US earthquake and (C) Turkey earthquake.

after the earthquake, other methods, such as the back-projected
energy point approach or an aftershock data method, can be used
instead of selecting the nearest fault to improve the quality of the
soft data; this will be the focus of future works. Although the BME
approach is a spatiotemporal analysis method, the time factor is not
included in this paper, even though a seismic wave is a time–history
curve; therefore, determining how to combine spatial and temporal
factors to obtain more accurate results is a topic worthy of
further study.

5 Conclusion

In this paper, for the first time, we propose a BME spatial
interpolation method that combines soft data and hard data for
seismic intensity assessment. In the proposedmethod the prior PDF
is obtained based on kriging interpolation analysis of the strong
ground motion data after an earthquake, soft data obtained based
on an attenuation formula are considered, soft and hard data with
certain ranges near a given prediction point are used to obtain the
posterior PDF, and the desired maximum or mean is calculated
by conversion. Finally, seismic intensity maps are quickly plotted
based on the calculation results of the ground motion data from
the posterior PDF; in this approach, hard data are used twice, and
the weights of station data are higher than those for the results of

the attenuation formula. The main contributions of the paper are as
follows.

(1) The BME approach is a highly popular interpolation
method. Although maximizing the amount of hard data
used can improve the accuracy of the method, when
only soft data or limited station data are available, the
method can still yield reasonable results. Thus, the BME
method can be used in interpolation analyses in many
study areas.

(2) The interpolation of the ground motion data for the three
earthquakes in this paper shows that the proposed method
is effective for the prediction of moderate and strong
earthquakes. The station density is generally homogeneous
in space. Although more station data are obtained for major
earthquakes than for smaller earthquakes, most recorded
values are in the same intensity zones, with little effect
on the interpolation results. For earthquakes with small
momentmagnitudes (Mw6-7), the predictions of the proposed
method are better than those of other methods. The proposed
method compensates for the phenomenon that the traditional
attenuation formula is insufficient for predicting earthquakes
with small moment magnitudes. Additionally, the BME
method mitigates the large deviation between predicted and
actual damage levels when the moment magnitudes are small.
Combined with SEKS GUI software, the proposed method has
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a simple operation process and can quickly produce a seismic
intensity assessment map, which is helpful for providing
earthquake disaster information services.

(3) The BME method proposed in this paper is a combination
of an attenuation formula and station data, which enriches
the existing seismic intensity assessment methods to a certain
extent. At the same time, the problems arising from the
application of themethod could in turn provide a new basis for
the selection of the actual rupture direction and optimization
of soft data methods for earthquakes.
(4) Considering the time factor of rapid assessment of
earthquake intensity after an earthquake, the method
(BME) of combining a simplified GMPE with stations can
obtain earthquake emergency assessment results faster than
ShakeMap with MNV and NGA West 2 GMPE. Therefore,
BME can provide evaluation results of the “black box period”
after an earthquake, enriching themeans andmethods of rapid
post-earthquake evaluation.
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