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Carbon storage plays a vital role in the provision of ecosystem services, and the
alteration of land use has a profound influence on the carbon storage capacity
of ecosystems. Therefore, in this study, two scenarios of natural evolution
scenario (NES) and ecological conservation scenario (ECS) were set up based
on the development of Mohe City,China. Meanwhile, a coupled model of LUCC
and ecosystem carbon storage was established using Logistic-CA-Markov and
InVESTmodels, as well as optimal parameters_based geographical Detector and
GeoDa, to predict the distribution and change of ecosystem carbon storage
based on LUCC in the future. The effects of different influencing factors on the
spatial differentiation of carbon storage were also explored. The results show
that: (1) From 1980 to 2020, the land use type in Mohe City was dominated by
the forest and its area decreased; the area of wetland increased. From 2020
to 2040, ecological benefits will be shown under the ECS, with an increase in
forest and a slower expansion of built-up. (2) Carbon loss in Mohe City from
1980 to 2020 was 4.04Tg. Under the ECS carbon storage increased slightly by
0.2Tg. Soil carbon storage was the main carbon pool in Mohe City, and forest
was the largest contributor. The carbon storage of Mohe city in 2030 and 2040
has a strong positive spatial correlation. Hot spots in more than a cold spots
area, the high value area is concentrated in the east, low concentrated in urban
areas. (3) Apart from LUCC, mean annual precipitation was the most significant
factors affecting the spatial differentiation variability of carbon storage. The
interactions of mean annual precipitation and population density with other
factors exhibit a non-linear enhancement,which had a coefficient of 21.91%. This
study contributes to a deeper understanding of the relationship between LUCC
and carbon storage.
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LUCC, carbon storage, logistic-CA-Markov model, InVEST model, optimal parameters-
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1 Introduction

Terrestrial ecosystem carbon storage is an important component
of global carbon storage and plays a vital role in maintaining the
global carbon cycle and addressing climate change. It is significant in
reducing the concentration of greenhouse gases, such as CO2 in the
atmosphere, regulating the regional microclimate, mitigating global
climate change, and maintaining ecological balance (Houghton,
2003; Ge et al., 2008; Lu et al., 2022). Meanwhile, as one of the
components of ecosystem services, carbon storage has been
identified as key in assessing the response of terrestrial ecosystem
services to global climate change (Zhu et al., 2022). Land use/cover
change (LUCC) is the main factor affecting carbon storage in
terrestrial ecosystems, second only to fossil fuel combustion in
terms of its contribution to the increase of CO2 concentration
in the air (Houghton et al., 2012; Baumann et al., 2017). It has
been demonstrated that the increase in CO2 is closely related
to the ecosystem carbon stocks affected by LUCC (Wang et al.,
2022b). Previous studies have shown that the impact of LUCC
on ecosystem carbon storage depends mainly on how ecosystem
types and land types are converted (Zhu et al., 2020). The carbon
storage increases when land types with a high carbon density
are converted to those with low carbon density, and vice visa
(Ren et al., 2021). Thus, the conversion of land types in the region
will lead to changes in the total carbon storage. It also changes
the energy, structure and biological cycles of the ecosystem,
thus changing the carbon sequestration capacity of the soil and
vegetation (Bai and Xue, 2020). As vegetation and soil are the
two most important carbon pools in terrestrial ecosystems, the
changes in vegetation growth and soil environment caused by
land use dynamics will directly affect the changes in carbon
storage (Alam et al., 2013). Currently, global ecosystem services
are gradually declining under the influence of human activities
and climate change (He et al., 2023). Therefore, quantifying
the relationship between land use dynamics can effectively
monitor the changes of regional carbon and carbon storage
is important for optimizing land use patterns, balancing the
carbon cycle process, and achieving sustainable development
in the region.

Methods used to evaluate carbon storage include field
measurements, ecosystem carbon fluxes monitoring, and model
simulations (Zhang and Peng, 2012; Li et al., 2020; Sun et al.,
2022). Although field measurements and ecosystem carbon flux
monitoring methods are more direct and accurate, they are
inevitably time consuming and costly (He et al., 2023). Also,
long-term and large-scale carbon storage changes and impact
mechanisms cannot be studied (Sun and Liu, 2020). Compared
with the first two methods, the model simulation methods have
been employed by many scholars to evaluate carbon storage due
to their obvious advantages in large scale and spatial-temporal
series variation (Chen et al., 2015; Zhao and Cao., 2018). The
InVEST (Integrated Valuation of Ecosystem Services and Trade-
Offs) model is widely adopted due to advantages including the
use of few parameters, fast operation, reflecting the relationship
between LUCC and carbon storage, and the ability to spatially
express the carbon storage distribution (Hou et al., 2018; Zhao et al.,
2018). The process of land use dynamics under different scenarios
is complex, and combined with the results of land use projections,

the carbon storage under different future scenarios can be assessed.
The CA-Markov (Cellular Automata-Markov) model is extensively
used in the simulation of LUCC under different scenarios as it can
set each policy as a constraint and can use natural, economic and
social factors as drivers in the prediction process, resulting in high
prediction accuracy (Shi et al., 2021; Hao et al., 2022). Currently,
numerous domestic and international studies have demonstrated the
effectiveness of the CA-Markov and InVEST models in simulating
and evaluating LUCC and its impact on carbon storage (Liang et al.,
2021; Sarathchandra et al., 2021; Yang et al., 2021). For example, at
the scale of urban clusters, Zhu et al. (2022) explored the impact
of land use/land cover change on ecosystem carbon storage in
coastal areas of China from 1980–2050. At the watershed scale,
Zhu et al. (2020) studied the ecosystem carbon storage in the
Qihe Basin under different scenarios. At the conservation area
scale, Zhang et al. (2022b) projected changes in carbon storage in the
QinbaMountains ecosystem under different development scenarios
from 2000 to 2040.

However, the mechanism of carbon storage was often analyzed
from the perspective of LUCC. There is a lack of spatial variation of
carbon storage from the perspective of natural and socioeconomic
factors, to quantitatively analyze the spatial-temporal influences on
long-term carbon storage from a multi-dimensional perspective.
Forest ecosystems accumulate nearly 40% of terrestrial biomass
carbon and are an important source of carbon storage (Hoque et al.,
2021). Most of the current studies focus on the impact of
urban expansion on carbon storage, and there is a shortage of
studies on forestry resource development-oriented areas. Forestry
resource development cities undertake vital ecological services and
provide important services such as soil and water conservation
and carbon sinks. At the same time, nearly 25 percent of the
world’s population relies primarily on forest resources for their
livelihoods (Islam et al., 2022). With the introduction of various
resource conservation policies in China this category of cities
has begun to transform, which has led to changes in the land
use change situation. The Mohe city is an ecological safety and
security zone in China, which is known for its richness in forests,
minerals, and rare plants. The city is rich in forest and wetland
resources, accounting for more than 80 percent of the total
area, and is an important carbon sink and carbon storage area
for China’s terrestrial ecosystem. But in the course of economic
development forest land has been consumed on a large scale.
To protect forest resources and the ecological environment, the
State has implemented some ecological projects, such as returning
farmland to forest. However, in previous studies, the overall carbon
storage in Mohe City has not been assessed in a holistic manner,
as well as exploring the impacts of LUCC on it. In summary,
combined with eleven driving factors, this paper applies the CA-
Markov model to predict the spatial pattern of land use under
two scenarios of natural evolution and ecological conservation
in 2030 and 2040, based on clarifying the LUCC in Mohe City
from 1980 to 2020. We also combined the InVEST model and
the Optimal Parameters-based Geographical Detector (OPGD) to
explore the characteristics of the spatial-temporal distribution of
carbon storage in Mohe City, and analyzed the driving factors
of its spatial differentiation, in order to provide suggestions
for the carbon balance and optimization of land use structure
in Mohe City.
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FIGURE 1
Schematic diagram of the study area.Q17

2 Data and method

2.1 Study area

Mohe City (121°12′E−127°00′E, 50°11′N-53°33′N) belongs
to the Greater Hinggan Mountains region and is located in
northwestern Heilongjiang Province with an elevation range of
159–1,404 m (Figure 1). It is the city with the highest latitude in
China, has an area of approximately 18,427 km2 and is situated in
a typical perennial permafrost zone within China (Zhou and Guo,
1982). It has a cold continental monsoon climate with long, dry and
cold winters and short, hot and humid summers (He et al., 2015).
The mean annual temperature and precipitation are −5.5°C and
260–600 mm, respectively, with precipitation mainly concentrated
in July and August (Zhang et al., 2022a). The topography of Mohe
City is high in the south and low in the north, with a sloping
downward trend from north to south, and a landform type that
can be divided into three zones from south to north, with the
middle mountain zone in the south, the low hill zone in the
middle and the hilly zone along the river plain in the north.
The area contains large forests and wetlands with a high carbon
sequestration capacity (Chen et al., 2022).The city has six towns and
a permanent population of about 54,000 people. Major industries
include tourism, wood processing, and coal. The total GDP value in
2022will be about $4.67 billion,with a first growth rate in theGreater
Hinggan Mountains region.

2.2 Data

2.2.1 Land use data
In this study, the land use data were obtained from the Resources

and Environment Science and Data Center of the Chinese Academy
of Sciences (RESDC, https://www.resdc.cn/)with a spatial resolution

of 30 m. And selected from five periods of historical data between
1980 and 2020 (1980, 1990, 2000, 2010 and 2020). Based on the
actual conditions of the study area, reclassify 16 land use types in
the region into six secondary land classes, namely, farmland, forest,
grassland, water, built-up and wetland.

2.2.2 Natural impact factors data
In this study, Digital elevation model (DEM) obtained from

the Geospatial Data Cloud (https://www.gscloud.cn/) with a spatial
resolution of 30 m; slope and aspect data were extracted from DEM
data. Mean annual temperature, Mean annual precipitation, Normal
Difference Vegetation Index (NDVI) and vegetation type data used
had a spatial resolution of 1 km provided by RESDC. The soil type
data had a spatial resolution of 1 km andwere obtained from the Soil
Science Database (http://vdb3.soil.csdb.cn/).

2.2.3 Social economical impact factors data
The population density, night light and GDP data used had

a spatial resolution of 1 km. All of them were obtained from
RESDC. Data on highways and rivers were obtained from the
National Catalogue Service For Geographic Information (https://
www.geodata.cn/). And the POI data were provided by Open Street
Map (https://www.openstreetmap.org/).

2.3 Method

2.3.1 InVEST model
The InVEST model mainly includes three evaluation modules,

namely, the Freshwater Ecosystem Marine assessment and
Terrestrial Ecosystem assessments (Tang et al., 2015). The Carbon
module in the Terrestrial Ecosystem assessment module is widely
used to calculate regional carbon storage (Lei et al., 2017; Liu et al.,
2019; Zhang et al., 2022c).This study applies the module to estimate
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the time and space distribution of carbon in Mohe City from 1980
to 2040, based on the land use types of vegetation on the ground,
underground vegetation, and the soil carbon density values. The
principle of calculating carbon storage is describing as follows:

Ci = Ci−above +Ci−below +Ci−soil (1)

Ctotal =∑
n
i=1

Ci × Si (2)

Where i is a given land type; n is the number of land use types,
and equals to six in this study; Ci refers to the total carbon density
of the land use type at i; Ci−above, Ci−below, and Ci−soil represent
the density of above-ground biomass carbon (AGC), below-ground
biomass carbon (BGC), and soil organic carbon (SOC), respectively;
Si refers to the area of land use type i; and Ctotal refers to the total
carbon storage of the terrestrial ecosystem.

The carbon density correction formula was chosen for its high
degree of generality and similar climatic conditions (Ren et al.,
2021). In this study, the carbon density data obtained from the
studies of Xi et al. (2010), Li et al. (2003) and Xie et al. (2004) were
selected and corrected by the carbon density correction formula
based on the data fromMohe City.The relationship between annual
precipitation and biomass and soil carbon density was corrected
using the equations in Alam et al., 2013) [formulas (3); (4)]. The
relationship betweenmean annual temperature and biomass carbon
density was modified following the equation in Giardina and Ryan.
(2000) and Chen et al. (2007) (formula (5).

CSP = 3.3968×MAP+ 3996.1 (R2 = 0.11) (3)

CBP = 6.798e0.00514P×MAP (R2 = 0.70) (4)

CBT = 28×MAT+ 39(R2 = 0.47 P < 0.01) (5)

Where MAP is mean annual precipitation (mm);MAT is mean
annual temperature (°C); CSP is the soil carbon density (Mg/hm2)
corrected for annual precipitation; and CBP and CBT are biomass
carbon density (Mg/hm2) corrected for mean annual precipitation
and mean annual temperature, respectively.

KBP =
C′BP
C″BP

(6)

KBT =
C′BT
C″BT

(7)

 KB =  KBP ×  KBT =
C′BP
C″BP
×
C′BT
C″BT

(8)

KS =
C′SP
C″SP

(9)

Where KBP and KBT are the mean annual precipitation factor
and mean annual temperature factor correction factors for biomass
carbon density, respectively; KB and KS are the biomass carbon
density correction factor and the soil carbon density correction
factor respectively; C′ and C″ are the corresponding data obtained
from the mean annual precipitation and mean annual temperature
for Mohe city and the whole country and Heilongjiang Province
respectively. The carbon density correction factor is multiplied with

TABLE 1 Carbon density of different land use types (Mg/hm2).

Land use types AGC BGC SOC

Farmland 16.40 63.20 199.94

Forest 22.60 92.90 289.70

Grassland 12.40 44.90 90.70

Water 0.56 0.00 149.80

Wetland 37.70 139.00 394.70

Built-up 1.40 11.70 81.35

(AGC, above-ground biomass carbon; BGC, below-ground biomass ground; SOC, soil
organic carbon).

the national and Heilongjiang Province carbon density values to
obtain the carbon density data for Mohe city (Table 1).

The Chinese Terrestrial Ecosystem Carbon Density Datasets
(2010–2019) from Xu et al. (2019) was used to validate the carbon
density values, showing similar values for all categories inMoheCity
to the results of this study. This indicates that the corrected carbon
density values are in line with the actual situation.

2.3.2 Logistic regression analysis
Logistic regression analysis is suitable for regression analyses

where the dependent variable consists of two categorical or
continuous variables, and can be used to assess the impact of each
driver on LUCC. If the independent variable xi = (x1, x2, . xn) is
the driving factor for case i, and the dependent variable Y i takes the
value of 0 or 1 (Y i = 0 means that the subject event does not occur,
and Y i = 1 means that the subject event occurs). Y = 1 when there
is a change in a particular land category, otherwise Y = 0. Suppose
P is the probability of the event occurring and takes the range 0–1,
then 1-P is the probability of the event not occurring. The specific
formula is as follows Deng et al. (2022):

P = (Y= 1|x1,x2,⋯xn) =
exp(β0 +∑βixi)

[1+ exp(β0 +∑βixi)]
(10)

Logit transformation of formula (12) to convert to linear
formula (13):

log(
Pi

1− pi
) = β0 + β1X1 + β2X2 +⋯+ βnXn (11)

Where Pi is the probability of a land use type i in each grid,
Xn is the driving factor, β0 is a constant, Pi

1−pi
represents the odds

of an event occurring. exp β denotes the multiplicative change
in the event occurrence ratio with each one-unit increase in the
independent variable (exp β<1, the occurrence odds decreases;
exp β=1, the occurrence odds remains unchanged; exp β>1, the
occurrence odds increases) (Cheng, 2021). The relative operating
characteristics (ROC) is utilized to assess the simulation goodness of
fit in Logistic regression by Pontius and Schneider (2001). The ROC
area values range from 0.5 to 1. When the value of ROC reaches 0.7
or more, it indicates that the simulation results have a certain degree
of accuracy. Eleven drivers were selected for this paper (Figure 2).
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FIGURE 2
Driving factors of LUCC in Mohe city:(A) DEM, (B) Slope, (C) Aspect, (D) Distance to river, (E) Distance to highway, (F) Distance to town, (G) Mean
annual temperature, (H) Mean annual precipitation, (I) POI, (J) Population density,(K) Night Light.

The ROC area values range from 0.5 to 1. When the value of ROC
reaches 0.7 or more, it indicates that the simulation results have a
certain degree of accuracy Hanley and Mcneil (1982).

2.3.3 CA-markov model
The CA-Markov model is a combination of the CA and Markov

approaches. It can simulate future LUCC in multiple directions
over time using a transfer probability matrix (Kura and Beyene,
2020; Yang et al., 2021). Markov is used to simulate LUCC over
time by finding the probability of land use transfer in the first and
second phases, and to provide a basis for subsequent predictions
(Zhao et al., 2018). The formulae for Markov are as follows:

St+1 = Pij × St (12)

Pij =
[[[[

[

P11 ⋯ P1n
⋮ ⋱ ⋮

Pn1 ⋯ Pnn

]]]]

]

且∑n
j=1

Pij = 1 (i, j = 1,2,⋯n) (13)

where St and St+1 are the land use states at moments t and t+1
respectively; Pij is the transfer probability matrix; and n is the
number of land use types.

Cellular automation (CA) is a spatial-temporally discrete
dynamical system with a major emphasis on predictions in the
spatial dimension. It can effectively generate the spatial distributions
of landscapes with transition rules and simulate the spatial-temporal
evolution of various natural processes, including land use dynamics
(Basse et al., 2014). The model can be defined as follows:

S(t, t+ 1) = f(St,N) (14)

We used the Markov method to obtain improved predictions of
each land area by setting the different parameterization processes.
Specifically, two scenarios were designed to understand the potential
land use demand from 2020 to 2040 (Figure 3).

Each scenario was set according to the ecological protection
policy, economic development, and local land use of Mohe City.
The scenarios are the following: (1) Natural evolution scenario
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FIGURE 3
CA-Markov model prediction of future land use demands in Mohe City: (A) Farmland, (B) Forest, (C) Grassland, (D) River, (E) Built-up, (F) Wetland.

(NES): This is a future land scenario assuming no change in factors
affecting LUCC in 2040. Continuing the trend of LUCC in the
historical period and performing future scenario land simulation.
(2) Ecological conservation scenario (ECS): This scenario accounts
for ecological development, gives priority to the development of
forest and wetland, and increases the probability of transfer from
other lands to forest and wetland. It also restricts the expansion
of built-up and simulates the implementation of policies such as
returning farmland to forest, i.e., strictly controlling LUCC.

2.3.4 Optimal parameters-based geographical
detectors

Geographical Detector is a method of driving analysis behind
the study of spatially heterogeneous phenomena that reveals the
association of spatially dependent and independent variables (Wang,
2017). It has the capability to examine the variables that influence
the distribution of terrestrial carbon storage. However, its reliance
on subjective criteria for determining the division of drivers results
in inadequate categorization and subjectivity (Song et al., 2020).The
OPGD model explores the optimal combination of different spatial
data discretization methods and spatial layers, and the parameter
optimization process enables further extraction of information
contained in geographic features and spatial explanatory variables
in the GeoDetector (Wang et al., 2023). Consequently, this research
chose the OPGD to quantitatively analyze the effects of the driving
factors of carbon storage in Mohe City and the interactions among
the factors on the spatial differentiation of carbon storage. The
calculation formula is as follows:

q = 1−
∑L

h=1
Nhσ

2
h

Nσ2
(15)

In the formula, q is a measure of the explanatory power of
the independent variable with a value range of [0, 1]. L is the

stratification of variables or factors, h is the different driving factor
variables, N is the number of cells in layer h, and σ2h is the variance
of layer h.

2.3.5 Spatial auto correlation analysis
Spatial autocorrelation indicates whether elements with spatial

units and attributes are spatially related to their neighbours
(Zuo et al., 2022). The Moran’s I index is used to analyse the degree
of clustering and dispersion of elements within a region as a whole,
and can be divided into two categories: global autocorrelation
and local autocorrelation (Getis and Ord, 1992). Since global
spatial autocorrelation can only reflect the overall distribution
characteristics of spatial elements, Mohe City was divided into a
3,000 m × 3,000 m grid, and local spatial autocorrelation (LISA) was
used to show the spatial concentration of carbon storage in local.The
formula of LISA is as follows:

LIi =
Xi −X
S2
∑

i
ωij(xj − x) (16)

The value of LI is between −1 and 1, xi and xj are respectively
the values of the i and j observation objects in space; wij is the
spatial weightmatrix. In this study, the local concentration of carbon
storage was divided into five types: High-High Cluster, Low-Low
Cluster, High-Low Cluster, Low-High Cluster, and Not Significant.

3 Result

3.1 Land use dynamics during 1980–2040

3.1.1 Land use dynamics from 1980–2020
Land use changes (Table 2; Figure 4)from 1980–2020 were as

follows: forest was the land use type with the most obvious change
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TABLE 2 The transition matrix of land use in Mohe city from 1980–2020 (hm2).

1980
2020

Grassland Farmland Built-up Forest Wetland Water

Grassland 42,592.68 731.79 1,608.12 3,696.48 17,034.12 1933.83

Farmland 1,367.1 499.5 313.2 233.82 4,641.21 83.61

Built-up 36.99 80.19 1,574.01 71.46 62.19 59.13

Forest 183,274.02 821.79 3,708.99 1,552,037.94 4,600.53 3,940.92

Wetland 505.44 — 820.71 687.69 2,460.69 324.18

Water 851.76 80.82 367.38 3,856.86 1,394.28 4,564.89

FIGURE 4
Dynamics of land use transformations during 1980–2020.

in Mohe city, making up 79.98%–94.7% of the total area, followed
by grassland accounting for 3.76%–15.48%.The amount of farmland
transferred out was about half of the land area. Built-up was rarely
converted to other land types. The wetland transfer area was small,
but the other land classes converted to wetland area was large. The
water also changes less. Farmland, water, and built-up all accounted
for a very small share of the area (less than 1% each).

In the past 40 years, the transformation between categories
was not obvious and was at a stable development stage from 1980
to 2000 (Figure 5). Following 2000, the conversion accelerated,
with the proportion of conversion between categories increasing,
particularly for forests, grasslands, and wetlands. The area of
grassland and wetland showed a significant trend of increase, of
which the area of grassland increased the most, by about 9%,

followed by wetland by about 1.6%. The area of built-up land
and water area changed less, with an increase of less than 1%.
The continuous reduction of farmland was mainly due to the
expansion of land for built-up and the implementation of the
“return of farmland to forest” policy. The decreasing trend of
forest can be attributed the continuous expansion of grassland,
wetland and built-up, however the reduction rate slowed down
following 2010. This was mainly due to the implementation
of the Ecological Protection and Economic Transformation
Plan for the Great and small Hingan Mountains Forest Areas
(2010–2020) and the second phase of the Natural Forest Resources
Protection Project, which completely stopped the commercial
logging of natural forests and strengthened the protection of
forest resources.
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FIGURE 5
Land use distribution and change from 1980–2020 in Mohe city:(A) 1980, (B) 1990, (C) 2000, (D) 2010, (E) 2020, (F) Prediction 2020, (G) 2030NES, (H)
2030ECS, (I) 2040NES, (J) 2040ECS, (K) 2040ECS, (L) 1980–2020, (M) 2020-2030NES, (N) 2020-2030ECS, (O) 2020-2040NES.

3.1.2 Land use dynamics from 2020–2040
Firstly, Logistic regression analysis of the selected driving

factors was performed using SPSS 19.0 software. The ROC method
proposed by Pontius R.G was used to evaluate the accuracy of
Logistic regression results. The regression results showed that the
obtained ROC values all reached above 0.7, which indicated that the
selected drivers were realistic and could be used to model future
LUCC (Table 3). Combined with the results of logistic regression
analysis, the changes in land use pattern in the study area in 2030
and 2040were predicted based on theCA-Markovmodule in IDRISI
17.0. Firstly, based on the land use data for the three periods of
2000, 2010 and 2020, calculated the transfer probability matrix, area
matrix and suitability atlas. Secondly, using the 2000 land use data
as the base period data, the transfer area matrix and suitability
atlas were overlaid to predict the 2020 land use in the study area.
The land use results obtained from the simulation for 2020 were
then compared with the actual data for the same year using the
Kappa consistency index (KIA) to assess the degree of consistency
between the two land use coverage maps (Landis and Koch, 1977).
The obtained Kappa coefficient was 0.895 (0.61–0.80 high degree of
consistency (substantial), indicating that the CA-Markovmodel had
better simulation ability and was able to reliably predict the future
land use distribution in Mohe city. Finally, the 2020 land use data
was used as the basis for the predictions using the validated CA-
Markovmodel rules and suitability atlas.The prediction results were
shown in Figure 4.

The simulation indicated a decreasing trend in the area of
farmland, forest, andwetland from2020–2040 under both scenarios.
On the other hand, grassland, waters, and built-up land will
exhibit an increasing trend. In terms of the direction of transfer
(Figure 6, under the NES, the reduced forest and grassland are

mainly converted to wetland and built-up, with a transfer area of
1,374.07 hm2 and 8,114.29 hm2, respectively, and 5,300.73 hm2 of
the forest was converted to grassland. Built-up and wetlands show
a clear trend of increase, with large transfers in, but fewer transfers
out.The transition between classes in 2040 is more similar to that in
2030, maintaining previous trends. In the ECS, the transfer between
categories is relatively small due to the limitations of ecological
protection, and in particular, no significant expansion of built-up
land occurs by 2040, with an increase of only 350.63 hm2. Overall,
there are large differences in changes between land types under the
two scenarios, and very little change between land types under the
ECS. At the same time, although forest tends to shrink in both
scenarios, it shrinks less than in the NES, and the expansion of built-
up land is limited by the ecological scenario, which reduces the scale
of expansion.

3.2 Characteristics of carbon storage
dynamics during 1980–2040

3.2.1 Temporal variation characteristics of carbon
storage dynamics from 1980–2040

The Carbon module of the InVEST model was used to
calculate the carbon storage in Mohe city for the five periods
of 1980, 1990, 2000, 2010, and 2020, determining values of
77.50Tg, 72.29Tg, 72.28Tg, 68.85Tg, and 68.46Tg, respectively
(Figure 7). A “slight decrease—rapid decrease—rapid increase”
trend was observed. Among them, the carbon storage decreased the
fastest from 2000 to 2010, with reductions of 3.43Tg and 4.75%,
respectively. The decrease was mainly due to the development of
forest resources and the expansion of built-up land during the
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TABLE 3 Logistic regression analysis of driving factors.

Odds ratio exp(β)

Driving factors Farmland Forest Grassland Water Built-up Wetland

DEM 0.990 1.011 0.997 0.973 0.991 1.002

Slope 0.998 1.007 0.997 0.961 0.867 0.945

Aspect 1.000 1.000 1.000 1.000 1.000 1.000

Temperature 1.000 1.000 1.001 1.000 1.000 1.000

Precipitation 1.000 1.000 1.001 1.002 1.000 0.999

Distance to town 1.000 1.000 1.000 1.000 1.003 1.000

Distance to highway 1.000 1.000 1.000 1.000 1.011 1.000

Distance to river 1.001 0.999 0.999 1.008 1.001 0.999

Night Light 0.674 0.994 0.461 0.819 0.904 0.576

Population 1.001 0.998 1.002 1.001 0.996 1.001

POI 0.998 1.001 1.000 1.001 1.001 0.998

period. The decrease in carbon storage became less from 2010
to 2020, which was mainly due to the implementation of the
policy of returning farmland to forest and the implementation
of ecological and environmental protection, so that the forest
is gradually well protected, thus providing a positive impetus
for the increase of sinks in Mohe city. In terms of the overall
change of carbon storage in Mohe City over the past 40 years,
the carbon storage has decreased by a total of 4.04Tg, which is
not significant compared to the decrease in 2000, so the overall
carbon storage change in Mohe city is relatively stable. The carbon
storage projections for 2030 and 2040 under the NES are 67.81 Tg
and 67.44Tg, respectively. Carbon storage continues its previous
downward trend, decreasing by 0.65 Tg and 1.02 Tg from 2020,
respectively. Overall, the adoption of ecological protectionmeasures
can effectively reduce the loss of carbon storage, restore the level
of regional carbon storage, and achieve a certain degree of carbon
sequestration.

From the perspective of each carbon pool, the soil carbon pool
accounts for the largest share is the most important carbon pool
and is the main carbon pool responsible for changes in carbon
storage. All three carbon pools showed a decreasing trend from
1980–2010 and an increasing trend from 2010–2020. Among the
three carbon pools, soil organic carbon decreased the most, with
a total loss of 3.2Tg, accounting for 79.73% of the total carbon
storage loss. Above-ground and below-ground carbon storage lost
0.13 Tg and 0.69Tg, accounting for 3.2% and 17.02% of the total
carbon storage loss, respectively. All three major carbon pools in
the 2020–2040 NES show a decrease, with the soil pool showing
the largest decrease of 0.45Tg, which is directly responsible for the
decrease in the carbon pools in the next 20 years of the NES. In
contrast, in the ECS, the carbon storage of the three major carbon
pools shows a weak increasing trend, which, although the increase

is small, still reflects that the ecological conservation measures are
effective. The soil carbon pool dominates the overall carbon storage
in the study area because the carbon density of each taxon in the soil
pool is generally higher than the carbon density of each taxon in the
other pools.

Considering the alterations in carbon storage across categories,
variations can be observed in the influence of transitions between
land use types on carbon storage (Table 4). Forest was the
dominant land type within Mohe city and the land type that
contributed most to the changes in carbon storage over time,
accounting for more than 80% of the total change. Among them,
the changes in carbon storage were relatively small from 1980
to 2000, and LUCC was not significant during that period.
Carbon storage in forest, wetland, and grassland from 2000 to
2010 had the greatest change in the past 40 years, with forest
decreasing by 7.39 Tg and wetland and grassland increasing
by 2.638 Tg and 2.375Tg, respectively. In 2010–2020, the trend
of decreasing carbon storage decreased, and in particular, the
rate of decrease of carbon storage in forest was significantly
narrowed. This correlated strongly with the introduction of forest
conservation policies, which limited the conversion of forest to
land types with low carbon density. In the next 20 years, the
carbon storage in built-up land and grassland will increase by
0.125 Tg and 1.293Tg, respectively, under the NES. Carbon storage
in farmland, forests, wetlands, and waters will be reduced by
0.007 Tg, 1.939 Tg, 0.5 Tg, and 0.04Tg, respectively. Under the
ECS, the carbon storage of built-up land, grassland, and waters
increased by 0.104Tg, 0.431Tg, and 0.002Tg, respectively. Although
farmland, forest, and wetland showed a decreasing trend, carbon
storage in woodland decreased by only 0.198 Tg and in wetland
by 0.178Tg, which is a smaller loss of carbon storage compared
to the NES.
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FIGURE 6
Transfer matrices of land use under the natural evolution scenario and ecological conversion scenario during 2020–2040 (hm2): (A) 2020-2030NES,
(B) 2020-2030ECS, (C) 2020-2040NES, (D) 2020-2040ECS.

3.2.2 Spatial variation characteristics of carbon
storage dynamics from 1980–2040

Figure 8 depicts the spatial distribution of carbon storage in
Mohe city, revealing a consistent spatial distribution from 1980 to
2000. In particular, the western and southern regions of Mohe city
were high-value areas of carbon storage during this period, with the
highest carbon density reaching 51.42 (Mg/hm2). In this period, the
forest resources were intact and had strong carbon sequestration
capacity. Low-value carbon storage regions were mainly located in
the areas of Mohe city, Tuqiang town, and Xing’an town, as well as
near the basins of the Amur rivers.The spatial distribution of carbon
storage has changed since 2010, with a significant decrease in carbon
storage in the west and south of Mohe city. This was mainly due to
the accelerated urbanization process, the extensive exploitation of
forest resources, and the rapid expansion of built-up land. This has
led to a change in the distribution of vegetation, with a shift from
vegetation with a high carbon sequestration capacity, such as forest,

to land types with a low carbon sequestration capacity, such as built-
up land and grassland. Under the natural evolution and ecological
conservation scenarios, the spatial distribution pattern of carbon
storage in Mohe City over the next 20 years has a small range of
changes in the main body, (Figure 7; Figures 8F–I). The low carbon
density areas were still mainly distributed in the southwestern part
of the study area, which was mainly related to the direction of built-
up land expansion and the transformation of vegetation types. In
the northeast, the spatial distribution of low carbon value areas
was more dispersed, and the degree of carbon storage change was
weakened.

To better illustrate the changes in carbon storage within the
study area at a spatial scale, the spatial variances in carbon storage
were calculated between 1980 and 2020 and categorized into three
groups (Figure 9; Table 5). From 1980 to 2020, the carbon storage
in Mohe city was not much varied spatially, 87.02% of the area
remained unchanged, 10.89% showed a decreasing trend, and 2.08%
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FIGURE 7
Changes in carbon storage in Mohe City during 1980–2040 (Tg).

TABLE 4 Changes in carbon storage of different land use types in Mohe City during 1980–2040 (Tg).

Year
Land use types

Farmland Forest Grassland Water Built-up Wetland

1980 0.199 70.845 1.000 0.167 0.020 0.268

1990 0.204 70.634 1.060 0.180 0.036 0.173

2000 0.204 70.625 1.060 0.180 0.038 0.173

2010 0.124 62.235 3.435 0.172 0.075 2.811

2020 0.065 62.011 3.454 0.164 0.079 2.695

2030NES 0.060 61.349 3.833 0.160 0.196 2.219

2030ECS 0.059 61.765 3.799 0.166 0.152 2.523

2040NES 0.059 60.072 4.747 0.160 0.204 2.195

2040ECS 0.058 61.813 3.866 0.166 0.183 2.517

showed an increasing trend. Most of the change in reserve loss
occurred near towns and in the southwestern part of the study area.
The areas with increased carbon storage are mainly located near
the Amur River basin and the northern part of Mohe City, and
the conversion of land use was mainly from farmland to grassland
and forest, and from grassland to wetland. The most pronounced
changes were observed between 2000 and 2010 throughout the study
period, which is the same trend as the LUCC. Overall changes in
carbon storage for the next 20 years are more pronounced for the
NES than for the ECS. Under the NES, the rate of change in the
area of carbon storage reduction is 8.92% higher, and the decrease
in carbon storage change is mainly concentrated in the northeast

and southwest, which is mainly related to the expansion of built-
up land and the conversion of forest to land types with low carbon
densities. In contrast, the increasing area is mainly concentrated in
the lower part of the Amur River Basin and near natural scenic areas,
and although the carbon density shows higher growth, the global
share is still lower than that of the decreasing area.The ECS accounts
for a smaller proportion of carbon density reduction areas than the
NES, and the reduction areas are mainly concentrated in areas with
high values of nighttime light radiance. Although the carbon storage
increasing areas accounted for a smaller proportion of the total,
they were higher than the decreasing areas, thus showing an overall
increasing trend.
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FIGURE 8
Spatial distribution of carbon density in Mohe City during 1980–2040:(A) 1980, (B) 1990, (C) 2000, (D) 2010, (E) 2020, (F) 2030NES, (G) 2030ECS, (H)
2040NES, (I) 2040ECS.

3.3 Carbon storage spatial distribution
driving force analysis

3.3.1 Optimal parameter identification
Thereasons for the spatial variation in carbon storage in regional

ecosystems are influenced by natural and socioeconomic factors.
In this paper, the OPGD analysis is performed by selecting the
factors that characterize the natural and socioeconomic factors,
including DEM (X1), slope (X2), slope direction (X3), mean annual
temperature (X4), mean annual precipitation (X5), soil type (X6),
vegetation type (X7), NDVI (X8), population density (X9), GDP
(X10), and nightlight (X11), which are 11 drivers in total, in
a synthesized manner with reference to several literature. The
results revealed that the q-values varied significantly across different
discretizations and combinations of intervals (Figure 10). Existing
studies usually use the combination with the largest q-value as the
optimal parameter for discretizing the data in the study. Therefore,
the natural breaks method was chosen to classify DEM, slope,
precipitation, temperature, NDVI, and GDP into seven categories;

slope direction into seven categories using the standard deviation
classification method; population density into eight categories using
the quantile method; and nightlight into five categories using the
geometric interval method.

3.3.2 Single factor detection
The results from the single-factor analysis demonstrated

that all factors significantly influenced the spatial distribution
characteristics of carbon storage in Mohe city (all p-values are
less than 0.001). The explanatory power of natural environmental
factors on carbon storage was greater than that of socioeconomic
factors, which is closely related to the actual development of
Mohe City (Figure 11A). The explanatory power of average annual
precipitation was 0.1413, which was the strongest among the
factors in explaining the spatial differentiation of carbon storage.
This was followed by population density (0.0978), NDVI (0.0454),
and vegetation type (0.0442). The slope has the smallest drive
of 0.0022. Specifically, precipitation has a great impact on the
hydrothermal conditions in the whole study area, which mainly
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FIGURE 9
Spatial variation of carbon change in Mohe City during 1980–2040: (A) 1980–1990, (B) 1990–2000, (C) 2000–2010, (D) 2010–2020, (E) 1980–2020
(F) 2020-2030NES, (G) 2020-2030ECS, (H) 2020-2040NES, (I) 2020-2040ECS.

TABLE 5 Comparison of changes in carbon intensity under different scenarios in Mohe city.

Time
Significantly decrease Insignificantly changed Significantly increase

Area (hm2) Percentage (%) Area (hm2) Percentage (%) Area (hm2) Percentage (%)

1980–1990 10,475 0.57 1,828,800 99.35 1,525 0.1

1990–2000 275 0.01 1,840,475 99.98 50 0.01

2000–2010 228,612 12.44 1,521,447 82.79 87,842 4.78

2010–2020 138,013 7.51 1,562,061 85.00 137,828 7.5

1980–2020 200,525 10.89 1,601,950 87.02 38,325 2.08

2020–2030(NES) 105,485 5,74 1,690,701 91.98 41,900 2.28

2020–2030 (ECS) 19,750 1.07 1,799,925 97.67 21,325 1.26

2020–2040(NES) 134,153 7.3 1,668,649 90.80 34,365 1.87

2020–2040 (ECS) 325 0.02 1,830,500 99.43 10,225 0.56
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FIGURE 10
Discretization for continuous variables: (A) DEM (B) Slope (C) Aspect (D) Mean annual precipitation (E) Mean annual temperature (F) NDVl (G)
Population density (H) GDP (I) Night Light. (Note: The parts of the graph without values are those that do not pass the test of significance).Q18

affects the net primary productivity of vegetation photosynthesis,
constrains the formation of regional carbon storage, and influences
the spatial differentiation of carbon storage. Population density was
an important factor in characterizing socioeconomic and could
reflect the intensity of human activity in the area. Generally, higher
population density correlates with increased land use efficiency.
However, this trend may also prompt the conversion of high
carbon density vegetation into low carbondensity construction land,
consequently diminishing regional carbon storage and yielding areas
with reduced carbon storage value.

3.3.3 Interactive factor detection
According to the interaction factor analysis (Figure 11B), the

spatial-temporal changes of carbon storage in Mohe city are
not merely affected by individual factors, but rather shaped
by the cumulative impact of multiple influences. A total of
55 interaction tests were generated for the 11 influece factors

selected for this study. Interactions between any two factors
exhibit either bivariate enhancement or non-linear enhancement,
indicative of the collective explanatory potency of combining
distinct elements for discerning the spatial differentiation of carbon
storage. The proportion of brivate enhancement is 34.5%, and
the proportion of non-linear enhancement is 65.5%. Notably, the
synergy between mean annual precipitation and vegetation type
exhibits the most robust interactive explanatory power, with a
value of 0.2191. The explanatory power of population density ∩
NDVI is second only to mean annual precipitation ∩ vegetation
type, at 0.1995. In addition to the above two interacting factors,
the interactions of mean annual precipitation and population
density with other factors were consistently larger, and it can
be seen that mean annual precipitation and population density
have a greater influence on the spatial differentiation of carbon
storage in the study area, and this is stronger in combination with
natural factors.
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FIGURE 11
(A) Factor detection and (B) interactive detection results.

3.4 Auto correlation analysis of carbon
storage space

In order to further investigate the spatial distribution of
carbon storage in Mohe City, this paper adopted the spatial
autocorrelation analysis method to explore the characteristics of
the spatial distribution of carbon storage in Mohe City. Under
the NES and ECS, the Moran’s I value of carbon storage in
Mohe City in 2030 and 2040 were 0.744, 0.694, 0.698, and 0.678,
respectively, indicating a positive correlation of agglomeration. To
continuously analyse the degree of spatial aggregation of carbon
storage, the results were analyzed by Local Indicators of Spatial
Association (LISA agglomeration), and the results are shown
in Figure 12. The spatial distribution of carbon storage values in
Mohe City in 2030 and 2040 under the two scenarios showed
some similarity, and there were more carbon storage hot spots
than cold spots under the NES. The distribution of high-high
clusters in carbon storage hotspot areas was concentrated, mostly
in the northeast and southeast of Mohe City, and low-low clusters
were mostly distributed in towns and cities, and showed the
distribution structure of high-value agglomerations around low-
value agglomerations.

4 Discussion

4.1 Response of carbon storage to LUCC

LUCC can alter the structure and function of ecosystems, thus
affecting the process of ecosystem carbon cycle. And carbon storage
can reflect the land use status in the region to a certain extent
(Shi et al., 2023). The carbon density data used in this study were
comprehensive in the literature. We compared it with the carbon
density data in the results of the published literature, in which
Kao Qingyun’s estimation of the carbon storage of forest vegetation
in Heilongjiang Province obtained that the carbon density of
the coniferous and broad-mixed forest type of vegetation was

49.63 t/hm2, which is not very much different from the carbon
density of the forest vegetation obtained in this study, which was
57.75 Mg/hm2 (Kao et al., 2022). According to Zhao’s research on
Zhalong wetland, the carbon density of wetland soil is 1.9–3.4 times
that of farmland, and the carbon density of wetland soil in this study
is within this range (Zhao et al., 2011). Overall, the more important
carbon density data of this study are correspondingly reliable and
can be applied to the study of overall spatial-temporal changes in
carbon storage. The carbon storage showed a decreasing trend from
1980 to 2020, and the area of built-up expanded rapidly during that
period, and the expansion of built-up was mainly at the cost of
forest. In addition, the forest resources of Mohe City were heavily
exploited during this period. Consequently, the sharp decrease in
forest from 1980 to 2020 may be the main reason for the decline
in total carbon storage in Mohe city. This result is consistent with
the results of Liu et al. (2019) in the study of carbon storage in
Northeast China. The higher carbon density of forest and wetland
in terrestrial ecosystems can effectively increase the level of carbon
sinks, and the conversion of these land types to other land types
will reduce vegetation and soil carbon storage, exerting a great
impact on the carbon storage of terrestrial ecosystems (Liang et al.,
2021; Ren et al., 2021; Shao et al., 2022). Zhang’s estimation of forest
carbon storage in Heilongjiang Province showed a decreasing trend
from 1973 to 2013, and the results of this study are consistent with it
(Zhang et al., 2018). The simulated spatial distribution of land use
types and carbon storage in the next two decades indicated that
under the ECS, carbon storage in Mohe City will increase, while
under the NES, carbon storage will decrease. Under the ECS, the
expansion of built-up is limited, and thismitigates to some extent the
intensity of encroachment on forest, wetland, etc.Moreover, limiting
the exploitation of forest and wetland resources, reduces the loss of
carbon storage.This suggests that the ecological conservation policy
is beneficial to increasing carbon storage, which is consistent with
the findings of Zhao et al. (2018) and Li (2019).The implementation
of ecological protection policies is observed to be conducive to
limiting the transfer of high carbon density land types to low carbon
density land types, promoting the stable development of land types
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FIGURE 12
Local spatial autocorrelation analysis of carbon storage under two scenarios for Mohe City in 2030、2040.

with high carbon sequestration capacity, and increasing the total
carbon storage capacity in Mohe city.

4.2 Driving factors of spatial distribution of
carbon storage

This paper used OPGD to characterize the drivers of spatial
and temporal carbon storage divergence. The results showed that
average annual precipitation was the strongest driver of spatial
differentiation of carbon storage in the region among the natural
socio-economic factors, followed by population density, NDVI,
vegetation type, and soil type. This is similar to the findings of
Mao et al. (2023) and Li et al. (2021) who concluded that population
density and average annual precipitation play a dominant role in
the spatial differentiation of carbon storage. Increased precipitation
could enhance soil moisture, reduce evaporation, provide better
hydrothermal conditions for vegetation, and contribute to carbon
sequestration in vegetation (Wang et al., 2022a). Tang et al. (2018)
also showed an increase in carbon density with increasing
precipitation. Areas with high population densities store less carbon,
which can be attributed to the fact that areas with high population
densities are more intensively developed and have a weaker capacity

to sequester carbon. Regions with high vegetation cover and high
carbon density have a strong carbon sequestration capacity and
make a stronger contribution to carbon storage in the region,
so NDVI and vegetation type have an important influence on
regional carbon storage. Studies have shown that the influence
of soil type on carbon storage is mainly because different soils
have different physical and chemical factors on the retention of
organic carbon in the soil, resulting in different carbon densities,
and thus affecting the distribution of carbon storage (Wang et al.,
2023). From the interaction factors, it could be seen that mean
annual precipitation ∩ vegetation type was the interaction with
the strongest explanatory power. This can be attributed to the
fact that changes in climatic conditions have significant effects on
the spatial distribution patterns of vegetation, ultimately leading
to an increase in biomass and carbon storage. The results of this
study are similar to those of Liu et al. (2021). The second strongest
explanatory power is population density NDVI, which indicates that
both natural and socioeconomic factors have an influence on the
spatial differentiation of carbon storage in Mohe City. However, the
influence of natural factors is stronger than that of socioeconomic
factors. The interaction between different factors can enhance the
influence on the spatial partitioning of carbon storage, which
suggests that the influence of drivers on terrestrial carbon storage
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can be considered in an integrated manner when enhancing carbon
storage in a region.

4.3 Advantages and limitations of the
model

In this study, the Logistic-CA-Markovmodel and InVESTmodel
were used to simulate the land use and carbon storage in Mohe
City, which reduced the complexity of the previous simulation to a
certain extent and improved the implementation. In the analysis of
the factors affecting the spatial differentiation of carbon storage, the
OPGDmodel was used to discuss different cases of the discretization
method and the number of classifications to more accurately
determine the geographic characteristics of the driving factors. But
there also exist errors that are unavoidable in themodel. CA-Markov
model ignores the influence of remote sensing image interpretation
accuracy and local polices on land use distribution, which makes
the simulation results uncertain (Hoque et al., 2020). The carbon
density data entered into the InVEST model is fixed, but in fact
the carbon density value is changed by the environment (Zhu et al.,
2022). Improving the spatial resolution of the land use data to
enhance the accuracy of the carbon storage assessment results.
Moreover, Future research should determine how factors such as
policies and institutions can be introduced intomodel simulations to
improve the comprehensiveness of simulations. Finally, the InVEST
model should incorporate additional real-world data with more
detailed classification estimates for vegetation and soils when setting
the carbon density parameters. And use experimental data to verify
the plausibility of carbon density.

5 Conclusion

This study employed CA-Markov models to simulate land use
dynamics in 2030 and 2040, considering the NES and ECS scenarios
in Mohe City. The InVEST model was utilized to evaluate carbon
storage, along with an analysis of the spatial-temporal patterns
of carbon storage evolution. The driving factors of the spatial
differentiation of carbon storage were analyzed by using the OPGD.
The following conclusions were obtained.

(1) From 1980 to 2020, the area of grassland, built-up, and wetland
all exhibited an increasing trend,while other land types showed
a declining trend. Over the next 20 years, the change trend
of different areas remains consistent across both scenarios.
This suggests a continuation of past trends, with the natural
evolution of these changes becoming more conspicuous.

(2) From 1980 to 2020, the carbon storage in Mohe City showed
a decreasing trend of 4.04 Tg. Among the different land use
types, forestsmade themost substantial contribution to carbon
storage, averaging at 66.99 Tg. Between 2020 and 2040 theNES
scenario demonstrated a downward trend in carbon storage,
aligning with historical patterns. Conversely, carbon storage
under the ECS scenario displayed a weak increasing trend,
resulting in an increment of 0.2 Tg.

(3) Spatial-temporal variations in carbon storage are the result
of a combination of factors. Besides LUCC, the dominant

factors influencing temporal variations in carbon storage
include average annual precipitation and population density,
exerting the greatest impact. The interaction between mean
annual precipitation and vegetation type exhibits the most
pronounced synergistic effect on changes in carbon storage.
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