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Landslides, prevalent in mountainous areas, are typically triggered by tectonic
movements, climatic changes, and human activities. They pose catastrophic
risks, especially when occurring near settlements and infrastructure. Therefore,
detecting, monitoring, and predicting landslide deformations is essential for
geo-risk mitigation. The mainstream of the previous studies have often focused
on deterministic models for immediate landslide prediction. However, in most
of them, the aspect of prediction uncertainties are not sufficiently addressed.
This paper introduces an innovative probabilistic prediction method using a
Variational Autoencoder (VAE) combined with Gated Recurrent Unit (GRU) to
forecast landslide deformations from a generative standpoint. Our approach
consists of two main elements: firstly, training the VAE-GRU model to maximize
the variational lower bound on the likelihood of historical precipitation data;
secondly, using the learned approximated posterior distribution to predict
imminent deformations from a generative angle. To assess the prediction quality,
we use four widely-used metrics: Prediction Interval Coverage Probability
(PICP), Prediction Interval Normalized Average Width (PINAW), Coverage
Width-Based Criterion (CWC), and Prediction Interval Normalized Root Mean
Square Width (PINRW). The results demonstrate that our proposed VAE-
GRU framework surpasses traditional state-of-the-art (SOTA) probabilistic
deformation prediction algorithms in terms of accuracy and reliability.

KEYWORDS

landslide deformation, probabilistic prediction, gated recurrent unit, VAE-GRU,
variational autoencoder

1 Introduction

Landslides are commonly observed in mountainous area in China especially in the
southeast regions that causes an enormous amount of economic damage and casualties
(Jibson, 2007; Huang et al., 2022). When occurrences are close to villages, settlements
and infrastructures (e.g., interstate highways, roads, energy supply facilities, etc.), the
potential damage can be devastating (Li et al., 2022). To reduce the risks, early warning
and preventative actions are commonly applied (Romeo, 2000; Feng et al., 2021). Efficient
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early warning mechanisms that precisely measure future
deformation process in landslides are crucial for experts in assessing
impending landslide risks. Consequently, prediction of incoming
landslide movements is key in mitigating geological hazards
(Xu et al., 2016).

Publications related to landslide deformation prediction could
be classified into deterministic methods and probabilistic methods
based on the methodological perspective. In scholarly research,
considerable effort has been dedicated to exploring a range
of deterministic models for predicting landslide deformations
(Feng et al., 2022a; Li et al., 2023).Wang H. et al. (2023a) performed
landslide displacement prediction using on-site data based on
ARIMA model. Zhang et al. (2022) applied Bayesian approach to
optimize the hyper-parameters of Random Forest algorithm to
predict the deformation in reservoir landslides. Cemiloglu et al.
(2023) applied logistic regression algorithm to assess the probability
of landslide occurrences.Mao et al. (2024) explored severalmachine
learning algorithms to map the susceptibility of landslides in the
drainage basin. Nanehkaran et al. (2021) adopted a fuzzy-logic
based model to assess landslide susceptibility and discovered five
major factors including climate factors, geomorphology conditions,
tectonic structure, geological conditions, and human activities
are highly associated with the probability of having landslide
occurrence. Zhou et al. (2022) proposed a novel coupling method
to predict landslide deformation using extreme gradient boosting
integratedwithHodrick-Prescott filtering approach. Jiang and Chen
(2016) developed a generalized regression neural network with
k-fold cross validation to predict landslide deformation process
in the temporal domain. Zhang et al. (2019) used piecewise time
function to improve the regularization function of Elman Neural
Network (ENN) in sequential landslide displacement forecasting.
Jiang et al. (2020) chose support vector regression (SVR) algorithm
with optimal weight selection to forecast short-term landslide
deformation inThree Gorges Reservoir. Yang et al. (2022) proposed
using variational mode decomposition integrated with variational
autoencoder to perform short-term time series forecasting.
Wang et al. (2023b) applied a novel approach, namely, Autoformer
handling time-series prediction taskswhich demonstrated advanced
capability in extracting sequence correlation in the temporal
domain. Nevertheless, deterministic prediction methodologies
typically yield forecasts of future landslide deformations in the
form of specific spot values or mean values. This approach, while
useful, falls short in comprehensively capturing the inherent
uncertainties associated with landslide deformation, failing to
provide a full spectrum analysis of potential variability and risk
(Feng et al., 2022b).

In contrast, the exploration of probabilistic prediction methods
offers significant advantages, particularly in their ability to furnish
a more comprehensive statistical analysis. This enriched data scope
is immensely beneficial in addressing uncertainties within the
decision-making process, offering a more nuanced and informed
approach to evaluating potential outcomes and risks (Long et al.,
2021). Wang et al. (2019) used particle-swarm optimization (PSO)
algorithm to optimize the hyper-parameters of extreme learning
machine (ELM) in landslide probabilistic prediction tasks. Lian et al.
(2020) adopted a novel method, namely, lower upper bound
estimation (LUBE) to construct the probabilistic interval of
predicted landslide instant deformation. Gong et al. (2022) obtained

more realistic and reliable probabilistic landslide displacement
prediction outcome using least squares support vector machine
(LSSVM) to compute point prediction results. Then, the interval
prediction of the landslide displacement is made based on the dual-
outputs obtained from the LSSVM model. In the above discussed
literature, statistical characteristics including prediction intervals
(PIs) and quantiles are readily derivable from the probabilistic
outputs, typically presented in the form of a probability density
function (PDF). Meanwhile, predicting the probability density
function (PDF) of landslide deformation holds greater academic
value and warrants further research investment.

Recently, deep learning algorithms have contributed to the
unprecedented success of various engineering applications in sectors
including computer vision (CV), natural language processing (NLP),
and data generation. The most popular deep learning algorithms
include convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) when handling sequential dataset. Pei et al. (2021)
proposed using 1D CNN to extract temporal time-varying factors
in landslide deformation sequential dataset and use them in
future displacement prediction. Li et al. (2020) adopted deep belief
network to predict instant landslide deformation and constructed
exponentially weighted moving average control charts to capture
the step-like behavior in precipitation seasons. Azarafza et al. (2021)
applied CNN to predict the landslide susceptibility in the case study
area in Isfahan province, Iran. Nikoobakht et al. (2022) discovered
that CNN can produce outperformance in landslide susceptibility
mapping on GIS data in comparison with conventional machine
learning algorithms. Lin et al. (2022) explored long short-term
memory (LSTM) network architecture to be an effective approach
to extract temporal characteristics for landslide deformation time-
series data. Yang et al. (2023a) constructed a novel robust adaptive
rescaled neural network, which uses Incosh loss function, to
perform interval prediction of time-series data and demonstrated
outperformance in comparison with other approaches. Nava et al.
(2023) integrated LSTM with 1D convolution layer to predict
landslide deformation in multiple locations. The methodologies
described above are grounded in autoregression for predicting
landslide deformation.

In some recent literature, they also incorporated the deep-
learning algorithms with uncertainty quantification frameworks
that achieved promising results in future landslide deformation
prediction. A summary of the most recent probabilistic forecasting
of landslide deformation has been presented in Table 1 below.
Nevertheless, a commonly ignored important aspect is the
sufficient acknowledgement of the existence of additional triggering
factors—such as precipitation, seismic activity, and anthropogenic
interventions—that exhibit significant temporal correlations with
the deformation process. Incorporating these factors into the
predictive models could potentially enhance their performance
(Yang et al., 2023b).

In current model development efforts, a significant focus
is on understanding the temporal correlations within historical
landslide deformation data as well as the major triggering factors.
By grasping this temporal structure, the models aim to forecast
incoming instant deformation with precision, either in the
immediate next step or over several future steps. Applying deep
learning to landslide deformation prediction typically involves
two main components: temporal information extraction and
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TABLE 1 Discussion of most recent literature of probabilistic landslide deformation prediction.

Literature Algorithm Advantages Disadvantages

Chen et al. (2023) PRESN

• High generalization capacity • Increased training times due to additional
hyperparameters

• Robust to different kinds of noise • Highly depending on accurate noise assumption

Wang et al. (2023c) DES-BDNN

• Good uncertainty quantification • Less model interpretability

• High capacity in modeling linear and non-linear time-
series data

• Highly depending on the data quality

Wang et al. (2021) DES-VMD-LSTM • Robust to nonlinearity data and various noise
• Prone to overfitting

• Computationally expensive for training

Bai et al. (2022) VMD-LSTNet
• Enhanced prediction accuracy with hybrid approach

• Excessive number of hyper-parameters that
need tunning

• Effective feature selection process

forward prediction. The first component often utilizes an encoder
network (such as CNN or LSTM) or a symmetric encoder-decoder
network (like an Autoencoder) to condense complex precipitation
sequence data into low-dimensional latent vectors. These vectors
act as a ‘DNA’ for the sequence data, capturing its essential
characteristics. The second component, forward prediction,
leverages these latent vectors as inputs in a neural network
algorithm to forecast imminent landslide deformations. Previous
studies suggest that these latent vectors, containing compressed
information, often yield enhanced predictive performance and
greater generalizability. Therefore, effectively and accurately
compressing temporal landslide deformation information is crucial
and warrants further research.

Thus, in this paper, we introduce a new generative method
for forecasting future landslide deformations. Our proposed
architecture comprises two primary components: 1. Variational
Autoencoder with Gated Recurrent Units (VAE-GRU): This
symmetric network acts as a variational encoder-decoder. The
encoder, denoted as q∅(zT−1|pT−1) compresses the historical
precipitation data pT−1 = (p1,p2,p3,…,pT−1) into a central
latent vector zT−1 = (z1,z2,z3,…,zT−1). Conversely, the decoder,
pθ(p̂T−1|zT−1) projects this latent vector back to the original input
size, resulting in the reconstructed precipitation output p̂T−1 =
(p̂1, p̂2, p̂3,…, p̂T−1). The network is trained until the error between
pT−1 and p̂T−1 converges; 2. Generator Network gθ(d̂T |zT−1):
This network constructs a mapping from the variational latent
vector zT−1 to the upcoming landslide deformation series dT =
(d1,d2,d3,…,dT), thereby predicting the next instantaneous
deformation dT. To achieve this, we introduce an enhanced
objective function designed to maximize the timestep-wise
conditional likelihood of p(dT|pT−1), optimizing the variational
lower bound of the log likelihood for the entire landslide
deformation sequence.

This study’s key advancements and contributions are as follows:

(1) Contrasting with conventional probabilistic prediction
methods, this study introduces a unique generative model for

probabilistic forecasting of immediate landslide deformations
with quantified uncertainties.

(2) This research shifts from traditional point estimation to a novel
objective function, aimed at maximizing the variational lower
bound of the conditional likelihood for the predicted target.

(3) Compared to current SOTA probabilistic prediction
techniques, our approach demonstrates enhanced predictive
accuracy across various measurement metrics.

This article is organized as follows: Section 2 presents the geo-
environmental context of our study area, along with details on
data collection. Section 3 elaborates on the methods employed
in this research, including a discussion on SOTA probabilistic
prediction algorithms. In Section 4, we conduct case studies and
analyze computational results using field datasets. Finally, Section 5
concludes the research findings.

2 Field investigation

This section introduces our case study region in terms of the
regional geologic setting, topography and geomorphology details, as
well as the triggering factors.

2.1 Regional geologic setting

Our case study region is located within the territory of Lebu
Village, Bagu Township, Meigu County, Liangshan Prefecture, in
Sichuan Province, China. Multiple shallow landslides are observed
and monitored in this region. Field engineers have performed
drilling on the landslide body for on-site investigation and data
collection.

According to the on-site investigation, the landslides in this
study region has an average thickness of 26 m which the majority
of the thickness varies between 11 and 35.25 m. In the trailing
edge, the average width is 30 m and the elevation is 1,930 m. In the
leading edge, the average width is 360 m and the average elevation
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FIGURE 1
Drilled samples collected from on-site investigation.

is 1,740 m. Meanwhile, the average slide body is 3.2 million cubic
meters and the majority of them are classified as huge landslide.The
pictures of drilled samples from on-site investigation by drilling into
the landslide body has been illustrated in Figure 1 respectively.

2.2 Topography and geomorphology

The landslides in this study region are all shallow landslides as
the slide surfaces are all within the top-soil layer along the boundary
of soil-bedrock boundary. The exposed bedrock is consisted of
sandstone formation, cataclastic fault rocks, and breccias. Thus,
it can be classified as Triassic Upper Xujiahe Formation and is
relatively stable.

The slide surface soil layer is 20–30 mm thick and includes
multiple fractured weathered silty mudstones. It has high moisture
content and upper plastic limit. The breccias all have the same
orientation. Scratches are formed and shiny mirror-like planes can
be observed.The slide bodymainly contains siltstone with little clay,
as well as gravel mixed with sandstone. The majority of the rocks in
the slide body are sandstones with few bedrocks longer than 10 m.
Thus, 70%–80%of the slide body is gravel and the remaining portion
is gravel–silty clay.

All landslide slops are facing the river and are fan-shaped with
relatively flat body. The trailing edge is attached with the steep
slope of the mountains. The slide body in the leading edge is sank
within the Meigu River. The average slide body is lower than the
surroundings by 1–3 m on average. Human activities are heavily
integrated with the slide body at current stage. Many local residents
chose relative flat spot to build their homes over the slide body.
Besides, the village community center and the community daycare
center are both constructed on the slide body slop. Except these
infrastructures, the rest of the slide slops are converted into terraced

farm fields planted with fruit trees including apple trees, peach trees,
and cherry trees.

2.3 Triggering factors

There are three major factors that triggered the landslide
occurrences in this region: the seasonal heavy precipitation, the
fragile geological structure of interbedded sandstone andmudstone,
and the fault activity.

To begin with, the seasonal heavy precipitation is the leading
triggering factor for the shallow landslides in the study region.
The landslide mass above the slip zone has good permeability,
allowing substantial rainfall to infiltrate through the surface into the
landslide body.On one hand, the rise in riverwater levels reduces the
hydraulic gradient inside the landslidemass, significantly decreasing
the discharge of groundwater within it and causing prolonged
water retention, which increases the landslide mass’s weight and
downslope force. On the other hand, the relatively impermeable
nature of themudstone layers causes water accumulation, increasing
the water content of the mudstone and inevitably reducing the
strength of potential sliding surfaces, thereby decreasing the
resisting force. Therefore, under the influence of rainfall, the
equilibrium within the landslide mass is disturbed, triggering the
landslide. Hence, concentrated rainfall is identified as the primary
inducing factor for the occurrence of the landslide.

Second, the landslide area’s geological structure is fragile,
consisting of interbedded sandstone and mudstone layers, which
include carbonaceous shale. Due to the mudstone and shale
acting as relatively impermeable layers and sandstone as a
relatively permeable layer, significant rainfall penetrates through
the overburden and sandstone, discharging along the mudstone
layers. However, limited discharge points cause some groundwater
to stagnate within the mudstone layers. Under the significant
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overburden pressure, intense hydro-rock interactions occur, leading
to mudstone becoming muddy, greatly reducing rock strength and
forming potential slip surfaces. The geological characteristics of
alternating sandstone and mudstone layers (hard-soft-hard) make
it a typical landslide-prone stratum. Additionally, the area’s fragile
geological structure, combined with its mid-mountain terrain,
allows rivers to easily erode and widen valleys, providing free faces
and space for landslides.The landslides have formed a relative height
difference of about 190 m and an average slope of 16.5°, providing
sufficient gravitational potential energy for movement.

In addition, the fault activity is a controlling factor in landslides.
It explains that fault movement influences the evolution of the slope
structure. The intense vertical seismic acceleration caused by fault
activity leads to separation along the relatively weak interlayer fault
zones in the slope, creating a vertical tamping effect. This tamping
effect further fractures the landslide rock mass and is accompanied
by an expansion effect of the slip zone, resulting in a high degree
of rock fragmentation and poor geo-mechanical properties. In the
slope where the landslide occurred, the lower and middle parts are
parallel to the valley andhave a fault with a developed powdered rock
zone, acting as a water barrier. The barrier effect of the fault causes
the groundwater level in the bedrock of the slope to rise, softening
the slope body and potentially playing a significant role in the
formation and development of the landslide. Current drilling reveals
that the bedrock groundwater is abundant, with some boreholes
showing artesian water, further illustrating this point.

3 The proposed method

In the context of forecasting deformations, historical
precipitation data emerges as a pivotal input due to its significant
role as a primary trigger for landslide occurrences. In this
research, the proposed VAE-GRU model capitalizes on the
sequential nature of precipitation data, facilitating the extraction
of temporal dependencies between rainfall patterns and landslide
movements. This approach not only enhances the predictive
accuracy of landslide forecasting models but also contributes
to the advancement of early warning systems by providing a
probabilistic understanding of landslide deformations in response to
varying precipitation scenarios. Consequently, leveraging historical
precipitation data within a VAE-GRU framework represents
a critical methodological advancement in geotechnical risk
management and mitigation efforts.

This section presents an innovative probabilistic prediction
method using a Variational Autoencoder combined with Gated
Recurrent Unit (VAE-GRU) to forecast landslide deformations
from a generative standpoint. Our methodology involves a dual-
component strategy: initially, we focus on enhancing the VAE-
GRU model to optimize the variational lower bound concerning
the likelihood of historical precipitation. Subsequently, we use the
approximated posterior distribution, as derived from this model, to
foresee impending deformations through a generative perspective.
Themain aim of this implementation is to extract accurate temporal
dependency structure between the historic precipitation and the
incoming instant deformation. A flow chart that illustrates the
computational flow of the proposed approach has been shown in
Figure 2 below.

3.1 Gated recurrent unit

The Gated Recurrent Unit (GRU) is a popular algorithm for
sequential datamodeling. It has been widely applied inmany sectors
including traffic prediction, renewable energy systems,meteorology,
and financial market (Niu et al., 2023). The architecture of a GRU
unit has been illustrated in Figure 3 as follows.

According to Figure 2, there are two gates included in the
GRU unit: the update gate ut and the reset gate rt. With a given
precipitation sequence pt = (p1,p2,p3,…,pt) and the hidden state of
the previous step ht−1, it can compute the update gate ut following
Eq. 1 below. In addition, the reset gate rt can be computed using
precipitation sequence pt and previous hidden state ht−1 following
Eq. 2 respectively:

ut = sigmoid(Wupt +Vuht−1 + bu) (1)

rt = sigmoid(W rpt +V rht−1 + br) (2)

Where Wu and Vu denote the update gate weights; bu denotes the
update gate bias;W r and V r denote the reset gate weight; br denotes
the reset gate bias; and sigmoid() represents the sigmoid function.

Based on computed rt, an update candidate vector h̃t can be
derived from Eq. 3 as follows:

h̃t = tanh(W ̃hrt +V ̃h(rt ⊗ ht−1) + b ̃h) (3)

Where W ̃h and V ̃h represents the update candidate weights; b ̃h
denotes the update candidate bias; tanh() is the hyperbolic tangent
function; ⊗ is the Kronecker product of two matrixes; and h̃t is the
update candidate value. Finally, for a GRU unit, the output hidden
state ht can be computed as Eq. 4:

ht = ut ⊙ ht−1 + (1− ut) ⊙ h̃t (4)

Where ⊙ denotes the element-wise product of two matrixes
respectively.

3.2 VAE-GRU

Variational autoencoder (VAE) is a powerful deep-learning
generative architecture that has been widely used to compress high-
dimensional complex data into lower-dimensional latent space. It is
considered as an expansion of the conventional autoencoder (AE)
architecture (Park et al., 2018; Li, 2022a; 2022b) which also learns
patterns in an unsupervised manner.

In a conventional AE, the encoder network compresses the high-
dimensional data into a latent vector within reduced dimensionality.
Subsequently, the decoder network uses the latent vector to generate
the reconstructed output that has the same dimensionality as the
input high-dimensional data. This process performed within the
conventional AE is deterministic whichmeans themapping between
input and output is certain and unique (Papadopoulos and Karalis,
2023). In comparison, the VAE construct a probability distribution
across all dimensions of the encoded latent vector each represented
by the mean and standard deviation of a Gaussian distribution.
This probabilistic nature permits random sampling within the latent
space, a critical feature that enables the decoder to generate novel

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2024.1394129
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Cai et al. 10.3389/feart.2024.1394129

FIGURE 2
Computational flow of the proposed VAE-GRU model.

FIGURE 3
The architecture of a GRU unit.

data from the sampled outputs, thus enhancing the model’s utility
for various generative tasks.

In this research, we introduce a novel architecture Variational
Autoencoder (VAE) combined with Gated Recurrent Unit (GRU)
namely, VAE-GRU to learn the temporal dependency structure
of the precipitation–the leading triggering factor of landslide
deformation. As displayed in Figure 4 (a), it adopts a similar
encoder-decoder symmetric structure by replacing the feed-forward
network in a VAE with GRU units. In other words, the GRU

units assume the role of traditional neurons (or perceptrons)
within both the encoder and decoder networks, processing the
input information. The encoder uses GRUs to process the input
sequence in order to learn its temporal dependencies and encoding
it into a latent vector in the center, which, in a standard VAE,
would be a fixed vector. This latent vector is then sampled using
the reparameterization trick typical of VAEs, ensuring that the
model can be trained end-to-end with defined loss function by
approximating the posterior distribution. The decoder takes this
sampled latent vector to reconstruct the original sequence by
predicting the next element in the sequence at each time step.
Therefore, it generates sequences that retain the temporal dynamics
of the input data.

In detail, In the encoder network, given a historic precipitation
sequence pT−1 = (p1,p2,p3,…,pT−1), the encoder network
approximates the posterior qe∅(zT−1|pT−1) by feeding the GRU’s
output het into Eqs 5–8 as follows:

h̃et = tanh(W
e
̃h
ret +V

e
̃h
(ret ⊗ h

e
t−1) + b

e
̃h
) (5)

het = u
e
t ⊙ h

e
t−1 + (1− u

e
t) ⊙ h̃

e
t (6)

μz =W
e
μh

e
t + b

e
μ (7)

σ2
z = exp(W

e
σ2h

e
t + b

e
σ2) (8)

Where the posterior distribution qe∅(zT−1|pT−1) ∼N (μz,σ
2
z) and μz

and σ2
z represents the mean and variance; We

̃h
, V e
̃h
, Wμ and Wσ2

denote the weights in the encoder network; h̃et denotes the update
candidate value in the encoder network; het denotes output hidden
state in the encoder network; bμ and bσ2 denote the bias; and exp()
is the exponential function. Here, random sampling is performed
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FIGURE 4
Overview of the proposed generative probabilistic deformation prediction framework.

from the posterior distribution to generate the latent vector zT−1 =
μz + σz ∙ ϵz to be used by the decoder network subsequently.

In the decoder network, the latent variable is updated following
Eqs 9–12 below:

h̃dt = tanh(W
d
̃h
zT−1 +V

d
̃h
(rdt ⊗ h

d
t−1) + b

d
̃h
) (9)

hdt = u
d
t ⊙ h

d
t−1 + (1− u

d
t ) ⊙ h̃

d
t (10)

μp̂T−1 =W
d
μh

d
t + b

d
μ (11)

σ2
p̂T−1
= exp(Wd

σ2h
d
t + b

d
σ2) (12)

Where h̃dt denotes the update candidate value in the encoder
network; hdt denotes output hidden state in the encoder network;
and bdμ and bdσ2 denote the bias. Then, it can derive the parameters
of the probability of the reconstructed precipitation sequence p̂T−1
following Eq. 13:

p̂T−1 = p
d
θ(p̂T−1|zT−1) ∼N(μp̂T−1 ,σ

2
p̂T−1
) (13)

Where pdθ(p̂T−1|zT−1) denotes the conditional posterior
distribution based on zT−1 to estimate the reconstructed historic
precipitation series.

In sum, the VAE-GRU architecture introduces an approximate
posterior qe∅(zT−1|pT−1) of the central latent space. To train it, the
computational goal is to optimize the variational lower bound of the
marginal likelihood and the observation LGRU−VAE as in (14):

LGRU−VAE = −DKL(q
e
∅(zT−1|pT−1)p

d
θ(zT−1))

+ 𝔼qe∅(zT−1|pT−1)
[log pdθ(p̂T−1|zT−1)] (14)

Where DKL denotes the Kullback-Leibler (KL) divergence between
the posterior distributions generated from the encoder network and
the prior distribution.

3.3 Generative probabilistic displacement
prediction framework

Given the constructed VAE-GRU framework, in this research,
it proposes a displacement prediction framework to forecast
the incoming instant landslide deformation. The graphical
representation of this framework is illustrated in Figure 4 below.

According to Figure 4, this framework contains two elements.
In the first elements, a VAE-GRU has been trained to learn the
latent representations of the historic precipitation sequence. The
trained VAE-GRU has sufficiently learned the temporal dependency
structure within the precipitation sequence and compressed a
rich set of information within the central latent vector zT−1.
Thus, in the second elements, we replace the pre-trained decoder
network pdθ() with a generator network gθ() to predict the incoming
deformation sequence d̂T using the central latent vector zT−1. Thus,
the optimization objective of the generator network in the second
prediction elements could be formulated as Eq. 15 as follows:

LGenerator =∑
T
t=1
𝔼qe∅(zT−1|pT−1)

[ log gθ(d̂T|zT−1) (15)

3.4 Improved optimization objective

This study encompasses two primary training components,
as illustrated in Figure 4. Therefore, the formulation of a
comprehensive optimization objective is essential to achieving
adequate prediction performance. Traditionally, most research
employs a straightforward addition of the reconstruction loss
(Eq. 14) and the prediction loss (Eq. 15) to constitute the overall
objective function for optimization. However, this method of simple
summation encounters several limitations: Firstly, in the absence of
a hyperparameter tomediate between the two terms, themodel risks
disproportionately emphasizing one aspect—either reconstruction
or prediction—to the detriment of the other. Secondly, the lack of a
hyperparameter diminishes the model’s ability to tailor its learning
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focus to the specific demands of the task at hand. Furthermore,
a model calibrated without an appropriate equilibrium between
reconstruction and prediction may exhibit poor generalization
to new data. Additionally, varying datasets or distinct segments
within a dataset may necessitate different equilibriums between
reconstruction and prediction for optimal performance. Lastly, the
absence of a hyperparameter to adjust this balance renders the
training process less flexible and may prevent convergence to the
most optimal solutions.

Here, in order to allow for a more controlled and potentially
more effective training process, it proposes an improved version of
the objective function as Eq. 16:

LOverall = −DKL(q
e
∅(zT−1|pT−1)p

d
θ(zT−1))

+ 𝔼qe∅(zT−1|pT−1)
[log pdθ(p̂T−1|zT−1)]

+ λ
T

∑
t=1
𝔼qe∅(zT−1|pT−1)

[ log gθ(d̂T|zT−1) (16)

Where λ denotes the regularization hyperparameter that determines
the balance between the reconstruction loss and the prediction loss.

3.5 SOTA methods

To showcase the superior predictive capabilities of the proposed
VAE-GRU probabilistic prediction framework, this study conducts
a comparative analysis against three widely recognized state-of-
the-art (SOTA) methods: Extreme Learning Machine with Lower
Upper BoundEstimation (ELM-LUBE), Conditional KernelDensity
Estimation with Nonparametric Regression Calibration (CKDE-
NRC), and Variational Autoencoder integrated with Long Short-
Term Memory (VAE-LSTM) units.

ELM-LUBE (Long et al., 2022): The ELM-LUBE is a popular
interval-based probabilistic prediction framework that has been
widely applied in time-series prediction tasks. This framework is
a sophisticated predictive modeling technique that combines the
rapid training capabilities of Extreme Learning Machines (ELM)
with the robust interval prediction framework of Lower Upper
BoundEstimation (LUBE). ELM’s rapid training is achieved through
fixed input weights and analytically determined output weights,
making it suitable for large-scale problems. LUBE adds value by
generating prediction intervals that quantify uncertainty, estimating
bounds to encapsulate the true value with a specific probability.This
integration offers a fast and accurate tool for predictive modeling,
balancing speed with uncertainty quantification.

CKDE-NRC (Jiang et al., 2019): The CKDE-NRC embodies
a sophisticated statistical framework designed for enhanced
predictive modeling, particularly in capturing the nuanced
conditional distributions of target variables. Given a set of
historic discrete precipitation series pT−1 = (p1,p2,…,pT−1) and
the landslide deformation series dT = (d1,d2,d3,…,dT), the L-step
forward prediction for the landslide deformation series based on
d-dimensional input series can be formulated as Eq. 17:

[[[[

[

x1
⋮

xN

]]]]

]

=
[[[[

[

p1 ⋯ pd
⋮ ⋮ ⋮

pN ⋯ pn−L

]]]]

]

;
[[[[

[

y1
⋮

yN

]]]]

]

=
[[[[

[

dd+L
⋮

dn

]]]]

]

(17)

Where the collections of xt (t = 1,2,…,N) are d-dimensional
explanatory variables; and yt (t = 1,2,…,N) are target variables.
Then, the multi-dimensional kernel density estimation of the
random vector zt = (xt,yt) containing the explanatory and target
variables can be regarded as Eq. 18:

f(x,y) = 1
N|Hz|
∑N

t=1
Kd+1[(H−1z (z − zt))] (18)

Where Hz is the symmetric and positive definite bandwidth matrix
for controlling the quality of an estimated distribution.

For the prediction target, the conditional distribution of target
variable y on the explanatory variable x can be formulated as
Eqs 19, 20:

f(y|x) = ∑N
t=1

{
{
{
wt(x) ∙

1
|Hy|
∙K[(H−1y (y − yt))]

}
}
}

(19)

wt(x) =
Kd[(H−1x (x − xt))]

∑N
t=1

Kd[(H−1x (x − xt))]
(20)

Where wt(x) are weights. Then, we can easily obtain the estimated
mean ŷn+L and variance σ̂2

n+L for any L-step ahead prediction as
Eqs 21, 22 which can be used for constructing the PDF for the
probabilistic prediction.

ŷn+L =∑
N
t=1

wt(xt) ∙ yt (21)

σ̂2
n+L = |Hy|

2σ2
K +∑

N
t=1

wt(xt) ∙ |yt − ŷn+L|
2 (22)

VAE-LSTM (Han et al., 2021): The VAE-LSTM model merges
the generative capabilities of Variational Autoencoders (VAEs)
with the sequential data proficiency of Long Short-Term Memory
(LSTM) networks. VAEs encode data into a latent space, allowing
for the generation of new, similar data through decoding,
guided by a loss function that combines reconstruction accuracy
and latent space regularization. LSTMs enhance this model by
effectively capturing temporal dependencies in data, overcoming the
limitations of traditional recurrent neural networks through their
specialized architecture. This integration makes VAE-LSTM highly
effective for tasks like time-series forecasting and natural language
processing, providing a sophisticated approach for analyzing and
generating sequential data. The VAE-LSTM framework stands
out for its ability to handle complex sequences, offering advanced
insights and predictions with improved accuracy.

3.6 Performance evaluation metrices

In the context of probabilistic prediction, key metrics such as
Prediction Interval Coverage Probability (PICP) (Eq. 23), Prediction
Interval Normalized Average Width (PINAW) (Eq. 24), Coverage
Width-based Criterion (CWC) (Eq. 25), and Prediction Interval
Normalized Root Mean Square Width (PINRW) (Eq. 26) play a
pivotal role in assessing the quality and reliability of prediction
intervals (PIs):

PICP = 1
N
∑N

i=1
I(di ∈ [Li,Ui]) (23)

PINAW = 1
N(dmax − dmin)

∑N
i=1
(Li −Ui) (24)
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CWC = PINAW× (1+ exp (−k(PICP− τ))) (25)

PINRW =
√ 1

N
∑N

i=1
(Li −Ui)

2

dmax − dmin
(26)

where N is the number of observations; di is the i-th actual
deformation; Li&Ui are lower and upper bounds of the
prediction interval for the i-th deformation; I is the indication
function indicating whether the actual deformation is in
between the two bounds; dmax&dmin denotes the maximum and
minimum of the observed deformation within sequence; k is
the scaling factor; and τ is the desired coverage probability level
respectively.

In sum, PICP measures the proportion of actual outcomes that
fall within the predicted intervals, evaluating the interval’s coverage
accuracy directly. PINAW evaluates the normalized average width
of the prediction intervals, providing insight into the precision and
usefulness of the intervals in practical applications. Meanwhile,
PINRW offers a normalized measure of the root mean square width
of the prediction intervals, serving as an indicator of the intervals’
consistency and reliability across different scales of data. In sum,
both PINAW and PINRW provides assessment of the interval width
in a normalized manner, ensuring that the intervals are neither
too wide nor too narrow. Lastly, CWC combines both the coverage
probability and the interval width into a single metric, offering a
balanced evaluation of prediction interval quality.Themetrics PICP,
PINAW, CWC, and PINRW are pivotal in evaluating probabilistic
prediction tasks, offering a comprehensive evaluation of both the
accuracy and reliability of prediction intervals through measures of
coverage, efficiency, and a balanced assessment of interval quality.
The selection of these metrices also ensures that the prediction
intervals are both accurate in coverage and optimally sized for
decision-making purposes.

4 Experiments and analyses

4.1 Data collection

In order to authenticate the efficacy of the proposed VAE-
GRUprobabilistic deformation prediction framework, experimental
verification is carried out utilizing themonitored deformation series
collected from our case study area in Lebu Village, Bagu Township,
Meigu County, Liangshan Prefecture, in Sichuan Province, China.
A typical case study location with 5 GNSS (Global Navigation
Satellite System) monitoring points is selected in this study
as it is very close to the roads. Deformation data as well as
precipitation are collected on daily basis between May 2010 and
February 2023.

According to Figure 5, it presents the geographical layout of
the GNSS monitoring array superimposed on the topography of
the landslide-prone region. The monitoring system comprises five
strategically positioned GNSS stations, labeled GNSS6-4 through
GNSS6-8, delineating the boundaries of the observed landslide. The
red outline encapsulates the unstable land mass, highlighting the
area under scrutiny. The GNSS stations are distributed to cover
the breadth of the landslide, offering a comprehensive network
for real-time tracking of surface displacements. This configuration

FIGURE 5
Configuration of GNSS monitoring stations over the case
study location.

facilitates a multi-point data collection approach that ensures
spatial variability within the landslide body is captured, thereby
enhancing the predictive modeling of the landslide’s behavior.
The surrounding terrain, visibly dissected by transportation routes
and interspersed with vegetation, underscores the landslide’s
potential impact on the infrastructure and local ecosystems. The
scale provided in the upper right corner of the image asserts
the spatial dimensions of the monitoring setup, essential for
interpreting the GNSS data in the context of the site’s geospatial
attributes.

4.2 Training the framework

In the exploration of predictive accuracy for landslide
deformation time-series, the Forward Chaining method, also
known as Walk-Forward Validation, emerges as a pivotal
strategy for temporal data analysis. This approach is particularly
advantageous in scenarios where the objective is to forecast
future events based on historical data, as it meticulously
simulates a real-world operational environment for model
training and evaluation. In the context of landslide deformation
prediction, Forward Chaining begins by segmenting the time-
series data into multiple sequential training-validation sets,
ensuring that each set respects the chronological integrity
of the data.

Initially, the dataset is divided into three distinct segments: a
training/validation dataset (70%), and a testing dataset (30%). The
training dataset comprises the earliest observations, serving as the
foundation upon which the initial model is built. Subsequently, the
validation dataset, which immediately follows the training dataset
in time, is utilized to evaluate the model’s predictive performance
and to fine-tune model parameters. This process iterates, with
the training set expanding to include the data points immediately
preceding the current validation set, thereby incorporating more
recent observations into themodel training process.The final model
is then assessed on a separate testing dataset, which has been
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TABLE 2 Impact of regularization parameter on loss functions across all monitoring stations.

Monitoring station
Regularization parameter

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9

GNSS 6-4 2.51 1.84 1.05 0.83 0.52 0.37 0.31 0.40 0.49

GNSS 6-5 2.73 1.91 1.09 0.89 0.58 0.43 0.33 0.41 0.51

GNSS 6-6 2.39 1.82 1.03 0.79 0.51 0.39 0.30 0.41 0.49

GNSS 6-7 2.85 2.07 1.12 0.85 0.55 0.41 0.34 0.42 0.51

GNSS 6-8 2.97 2.29 1.17 0.92 0.60 0.44 0.35 0.45 0.57

held back from the training and validation phases to serve as an
unbiased benchmark for the model’s predictive capability on future,
unseen data.

In the training procedures, selecting the appropriate
regularization parameter significantly impacts the overall quality
of the framework’s training. Table 2 provides a summary of the
average loss values in relation to the selection of λ as defined
in Eq. 16, which represents the regularization hyperparameter
that balances the reconstruction loss and the prediction loss.
The evaluation spans a range of regularization parameter values
from 0.1 to 0.9. The loss function values, serving as indicators
of the model’s predictive accuracy and generalization capability,
are detailed for each combination of monitoring station and λ
setting. According to Table 1, for all monitoring stations, it shows
a decreasing trend in loss as λ increases from 0.1 to 0.7. With a
slight increase observed at higher λ values (e.g., λ>0.7), suggesting
a potential over-regularization effect. Overall, setting λ = 0.7
yields the lowest loss values for sequence data from all monitoring
stations, hence optimizing the trade-off between model complexity
and performance.

In Figure 6 below, it presents the training dynamics of
the entire framework over 2000 epochs, as evidenced by the
improved loss function (see Eq. 16) for both training and validation
datasets. In each subplot, the black line represents the loss
on the training set, while the red line indicates the loss on
the test set. Initially, both training and test losses exhibit a
sharp decline, suggesting rapid learning of the model. This
steep descent in the early epochs indicates that the proposed
framework is effectively minimizing the difference between the
learned distribution and the target distribution. As the epochs
progress, the rate of decline in loss tapers, entering a phase of
more gradual reduction which points to the stabilization of the
learning process.

In each subplot, the VAE-GRU’s training loss fluctuates
more than the test loss, likely due to the training data’s varied
nature. The test loss’s steadier decline suggests good model
generalization to new data. Importantly, the close tracking of
test loss to training loss without a notable divergence indicates
an absence of overfitting, underscoring the model’s consistent
and stable performance across both training and validation
sets—a key feature for landslide deformation prediction tasks.
This uniformity across plots demonstrates the VAE-GRU’s

capacity to learn a generalizable model applicable to various
data scenarios.

4.3 Model validation and optimal PI
construction

Constructing the prediction interval with appropriate
bandwidth is critical for the probabilistic prediction performance,
as it strikes a balance between precision and reliability.
Figure 7 below shows the concepts of constructing a prediction
interval based on different percentiles from a predicted PDF.
This graphical representation underscores the significance of
selecting an appropriate prediction interval bandwidth to ensure
reliable and accurate predictions. The shaded areas represent
the bounds within which future observations are expected to
fall, with varying degrees of confidence. A narrower interval,
corresponding to a higher peak in the PDF, indicates greater
confidence in a smaller range of outcomes, while a wider interval
suggests less certainty and accommodates a broader range of
possible observations.

To obtain the optimal selection of prediction interval bandwidth,
numerical experiments are conducted for evaluation. Table 3
succinctly summarizes the optimization of bandwidth selection
using the criterion of PINAW. The PINAW metric provides a
quantitative measure to determine the most suitable bandwidth
that balances the precision and the reliability of the prediction
intervals. In the context of the GNSS monitoring stations evaluated,
the table lists the PINAW values for various confidence intervals
(CI), specifically 50%, 70%, and 90%. The lower the PINAW
value, the more optimal the bandwidth selection for that particular
confidence interval.

The data presented in Table 3 elucidates the inverse relationship
between the PINAW and the corresponding confidence interval.
As the confidence level escalates, the PINAW concomitantly
diminishes, indicating a more concise and precise prediction
interval. This correlation underscores the criticality of optimal
bandwidth selection, which is contingent on balancing the
precision of the interval against the confidence level. Smaller
PINAWs are deemed superior for applications necessitating
high precision. The 90% confidence interval, which registers
the smallest PINAW, is thus identified as the optimal solution
for the construction of bandwidth. This methodical strategy

Frontiers in Earth Science 10 frontiersin.org

https://doi.org/10.3389/feart.2024.1394129
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Cai et al. 10.3389/feart.2024.1394129

FIGURE 6
Training dynamics of the proposed framework for landslide deformation prediction.

FIGURE 7
Selection of prediction interval bandwidth based on predictive
distribution percentiles.

for selecting bandwidth is imperative for augmenting the
robustness and precision of predictive models utilized in
GNSS monitoring data analysis. A summary of the validation
performance using the constructed PI has been presented in Table 4
respectively. The parameter setting of the proposed VAE-GRU
and other SOTA methods has been presented in Table A1 in the
Appendix A Section.

4.4 Deformation prediction performance
analysis

Using the 90% confidence interval, we computed PICP (see
Table 5), PINAW (see Table 6), CWC (see Table 7) and PINRW
(see Table 8) as prediction performance measurement metrices
for performance evaluation. Also, we computed these metrices
for the SOTA methods including ELM-LUBE, CKDE-NRC, and
VAE-LSTM for comparative analysis. In addition, Table 9 presents
the statistical tests results demonstrating the significance of the
computational results.

Table 5 presents the PICP for all tested algorithms
applied to time-series landslide deformation data from GNSS
monitoring stations. Notably, the proposed VAE-GRU algorithm
demonstrated the highest PICP across all stations, indicating
superior performance in capturing the uncertainty of landslide
deformation predictions. Table 6 summarizes the PINAW for
several algorithms analyzing time-series landslide deformation
data from GNSS monitoring stations. The VAE-GRU algorithm
achieved the lowest PINAW values across all stations, signifying
its efficiency in generating narrower, yet accurate, prediction
intervals, which is crucial for precise uncertainty quantification
in landslide deformation predictions. Moreover, Table 7 provides
a comparison of the CWC for different algorithms applied to
time-series landslide deformation data across various GNSS
monitoring stations. The VAE-GRU algorithm exhibits the lowest
CWC values across the board, highlighting its effectiveness
in balancing interval width and coverage probability, thus
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TABLE 3 Determination of optimal bandwidth via PINAW for all monitoring stations.

Bandwith
Monitoring station (PINAW)

GNSS 6-4 GNSS 6-5 GNSS 6-6 GNSS 6-7 GNSS 6-8

50% CI 0.14 0.18 0.19 0.15 0.14

70% CI 0.10 0.12 0.13 0.09 0.11

90% CI 0.05 0.07 0.06 0.04 0.07

TABLE 4 Validation performance summary of the proposed VAE-GRU method.

Metrics
Monitoring station

GNSS 6-4 GNSS 6-5 GNSS 6-6 GNSS 6-7 GNSS 6-8

PICP 0.95 0.97 0.92 0.95 0.91

PINAW 0.03 0.08 0.05 0.01 0.04

CWC 0.04 0.08 0.06 0.02 0.03

PINRW 0.05 0.07 0.06 0.04 0.07

TABLE 5 Performance comparison of all tested algorithms on PICP.

Algorithm
Monitoring station

GNSS 6-4 GNSS 6-5 GNSS 6-6 GNSS 6-7 GNSS 6-8

ELM-LUBE 0.80 0.85 0.81 0.82 0.80

CKDE-NRC 0.84 0.87 0.84 0.85 0.83

VAE-LSTM 0.88 0.89 0.88 0.87 0.89

VAE-GRU 0.91 0.94 0.89 0.93 0.90

TABLE 6 Performance comparison of all tested algorithms on PINAW.

Algorithm
Monitoring station

GNSS 6-4 GNSS 6-5 GNSS 6-6 GNSS 6-7 GNSS 6-8

ELM-LUBE 0.22 0.26 0.20 0.17 0.24

CKDE-NRC 0.15 0.15 0.15 0.12 0.17

VAE-LSTM 0.10 0.11 0.08 0.06 0.12

VAE-GRU 0.05 0.07 0.06 0.04 0.07

offering the most efficient probabilistic predictions for landslide
deformations. In addition, Table 8 illustrates the PINRW for
various algorithms on time-series landslide deformation data
from GNSS monitoring stations, with the VAE-GRU algorithm
showing the lowest PINRW values, indicating its superior
performance in generating precise and narrow prediction intervals.

Table 9 presents the DM test results of the proposed VAE-
GRU compared with the SOTA algorithms tested. According
to the DM test statistic and p-value, it can be inferred that
for the 5 GNSS monitoring stations’ dataset, the proposed
VAE-GRU significantly outperforms the other SOTA models.
Overall, computational results demonstrated the superior
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TABLE 7 Performance comparison of all tested algorithms on CWC.

Algorithm
Monitoring station

GNSS 6-4 GNSS 6-5 GNSS 6-6 GNSS 6-7 GNSS 6-8

ELM-LUBE 0.20 0.27 0.24 0.21 0.25

CKDE-NRC 0.12 0.13 0.15 0.12 0.13

VAE-LSTM 0.08 0.10 0.09 0.09 0.08

VAE-GRU 0.05 0.07 0.07 0.05 0.06

TABLE 8 Performance comparison of all tested algorithms on PINRW.

Algorithm
Monitoring station

GNSS 6-4 GNSS 6-5 GNSS 6-6 GNSS 6-7 GNSS 6-8

ELM-LUBE 0.24 0.28 0.33 0.31 0.29

CKDE-NRC 0.15 0.19 0.20 0.21 0.20

VAE-LSTM 0.13 0.15 0.18 0.16 0.17

VAE-GRU 0.08 0.11 0.13 0.10 0.12

TABLE 9 DM Test results of VAE-GRU compared with SOTA algorithms.

Metrics
SOTA algorithms

Statistics ELM-LUBE CKDE-NRC VAE-LSTM

GNSS 6-4
DM 6.23 5.37 2.55

p-value 7∗ 10−4 10–3 0.04

GNSS 6-5
DM 8.01 7.75 4.68

p-value 2∗ 10−4 2∗ 10−4 3∗ 10−3

GNSS 6-6
DM 7.15 5.92 3.34

p-value 4∗ 10−4 10–3 0.02

GNSS 6-7
DM 6.64 5.85 2.95

p-value 5∗ 10−4 10–3 0.03

GNSS 6-8
DM 7.79 4.82 3.01

p-value 2∗ 10−4 3∗ 10−3 0.02

Note: DM, Test (Diebold-Mariano) test is a hypothesis test that is designed to test whether the accuracies of wo models are truly different after selecting the confidence level. Computational
details can by found in Tang et al. (2021).

prediction performance of the proposed VAE-GRU framework
with respect to all metrices. The probabilistically forecasted
instant landslide deformation series produced by VAE-GRU
framework are converted into cumulative series and illustrated in
Figure 8 below.

Figure 8 above presents the probabilistic predictions of
instantaneous landslide deformation over a period of 40 days,
subsequently transformed into cumulative deformation series with
accompanying prediction intervals. The shaded areas represent
the prediction intervals, which encapsulate the range of expected
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FIGURE 8
Probabilistic forecasting of cumulative landslide deformation with prediction intervals over a 40-day period.

deformations, while the discrete dots plot the actual measured
cumulative deformation data. The close alignment between the
predicted intervals and the empirical data points suggests that the
probabilistic model is reasonably well-calibrated and captures the
underlying trend of the landslide deformation with a degree of
uncertainty.

4.5 Deformation prediction on different
horizons

To evaluate the resilience and predictive accuracy
of the proposed VAE-GRU framework for forthcoming
landslide deformations, experiments were undertaken across
various prediction horizons from t+1 to t+6. A comparative
analysis was executed juxtaposing this model with SOTA
algorithms, with the synthesized outcomes presented
in Figure 9.

Figure 9 above delineates the performance of various
algorithms in predicting landslide deformation across different
forecast horizons, ranging from t+1 to t+6, as measured by
the PINAW. Across all GNSS stations (GNSS 6-4 to 6–8), the
VAE-GRU algorithm consistently outperforms the others. It
demonstrates the narrowest prediction intervals at each forecast
horizon and thus indicates its precise predictive capability.
Comparatively, the ELM-LUBE algorithm exhibits the widest
prediction intervals which suggests a less precise forecasting
ability. The performance of CKDE-NRC and VAE-LSTM reveal
moderate variability in their prediction intervals. Overall, it
highlights the clear superiority of VAE-GRU in probabilistic
forecasting of landslide deformation compared with other
SOTA algorithms.

4.6 Comparison with recent probabilistic
prediction algorithms

To further demonstrate the efficacy and resilience of the
proposed VAE-GRU framework in predicting imminent landslide
deformations, comparative analyses were conducted against the
recent published algorithms dedicated to probabilistic forecasting
of landslide displacements. The outcomes of these computational
evaluations are succinctly aggregated and delineated in Table 10, as
displayed below.

In the comparative evaluation of probabilistic landslide
deformation prediction models, the VAE-GRU framework
demonstrated notable robustness. According to Table 10, the
VAE-GRU model matched the best PICP and surpassed other
models with the lowest PINAW. It also showed competitive
performance in theCWCandPINRW, underscoring its effectiveness
in forecasting landslide deformations with high accuracy
and reliability.

4.7 Discussion

The proposed VAE-GRU model offered a novel architecture
for probabilistic forecasting of landslide deformations. It
showcases significant strengths such as its capacity to
encapsulate temporal correlations within historical landslide
data efficiently. This proficiency enables the model to predict
imminent deformations with precision, leveraging a generative
perspective for robust performance across various prediction
horizons .

Nonetheless, it is highly dependent on high-quality dataset for
effective training and the potential for increased computational
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FIGURE 9
Comparative analysis of algorithmic performance on probabilistic landslide deformation forecasting across various prediction horizons.

TABLE 10 Performance comparison of VAE-GRU against recent published probabilistic prediction methods.

Metrics
Algorithms

PRESN DES-BDNN DES-VMD-LSTM VMD-LSTNet VAE-GRU

PICP 0.89 0.87 0.91 0.91 0.91

PINAW 0.08 0.07 0.07 0.09 0.06

CWC 0.11 0.06 0.08 0.07 0.06

PINRW 0.14 0.12 0.13 0.12 0.11

Bold values are just for emphasize.

complexity due to its sophisticated deep learning structure may
pose limitations. These factors necessitate careful consideration in
operational settings where rapid predictions are crucial and where
data availability and computational resources may be constrained.

5 Conclusion

This study proposed a novel framework using Variational
Autoencoder with Gated Recurrent Unit (VAE-GRU) for
the probabilistic prediction of precipitation-induced landslide
deformation. The proposed framework included two components,
training a VAE-GRU model to obtain the latent representation
of historical precipitation data and generating the probabilistic
distribution of imminent landslide deformations. A case study
is performed over a shallow landslide using field-investigation

collected data from Lebu Village, Bagu Township, Meigu County,
Liangshan Prefecture, in Sichuan Province, China. Field investigated
data collected from multiple GNSS monitoring stations are
utilized in this research to design the numerical experiments.
Through meticulous experimentation and comparative analysis,
the research demonstrates the VAE-GRU framework’s adeptness at
forecasting, with a particular focus on its robust performance across
various prediction horizons. It reveals the VAE-GRU’s superior
ability to generate narrow prediction intervals and maintain high
coverage probabilities, marking a substantial improvement over
state-of-the-artmethodologies in probabilistic landslide forecasting.

In conclusion, the proposed framework introduced in this study
marks a significant advancement in the probabilistic prediction
of landslide deformations, particularly in regions susceptible
to precipitation-induced landslides. Our findings underscore
the framework’s robustness across different prediction horizons,
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outperforming state-of-the-art algorithms with consistently
narrower prediction intervals and higher prediction interval
coverage probabilities.TheVAE-GRUmodel’s superior performance
reaffirms the potential of deep learning techniques in enhancing
probabilistic landslide forecasting models, providing a valuable
tool for geotechnical monitoring and disaster risk management.
Furthermore, this study’s comparative analysis reveals critical
insights into the operational strengths of various predictive
algorithms, highlighting the importance of incorporating generative
models for a more nuanced and dynamic understanding of
landslide behavior.

Future research will be aimed to focus on expanding the
adaptability and accuracy of our predictive models to encompass
a wider array of geotechnical phenomena, enhancing their utility
for more comprehensive risk assessment and mitigation strategies.
Additionally, efforts will be directed towards the integration of these
models into advanced early warning systems. Hence, it will enable
to offer more effective means of protecting vulnerable communities
and infrastructures against the imminent threat of landslides and
related geological hazards.
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Appendix A The hyperparameter
settings for the SOTA algorithms and
the proposed VAE-GRU

TABLE A1 Hyperparameter setting for the proposed VAE-GRU and the
SOTA algortihms.

Algorithms Hyperparameters

ELM-LUBE Num of layers = 2; Num of neurons
= [100, 100]; lr=0.005; Kernel =
RBF; λ=0.1

CKDE-NRC k=15; iterative factor = 0;
convergence tolerance level = 10−6

VAE-LSTM Num of layers = 2; Num of neurons
= [128, 64]; lr=0.001; Latent vector
ZT-1 size = 50; dropout = 0.1; λ=0.5

VAE-GRU Num of layers = 2; Num of neurons
= [128, 64]; lr=0.001; Latent vector
ZT-1 size = 50; dropout = 0.1; λ=0.7
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