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The classification of coal bursting liability is of great significance for the
prevention and control of rock burst. To address the shortcomings in existing
bursting liability classification methods, a comprehensive evaluation model
for bursting liability based on a combination of weighted-fuzzy set theory
and three influencing factor analyses is proposed. The model selects four
evaluation indicators: dynamic failure time (DT), elastic energy index (WET),
bursting energy index (KE), and uniaxial compressive strength (RC). Two types
of membership functions, trapezoidal fuzzy numbers (TFN) and Gaussian fuzzy
numbers (GFN), are used to quantitatively describe the fuzziness between
indicator levels. The Delphi method and a random forest feature identification
method are combined to obtain a subjective and objective combined weighting,
determining the optimal combination weight of the four indicators. Based
on Zadeh operator (ZO), maximum-minimum operator (MMO), weighted-
average operator (WAO), and all-around restrictive operator (ARO), calculations
are carried out for the synthesis of indicator weights and memberships.
Maximal membership principle (MMP) and Credible identification principle
(CIP) are utilized as evaluation principle to assess the bursting liability level,
constructing 16 fuzzy comprehensive evaluation models. The impact of
membership functions, fuzzy operators, and evaluation principle on evaluation
results are systematically analyzed based on the discrimination results of
127 sample sets. The results show that the optimal fuzzy comprehensive
evaluation model is constructed using the trapezoidal fuzzy numbers, weighted
average operator, and maximal membership principle (TFN-WAO-MMP), with
a classification accuracy of 97.64%. Finally, the optimal model is applied to
10 engineering instances, and the evaluation results are consistent with the
actual situation, verifying the reliability and effectiveness of the model. Overall,
these findings contribute to the development of a more sophisticated and
accurate method for assessing the rock burst tendency of coal specimens.
By leveraging the theory of fuzzy sets, this approach provides a more
nuanced and nuanced evaluation of rock burst tendency, and thus offers
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the potential to improve workplace safety and efficiency in the coal
mining industry.

KEYWORDS

rock burst, coal’s bursting liability, synthetic weights, fuzzy set theory, comprehensive
evaluation

1 Introduction

As mining operations and underground excavation increase
in scale and depth, elevated stress and excavation disturbances
inevitably cause brittle fracturing of deep rock masses, leading
to more frequent occurrences of complex geological disasters,
such as rock bursts, which pose a serious threat to the safe
and efficient development of deep mineral resources (Li et al.,
2021; Ling hu et al., 2021; Dong et al., 2022; Wang et al., 2022; Fu
et al., 2022; Zhao J. et al., 2022; Wang C. et al., 2024; He et al., 2023;
Qiu et al., 2023; Zhao et al., 2024). Rock burst, a phenomenon of
coal ejection occurring during the coal seammining process, entails
the release of kinetic energy accompanied by sound, vibration, air
blasts, or shock waves. In severe cases, it can lead to the destruction
of the roof and floor, or even demolish the mine drifts, potentially
resulting in casualties. It represents one of the typical geological
disasters in mining engineering (Wang, 2012; Patynska, 2013; Du,
2022; Tahmasebinia et al., 2023). The bursting liability of coal refers
to the ability and inherent property of coal to generate impact
damage, which is the internal cause and critical condition for
rock burst occurrence (Wang, 2012;Wang et al., 2017a; Zhang et al.,
2022). According to existing research statistics (Ju et al., 2021), coal
seams with strong bursting liability account for 59.04% in the rock
burst mines in China, while those with weak bursting liability
account for 39.76% and mines with coal seams without bursting
liability make up only 1.2% of rock burst incidents. Apart from
China, over 450 rock bursts have been detected in the Ostrava-
Karvina coalfield since the last century (Ptacek et al., 2017). On
22 February 2020, a rock burst accident occurred at the Longgu
mine of Shandong Xinjulong Coal Industry Co., Ltd., resulting in
four fatalities. The direct cause was the weak bursting liability of
the coal seam and its roof and floor strata in the accident area.
Under the influence of large-scale structural stress adjustment and
mining disturbance on the working face, the rock burst accident
was triggered. Figure 1 shows the damage of the on-site tunnel
(Rock-Burst Research Center, 2020).

The classification of coal bursting liability is the basic work to
prevent rock burst, and also the main basis to evaluate the risk
degree of rock burst (Bieniawski, 1967; Kidybiński, 1981; Tan, 1988;
Michel et al., 1994; Zhu et al., 2022; Konicek et al., 2013; Zhao et al.,
2023; Wang et al., 2019a). The current national standard in China,
“Classification and laboratory test method on bursting liability of
coal” (GB/T 25217.2-2010) (Standards Press of China, 2010), uses
four evaluation indicators: dynamic failure time (DT), elastic energy
index (WET), bursting energy index (KE), and uniaxial compressive
strength (RC). Based on the fuzzy comprehensive evaluation
method, 73 combinations of evaluation results are given, but there
are still 8 combinations that are difficult to determine clearly. In
recent years,many scholars have conducted in-depth research on the
classification of coal’s bursting liability levels and proposed various

classification indicators and methods. Khan et al. (2022) proposed
the elastic modulus damage index (EMDI) based on the energy
evolution characteristics under different load rates, and used it as
a discriminant indicator for coal’s bursting liability; Zhang et al.
(2019) comprehensively considered the elastic and damage effects
of coal and rock masses, proposed a modified bursting energy
index (KED), and verified its rationality through PFC2D simulation;
Gong et al. (2021) proposed the residual elastic energy index based
on the linear energy storage law of rock materials; Wang et al.
(2019b) introduced the distance discriminant analysis (DDA)
method to evaluate the bursting liability of coal samples, avoiding
the impact of correlation between evaluation indicators on the
discrimination results; Zhou et al. (2021) used the AHP-entropy
weight method to determine the weight of evaluation indicators and
proposed an improved classification model for bursting liability of
coal samples based on the theory of unascertainedmeasures (Model
comparison is shown in Table 1).

In summary, while there have been many achievements in
the research of coal bursting liability classification, the following
shortcomings still urgently need to be addressed:

(1) Bursting liability is influenced by various factors, and accurate
determination is difficult using only a single classification
indicator, while the discrimination results of different
indicators sometimes contradict each other. Although GB/T
25217.2-2010 provides discrimination results under 73
different indicator combinations, the boundaries between
different levels are not “clear-cut” and the transition between
adjacent levels has a certain fuzziness, resulting in difficulty in
determining coal sample bursting liability in 8 combinations.

(2) Due to the high degree of dispersion in coal sample test data,
there is a problemof evaluation indicatorweight offset between
different coal bursting liabilities. Existing bursting liability
assessment methods often overlook this issue, which affects
the accuracy and reliability of evaluation results to a certain
extent. Current weight determination methods can be mainly
divided into two categories: the subjective weighting method,
which is greatly influenced by the subjective intentions of
decision-makers and experts, has a high degree of subjectivity
and is difficult to optimize based on engineering data; and the
objective weighting method, which is entirely determined by
objective data, neglects expert subjective opinions, and is prone
to be influenced by data fluctuations.

To address the limitations of existing methods for assessing
the bursting liability of coal samples, this paper introduced fuzzy
set theory to describe the fuzziness between data and levels. The
Delphi random forest combined weighting method was used to
determine the weights of evaluation indicators in order to reduce the
interference of data fluctuations on weights and make the indicator
weights more reasonable. Considering the three influencing factors
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FIGURE 1
Damage situation of the roadway at Longgu Mine from 24 m to 40 m on the upper entrance of Sanlian Tunnel.

TABLE 1 Model comparison of the bursting liability evaluation.

References Year Method Merits Key issues

Khan et al. 2022 Parameter-based Convenient and effective unilateral

Zhang et al. 2019 Parameter-based New indices Complex calculation

Gong et al. 2021 Parameter-based Convenient Empirical

Wang et al. 2019 DDA Avoiding the impact of correlation Empirical

Zhou et al. 2021 Machine learning High accuracy Labeled data

of membership function, fuzzy operator and evaluation principle
comprehensively, 16 fuzzy comprehensive evaluation models
for bursting liability were established. Performance comparison
and analysis of the above models were conducted using 127
sample sets, and the best model was selected for engineering
application.

2 Principle

2.1 Fuzzy set theory

The theory of fuzzy sets, first proposed by L.A. Zadeh in 1965,
employs membership degree as a means of expressing transitional
states between concepts, which are often ambiguous or uncertain
in nature. As such, this approach is particularly well-suited to ad-
dressing problems characterized by uncertainty or indeterminate
boundaries. In recent years, fuzzy set theory has found widespread
application in many areas of engineering science (Şebnem, 2019;
AI et al., 2023).

Given a domain of discourse U, its fuzzy set (Eq. 1) is defined as:

UA:U→ [0,1](x ∈ U,UA(x) ∈ [0,1]) (1)

Where: A is a fuzzy set defined on the domain U ; UA(x) is the
degree of membership of element x in A; UA is the membership
function defined on the domain U.

2.2 Fuzzy comprehensive evaluation
method

Fuzzy comprehensive evaluation uses fuzzy set theory to
describe the fuzziness between evaluation indicators and levels of
the evaluation objects, and comprehensively evaluate based on this
(Zadeh, 1965; Tabbussum et al., 2021). Firstly, two domains are
determined: the factor setU= {u1, u2,⋯, um} containsm indicators,
where ui (i=1,2,⋯, m) are factors that affect the evaluation objects;
V= {v1, v2, ⋯,vn} is the evaluation set, where vj (j=1,2,⋯,n) are
possible status levels, and the indicators and levels are subjectively
determined according to engineering practical situations. Based on
themembership function, a single-factor evaluation is performed on
ui of the factor set U, and the degree of membership of each level in
the corresponding evaluation set of ui is determined, constructing a
fuzzy matrix R. The weight set W is constructed according to the
weight of each indicator, and then the comprehensive evaluation
set B is obtained through fuzzy operation B=W∘R, and finally,
the fuzzy comprehensive evaluation result is obtained based on
evaluation principle.
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FIGURE 2
Fuzzy evaluation model for coal bursting liability.

3 Establishment of fuzzy
comprehensive evaluation model

3.1 Research route and content

This paper proposes a comprehensive evaluation model
for the bursting liability of coal based on fuzzy set theory
and discusses the impact of main modeling factors such as
membership function, fuzzy operator and evaluation principle
on evaluation results, and selects the best comprehensive
evaluation model. Figure 2 shows the basic process of con-
structing and selecting the best model for the fuzzy evaluation
of coal bursting liability. The main research content of
this paper is:

(1) Construct an indicator system for classifying the bursting
liability of coal.

(2) Based on fuzzy set theory, use trapezoidal fuzzy numbers
(TFN) and Gaussian fuzzy numbers (GFN) to describe the
fuzziness between indicator data and levels from both linear
and nonlinear perspectives.

(3) Adopt the Delphi method-Random Forest combined
weighting approach to obtain the optimal combinationweights
for each evaluation criterion.

(4) Synthesize the weights of indicators and membership
degrees using Zadeh operator (ZO), maximum-minimum
operator (MMO), weighted-average operator (WAO), and
all-around restrictive operator (ARO) to obtain the fuzzy
evaluation set B.

(5) Use the maximummembership principle (MMP) and credible
identification principle (CIP) to determine the priority of each
evaluated object.

(6) Based on fuzzy set theory and three influencing factors,
construct 16 models for evaluating the bursting liability of
coal samples, and select the optimal model through
comparative analysis.

3.2 Establishment of metrics system and
sample index

Scientific selection of indicators is crucial to ensure accurate
determination of bursting liability. Determining the bursting
liability of coal primarily involves identifying the accumulated
elastic energy within the coal prior to impact damage and the
release rate and proportion of energy during the damage process.
Therefore, this study selects dynamic failure time (DT), elastic
energy index (WET), bursting energy index (KE), and uniaxial
compressive strength (RC) as the evaluation indicators based on
strength theory, energy theory, and related research results (GB/T
25217.2-2010). There are three reasons for selecting these four
indicators: 1) They can effectively reflect the energy changes of coal
during the processes of energy storage and energy consumption
(damage); 2) Each indicator is easy to obtain and interpret; 3) They
have been extensively tested through experiments and engineering
examples and are the most commonly used evaluation indicators in
determining bursting liability.

Based on the established metrics system, a sample database
was constructed by collecting 127 sets of typical bursting
liability samples. (Yan et al., 2011; Song et al., 2012; Li et al.,
2014; Wan et al., 2014; Dong et al., 2015; Chen et al., 2016;
He et al., 2016; Wang et al., 2017b; Deng et al., 2017; Li et al., 2021)
(Partial sample data is shown in Table 2, full data is available in
Supplementary Appendix SA). The samples were collected from

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2024.1378956
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2024.1378956

TABLE 2 Partial bursting liability data.

Sample No.
Evaluation indicators

Bursting liability level
DT/ms WET KE RC/MPa

1 461 2.23 1.45 7.3 2

2 537 2.08 2.38 7.79 2

3 674 2.23 2.46 8.66 2

4 409 2.16 1.39 8.16 2

5 2,943 1.103 2.17 2.193 3

… … … … … …

122 49.667 8.472 65.92 31.661 1

123 357 4.6 2.9 11.5 2

124 494 1.37 2.88 10.81 2

125 415 4.38 1.13 8.2 2

126 254 1.59 1.46 12.64 2

127 161.4 2.253 3.382 13.79 2

40 coal mines in 12 provinces in China, with specific distribution
shown in Figure 3.

The box plots and Spearman correlation coefficients for the
four evaluation indicators selected in this study are shown in
Figure 4. Figure 4A–D indicate that the selected data distributions
are uniform, and some abnormal values present in the test samples
have been taken into account in consideration of realistic field
conditions. This can validate the applicability and reliability of
the proposed model in engineering applications. Figure 4E shows
the correlation between the four indicators, indicating that the
correlation between the indicators is weak or non-existent. This
suggests that the selected indicators in this study are scientifically
and reasonably chosen.

According to GB/T 25217.2-2010, Table 3 shows the classification
criteria for bursting liability, which divides it into three levels: strong
bursting liability (Class 1), weak bursting liability (Class 2), and no
bursting liability (Class 3). As shown in Table 1, the sample database
contains 53, 67, and 7 samples with strong, weak, and no bursting
liability, respectively. The bursting liability evaluation index also has
a corresponding quantitative grading, and there is a determined
quantification range for a specific set of samples.

3.3 Determine index weights

Due to the discreteness of coal sample data in various parts
of the coal seam, it is difficult to conduct specific coal seam
discrimination analysis using the commonly used fixed national
standard weights. So it can only be used for coal sample bursting
liability discrimination at the laboratory scale, which cannot meet
the needs of engineering applications and cannot supplement the

problemof difficult determination of indicatorweights caused by the
discreteness of coal sample properties. Therefore, this article adopts
the Delphi random forest subjective and objective combination
weighting method to determine the weight of bursting liability
indicators. It can integrate the advantages of expert engineering
skills and coal seam physical and mechanical data driving, and can
solve the problem of discrete coal sample properties in indicator
weight determination.

3.3.1 Method for determining weights of bursting
liability index based on delphi method

The Delphi method, also known as expert opinion method
or expert inquiry survey method (Borch-Johnsen et al., 2023), is
essentially a feedback anonymous inquiry method. Its principle is
to use an ordered and anonymous continuous individual inquiry
plan, and through controlled in-formation feedback to respondents,
to clarify and select the judgments given by the expert group for a
certain issue when accurate information is difficult to obtain. The
steps of the Delphi method are:①Selecting members of the expert
group;②Designing evaluation inquiry forms;③Expert inquiry and
feedback;④Determining weights (Eq. 2) and processing results (Eq.
3). The formula for calculation is as follows:

E =
s

∑
w=1

aw/s (2)

VI = Di/Ei (3)

Where, E is the mean value of index evaluation importance;
aw represents the evaluation score of the w-th expert, with a
range of 1–10 points, where 1 represents extremely unimportant
and 10 represents extremely important; s is the number of expert
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FIGURE 3
Distribution of rock burst in mines in the sample data.

consultations; V I is the coefficient of variation of index importance
evaluation, which represents the degree of dispersion of evaluation
scores for the same index by different experts; Di is the standard
deviation of index importance evaluation; and Ei is the mean value
of importance evaluation for the i-th index.

Then, the weights of each evaluation indicator are normalized
(Eq. 4)

Aj = Ei/
g

∑
i=1

Ei (4)

Where, g is the number of evaluation indicators for
bursting liability.

Based on the Delphi method and expert consultations, the
data obtained was normalized, and the weights of each evaluation
indicator were calculated. The results, shown in Table 4, indicate
that the opinions of the four experts on each evaluation indicator
are relatively consistent, with coefficient of variation less than 0.25,
indicating the reasonability of the subjective weights obtained.
Therefore, the weights of the four indicators determined by the
Delphi method are 0.30, 0.20, 0.20, and 0.30, respectively.

3.3.2 Method for determining weights of bursting
liability index based on delphi method

TheRandom forest (RF) algorithm is a supervised tree ensemble
model consisting of multiple classification trees (Khan et al., 2023).
It can perform feature selection at each internal node of the tree,
and by comparing the feature importance values of each evaluation
index, it can obtain the importance ranking of the indices in the
evaluation of Bursting Liability. Mean square error (MSE) or out-
of-bag (OOB) error rate is usually used as the evaluation index for
measuring the feature importance. In this paper, MSE is used as the
cost function to determine the importance of each index parameter.
The specific steps are as follows:

(1) Calculate mean square error SME (Eq. 5)

SME =

n

∑
i=1
(vj − v)

2

n
(5)

Where, n represents the sample size, vj represents the bursting
liability level of each indicator parameter in the sample, and v
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FIGURE 4
Box plots and correlation coefficients of different evaluation indices in sample data. (A) DT; (B) WET; (C) KE; (D) RC; (E) Correlation coefficients of
different evaluation indices.

TABLE 3 Classification criteria for bursting liability.

Bursting liability type DT/ms WET KE RC/MPa

Strong bursting liability (Class 1) ≤50 ≥5.0 ≥5.0 ≥14

Weak bursting liability (Class 2) 50–500 2.0–5.0 1.5–5.0 7–14

No bursting liability (Class 3) >500 <2.0 <1.5 <7
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TABLE 4 Calculation results of indicator weights using the Delphi method.

Evaluation indicators
Expert rating

Average (E) Coefficient of variation (VI) Weights (Aj)
a1 a2 a3 a4

DT/ms 10 9 9 8 9.00 0.08 0.30

WET 5 6 6 7 6.00 0.12 0.20

KE 6 6 7 6 6.25 0.07 0.20

RC/MPa 9 10 9 9 9.25 0.05 0.30

represents the average value of the total bursting liability level in
the sample.

(2) Calculate the mean squared error of the node SME,ω (Eq. 6)

SME,ω =
nl · SME,1 + nr · SME,r

nm
(6)

Where, nl represents the number of nodes on the left, SME,l is the
SME of the left node, nr represents the number of nodes on the right,
SME,r is the SME of the right node, and nm represents the number of
parent nodes.

(3) Calculate the importance scoreV IM,im (Eq. 7) of a certain index
ui at nodem

VIM,im = SME,m − SME,ωlj − SME,ωrj (7)

Where, SME,m is the SME of node m, SME, ωlj is the SME,ω of the left
node after branching; and SME, ωrj is the SME,ω of the right node after
branching.

(4) Calculate the importance V IM,ij (Eq. 8) of a certain index ui in
decision tree t

VIM,ti = ∑
m∈M

VIM,im (8)

Where,M is the set of nodes in decision tree t where the j-th bursting
liability evaluation index appears.

(5) Calculate the overall importance scoreV IM,i (Eq. 9) of a certain
index ui

VIM,i = ∑
m∈M

VIM,im (9)

(6) Obtain the feature importance IF,I (Eq. 10) for a certain index
ui

IF,i =
VIM,i
c

∑
i=1

VIM,t

(10)

Where,
c
∑
i=1

VIM,i is the sum of the overall importance score for all
indices, c is the number of indices.

Based on the random forest feature recognition method, after
calculating and normalizing the feature importance through the
above steps, the weight of the four indices are 0.25, 0.25, 0.23, and
0.27 respectively.

TABLE 5 Combination weight calculation results.

Evaluation indicators ai λi Wi

DT/ms 0.30 0.25 0.30

WET 0.20 0.25 0.20

KE 0.20 0.23 0.20

RC/MPa 0.30 0.27 0.30

3.3.3 Weight determination based on
comprehensive weighting method

The combined weight (Eq. 11) is obtained by using the
multiplication synthesis normalization method (Xu et al., 2022) to
integrate the subjective weight (obtained by Delphi method) and
objective weight (obtained by random forest feature recognition
method) calculations mentioned above. The formula for the
multiplication synthesis normalization method is:

Wi =
aiλi
∑aiλi

(11)

Where, W i represents the combined weight, ai represents the
subjective weight obtained through the Delphi method, and λi
represents the objective weight obtained through the random forest
feature recognition method.

The calculated combinedweights are shown inTable 5 as follows:

3.4 Establishing membership functions

Membership functions are the basis of fuzzy set theory, which
are qualitative descriptions of the intermediate transitions in
objective things and directly related to the discrimination results
(Bonab et al., 2022). Because the objects studied in fuzzy set
theory have fuzziness, there are differences in the understanding
and interpretation of the same fuzzy concept by different people,
making the determination of membership functions subjective.
When using fuzzy mathematics to represent fuzzy phenomena,
suitable membership functions should be selected based on
the characteristics of the objects to match experimental facts
(Adoko et al., 2013; Biasetton et al., 2022; Abdolrasol et al., 2023).
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FIGURE 5
Trapezoidal fuzzy number evaluation index membership function. (A) DT; (B) WET; (C) KE; (D) RC.

In order to select the appropriate membership functions for the
classification of bursting liability, this paper establishes indicator
membership functions from linear and nonlinear perspectives to
describe the fuzziness between indicator data and levels.

3.4.1 Weight determination based on
comprehensive weighting method

Trapezoidal fuzzy number are a type of linear membership
function that has the advantages of low construction difficulty
and strong engineering practicality. Compared with other linear
membership functions such as triangular fuzzy numbers, which
are difficult to characterize properties with wide peaks, the most
likely interval of trapezoidal fuzzy numbers makes up for the above
shortcomings. Moreover, the most likely value of triangular fuzzy
numbers is usually replaced by the mean, which is not suitable
for situations with large discreteness, and large discreteness is an
essential characteristic of coal sample data (Mastalerz et al., 1999;
Biasetton et al., 2022). Referring to the studies of Khairuddin et al.
(2021) and Thangavel et al. (2022), trapezoidal fuzzy numbers
are constructed for the evaluation of the level of bursting
liability.

First, the corresponding membership function distribution is
determined based on the indicator type. For indicators with smaller
values being better (i.e., the smaller the value, the stronger the
bursting liability), the distribution function of level v1 adopts a
decreasing half-trapezoid distribution function (Eq. (12)) of slightly

smaller, the distribution function of level v2 adopts a middle-
type trapezoid distribution function (Eq. (13)), and the distribution
function of level v3 adopts an increasing half-trapezoid distribution
function (Eq. (14)) of slightly larger. For indicatorswith larger values
being better (i.e., the larger the value, the stronger the bursting
liability), the distribution function of level v1 adopts an increasing
half-trapezoid distribution function (Eq. (14)) of slightly larger, the
distribution function of level v2 still adopts a middle-type trapezoid
distribution function (Eq. (13)), and the distribution function of
level v3 adopts a decreasing half-trapezoid distribution function
(Eq. (12)) of slightly smaller. Then, according to the classification
criteria for bursting liability and expert experience, the parameters
a, b, c, and d included in the distribution corresponding to different
levels are determined, and the membership degree is calculated by
substituting the data into the corresponding membership function.
The trapezoidal fuzzy number graph is shown in Figure 5.

(1) Expression for the decreasing half-trapezoid distribution
function of slightly smaller

vj(ui) =

{{{{{
{{{{{
{

1, ui < a
b− ui
b− a
, a ≤ ui ≤ b

0, b < ui

(12)

(2) Expression for themiddle-type trapezoid distribution function
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FIGURE 6
Membership function of evaluation index based on Gaussian fuzzy number. (A) DT; (B) WET; (C) KE; (D) RC.

vj(ui) =

{{{{{{{{{
{{{{{{{{{
{

ui − a
b− a
, a ≤ ui < b

1, b < ui < c
d− ui
d− c
, c ≤ ui ≤ d

0, x < aord < x

(13)

(3) Expression for the increasing half-trapezoid distribution
function of slightly larger

vj(ui) =
{{{{
{{{{
{

0, ui < a
ui − a
b− a
, a ≤ ui ≤ b

1, b < ui

(14)

3.4.2 Weight determination based on
comprehensive weighting method

Gaussian fuzzy number is used to construct nonlinear fuzzy
relationship membership functions (Dombi, 1990). Based on the
research of Reddy et al. (2009), Gaussian fuzzy numbers can be
constructed (half-Gaussian fuzzy numbers are used when near
the extreme value), and the membership function is shown
in Figure 6.

According to the unbiased estimation theory, any ui follows a
normal distribution with ui ∼N (μi, σ2 i), and the sample mean mij

(Eq. 15) and sample standard deviation Si (Eq. 16) of ui are unbiased
estimators of ui and σ2 i, respectively. Themij and Si of the i-th type
of evaluation index for the j-th bursting liability can be expressed as:

mij =
1
n

n

∑
i=1

ui (15)

Si = √
1

n− 1

n

∑
i=1
(ui −mij)

2

(16)

Based on this, Gaussian fuzzy numbers (Eq. 17) can be
constructed (Yazdanpanah et al., 2022):

vj(ui) =
{{{{
{{{{
{

0, ui < a
ui − a
b− a
, a ≤ ui ≤ b

1, b < ui

(17)

When xi=mij, μj (ui)=1,mij (Eq. 18) can be taken as the average
of the upper and lower boundary values of evaluation index ui in the
j-level interval. That is:

mij =
1
n

n

∑
i=1

ui =
u+ij + u

−
ij

2
(18)

Where, u+i and u−ij represent the upper and lower bounds of
evaluation index ui in the j-level interval.
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TABLE 6 Commonly used fuzzy operators.

Fuzzy operators type Symbol Fuzzy reasoning method.

Zadeh operator (ZO) M(∧,∨) bj = V
n
i=1(ai ∧ rij)

All-around restrictive operator (ARO) M(·,∨) bj = V
n
i=1(ai · rij)

Weighted-average operator (WAO) M(·,⊕) bj =
n
∑
i=1
(aij · rij)

Maximum-minimum operator (MMO) M(∧, ·) bj =
n
∧
i=1
(raiij )(j = 1 2⋯m)

Additionally, the boundary values between each index level
should correspond to the same membership degree for two levels.
Therefore, the calculation formula for Si is (Eqs 19, 20):

exp[

[
−
(ui −mij)

2

2S2i
]

]
= 0.5 (19)

Si =
u+ij − u

−
ij

√− ln (0.5)
(20)

3.5 Determination of fuzzy comprehensive
evaluation set

After quantifying the evaluation index values based on
the membership function, the membership degree matrix R
is constructed. Each element in R corresponds to a single-
factor evaluation value of an indicator, and each calculation unit
corresponds to a specific judgment matrix. The membership degree
values of each indicator are obtained by using the membership
degree function.The fuzzy comprehensive evaluation set of bursting
liability category is (Eq. 21a):

B =W ∘R = (w1,w2,⋯,wm)∘(

r11 r12 ⋯ r1n
r21 r22 ⋯ r2n
⋮ ⋮ ⋱ ⋮
rm1 rm2 ⋯ rmn

)= (b1,b2,⋯,bn)

(21a)

Where, “∘” is the fuzzy operator.
Different fuzzy operators will change the fuzzy reasoning

method and affect the inference results, leading to inaccurate
and unreasonable evaluation results of fuzzy evaluation models
(Thangavel et al., 2022). Therefore, it is necessary to choose the
appropriate fuzzy operator according to the characteristics of the
project. Currently, there are four commonly used fuzzy operators,
as shown in Table 6.

3.6 Comprehensive evaluation

After obtaining the fuzzy comprehensive evaluation set B, the
evaluation result vector needs to be processed in order to obtain the
final evaluation result. This method of determining the evaluation
result is called the evaluation principle (Zhou et al., 2022). In this

paper, themaximummembership principle (He et al., 2021) and the
confidence principle (Lovett et al., 2005) are used for evaluation and
comparative analysis is carried out.

3.6.1 Maximal membership principle (MMP)
If bj=max (b1,b2,⋯,bn) after obtaining the fuzzy evaluation set

B, the evaluation level of the evaluated object is considered to be
at level j.

3.6.2 Credible identification principle (CIP)
Suppose (C1,C2,…,CK) is an ordered evaluation set of property

space F, λ is the belief degree, and 0.5<λ≤1, generally taking 0.6–0.7
(Lovett et al., 2005), this paper takes 0.6.

When C1 > C2 >… > CK, if it satisfies (Eq. 21b):

k0 = min{k:
k

∑
l=1

μxl ≥ λ,1 ≤ k ≤ K} (21b)

Then the evaluation level of the evaluated object is considered to
be at level Ck0.

4 Results and discussion

4.1 Model validation and evaluation

In order to validate the correctness and effectiveness of the
comprehensive evaluation model constructed in this paper for
classifying bursting liability levels, the effects of membership
functions, fuzzy operators, and evaluation principle on the
improved model evaluation results were analyzed separately. The
16 comprehensive evaluation models constructed were applied to
127 sets of test data, and the accuracy was used to evaluate the
performance of the classification model. The accuracy of each
evaluation model is shown in Figure 7. (The evaluation results of
each model level can be found in Supplementary Appendix SA, SB).

4.2 Impact analysis of membership
functions on the model

Life Science Identifiers (LSIDs) for ZOOBANK
registered names or nomenclatural acts should be
listed in the manuscript before the keywords with the
following format:

In existing research, scholars generally focus on the application
methods of evaluation models themselves and rarely systematically
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FIGURE 7
Comparison of accuracy for different fuzzy comprehensive evaluation models.

analyze thematching betweenmathematical factors in themodeling
process and the evaluated objects and their impact on the
evaluation results.This paper constructs a comprehensive evaluation
model based on fuzzy set theory through theoretical analysis and
calculations.

As shown in Figure 7, membership functions have different
effects on the model evaluation results. The average accuracy
of the model using trapezoidal fuzzy numbers and Gaussian
fuzzy numbers are 57.48% and 67.42%, respectively. Although
the model established using Gaussian fuzzy numbers has a
higher average accuracy, the Trapezoidal fuzzy number- Weighted
average operator- Maximal membership principle (TFN-WAO-
MMP) model based on trapezoidal fuzzy numbers has the highest
accuracy among the 16 models, reaching 97.64%.

From the evaluation results, trapezoidal fuzzy numbers (TFN)
are suitable for evaluation indicators with wide peak intervals
(such as DT, RC), and their most likely interval can better
characterize the discreteness of coal sample data. They are good
at dealing with “outlier” problems that some evaluation methods
and machine learning models find difficult to solve. However,
their linear expression method also leads to the loss of some
intermediate information in the evaluation process. Gaussian fuzzy
numbers have strong universality in nonlinear representation
of fuzzy features and are almost applicable to all random
variable distributions. They can better preserve some intermediate
information and overall improve the accuracy of the model, but it
is difficult to apply to special cases with wide indicator ranges and
large changes.

4.3 Impact analysis of membership
functions on the model

As shown in Figure 7, different fuzzy operators have a significant
impact on the evaluation results of the model. The average accuracy
of the model using Zadeh operator, maximum-minimum operator,
weighted average operator, and all-around restrictive operator
(ARO) are 26.38%, 69.69%, 91.34%, and 42.52%, respectively. It can
be seen that the accuracy of the model using the weighted average
operator is significantly higher than the other three operators,
while the accuracy of the model using the Zadeh operator is the
worst. The accuracy of the evaluation model using the maximum
membership principle under different operators fluctuates greatly,
with the highest difference reaching 92.13% and the lowest being
25.20%. The evaluation model using the weighted average operator
has the highest accuracy under both evaluation principle (maximum
membership principle, credible identification principle), which can
better represent the fuzzy relationship between the evaluation
indicators and the bursting liability category.

From the analysis of the evaluation process, the weights of the
four indicators in the bursting liability discrimination are relatively
balanced, making it difficult to distinguish between importance. The
characteristic of the Zadeh operator is that the main factor plays a
decisive role, and it is not sensitive to weights and ignores the impact
of intermediate factors on bursting liability, resulting in inaccurate
evaluation. The maximum-minimum operator is an improvement
based on the Zadeh operator. Although it weakens the role of the
main factor, it is essentially a main factor prominent type. From
the results, the number of samples that are difficult to distinguish is
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FIGURE 8
Confusion matrix of the TFN-WAO-MMP combined model.

reduced significantly compared to the Zadeh operator.The all-around
restrictive operator is the opposite of the Zadeh operator, focusing on
the impact of secondary factors on the evaluation result, which leads
to a large number of samples that are difficult to distinguish under
both evaluation principle. The weighted average operator considers
the impact of all factors, and its weight function has a significant
effect, providing clear discrimination results for all samples.

4.4 Impact analysis of evaluation principle
on the model

As shown in Figure 7, evaluation principles have different
impacts on the accuracy of the model, with average accuracies
of 54.53% and 60.43% for models based on the maximum
membership principle and the credible identification principle,
respectively. The credible identification principle performs better
in models with a large number of difficult-to-distinguish samples,
with a higher average accuracy than the model based on the
maximum membership principle. However, the model using
the maximum membership principle has a higher maximum
accuracy, and the model using the weighted average operator
based on the maximum membership principle has an accuracy
as high as 97.64%.

From the evaluation results, although the credible identification
principle can comprehensively consider intermediate information
and solve unclear grading evaluation situations, it overemphasizes
intermediate factors, ignores the impact of main or secondary
factors on the evaluation result, and as a result, the maximum
accuracy of the model is not high enough, and it is difficult to
fully consider all factors. The maximum membership principle

can comprehensively consider the impact of all factors, but it
is also prone to overemphasize the extreme values and lead
to unreasonable evaluations. Therefore, it needs to be used
in conjunction with the weighted average operator for model
construction.

4.5 Model selection

Based on the analysis of the research above, combined with the
accuracy comparison of various comprehensive evaluation models
in Figure 7, the best model selected in this paper is the TFN-WAO-
MMP combined model.

Confusion matrix is a standard visualization tool used to
describe model classification performance (Kardani et al., 2021).
In this paper, the determination of bursting liability is a three-
class classification problem. Therefore, we can use the confusion
matrix to visually describe the performance of the TFN-WAO-MMP
combinedmodel, as shown in Figure 8.Thenumbers on the diagonal
from the upper right corner to the lower left corner in the figure
indicate the number of samples where the evaluation values and
actual values are consistent.The other positions indicate the number
of samples where the evaluation values and actual values do not
match. It can be seen that the TFN-WAO-MMP combined model
has good performance in determining the bursting liability.

5 Engineering application

In order to further verify the effectiveness and practicality
of the best model, the Trapezoidal fuzzy number- Weighted

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2024.1378956
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2024.1378956

TABLE 7 Engineering examples and determination results.

NO.
Sample
source

Evaluating index Bursting
liability
level

Best
model

GB/T25217.
2-2010

Field
situationDT/ms WET KE RC/MPa

1 Chaoyang
Mine, Level 1,
3,100 mining
area, coal
seam 3 under
coal

23 49 5.09 6.47 1 1 1 Repeated
occurrences of
strong shock
wave and weak
bursting
dynamic
phenomena.

2 Zhaozhuang
Mine, 3# coal
seam, 1,306
working face

196 1.93 1.08 6.88 2 2 2 Intermittent
coal bumps
and slabbing
phenomena
occurred
during the
mining
process.

3 Qianqiu
Mine, bottom
coal of coal
seam 2

224 6.44 6.32 15.4 2 2 2 Repeated
occurrences of
rock bursts
and other
dynamic
phenomena in
the mine.

4 Guangzheng
Coal Mine

260 2.4 0.76 30.31 3 3 ∗ No dynamic
phenomenon

5 Yuwu Coal
Industry,
upper
stratification
of 3# coal

468 3.1 1.09 5.81 2 2 ∗ Several
occurrences of
roof collapse
accidents have
happened near
the goaf.

6 Yuwu Coal
Industry
lower
stratification
of 3# coal

313 2.65 1.35 7.05 2 2 ∗ Several
occurrences of
floor heave
accidents have
happened near
the goaf.

7 Huating
Chenjiagou
Coal Mine,
8,512 working
face coal seam

206 9.37 3.12 6.47 1 1 ∗ Coal and
surrounding
rock have been
severely
damaged due
to frequent
coal mine
explosions at
the working
face.

8 Fuli Coal
Mine, 22 coal

147 13.28 4.77 6.88 1 1 ∗ Themine
dynamic
events have
occurred
frequently.

(Continued on the following page)
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TABLE 7 (Continued) Engineering examples and determination results.

NO.
Sample
source

Evaluating index Bursting
liability
level

Best
model

GB/T25217.
2-2010

Field
situationDT/ms WET KE RC/MPa

9 Xinjiang
Wudong Coal
Mine, B3 and
B5 coal seam
of the 400 m
level

391 4.64 0.9 15.4 2 2 ∗ The B3+6 coal
seam and its
surrounding
rock in
Wudong coal
mine have
been
frequently
affected by
dynamic
impacts.

10 A certain
mine in Inner
Mongolia

722 1.9 1.54 30.31 3 3 ∗ No dynamic
phenomenon

average operator- Maximal membership principle (TFN-WAO-
MMP) combinedmodel selected in this paperwas used to determine
the bursting liability of 10 engineering examples in Table 7, and the
resultswere comparedwith the results given by the national standard
GB/T 25217.2-2010. As shown in Table 7, the best model in this
study produced consistent results with the standard for example, 1 to
Example 3 but the national standard cannot determine the bursting
liability levels of Example 4 to Example 10. However, the results
obtained by the best model are in line with the actual engineering
situations.

Figure 9 presents a comparison of the evaluation results of the
combined weighting method proposed in this study with those of
the entropy weighting method, CRITIC method, and coefficient
of variation method applied to the optimization model. Figure 9A
shows the evaluation results of the optimal combined weighting
method proposed in this study, which is consistent with the
actual engineering situation, and its accuracy is significantly higher
than that of the objective weighting method. Figure 9B–9D show
that when the indicator data fluctuates, the weights determined
by the objective weighting method are unreasonable and bias
towards a certain indicator, making it difficult to comprehensively
consider various indicators. This indicates that the accuracy
of the coal bursting liability evaluation model based on the
combined weighting-fuzzy set theory is high and verifies the
feasibility and effectiveness of the model in coal bursting liability
evaluation.

In this study, specific analysis was conducted with Example 7.
During the excavation of the 8512-working face in the Chenjiagou
coal mine in Huating, the mining pressure was apparent, and “coal
explosion” sounds occurred. The surrounding rock of the roadway
deformed significantly, and local support bodies had been damaged.
The specific occurrence of mining pressure was that there was a
total of 17 recorded “explosion sounds” in the return airway of the
8512-working face. According to incomplete statistics, 1,558 anchor
rods and cables were broken due to the pressure. There were 14

recorded “explosion sounds” in the transportation return airway
of the 8512-working face. According to incomplete statistics, 1980
anchor rods and cables were broken due to pressure. During the
coal bursting liability identification test, individual coal samples
under their natural state experienced sudden explosive dynamic
destruction, pulverized into debris, and were ejected at a relatively
high speed. This indicates that the coal sample’s bursting liability is
strong under its natural state. It can be seen that the discriminant
result of the optimal model constructed in this study is consistent
with the engineering field situation, and other models make
false judgments.

To sum up, the combination model TFN-WAO-MMP
constructed based on the combined weighting-fuzzy set theory
can accurately determine the level of coal bursting liability level.
The main advantages include: 1) Compared with traditional fuzzy
evaluation methods, TFN-WAO-MMP better retains the fuzzy
information of the data, makes full use of engineering data to
accurately evaluate the level of bursting liability. When constructing
the membership function, it considers more comprehensively (such
as normalization, non-negativity, and additivity of the membership
degree), which can solve the problem of eight samples that are
difficult to distinguish in the current national standard. 2)Compared
with existing comprehensive evaluation methods and machine
learning methods, TFN-WAO-MMP is not restricted by sample
data and can obtain related parameters only by expert evaluation
method based on the index grading criteria. Moreover, the model is
simple and practical, which can evaluate the bursting liability level
of underground engineering without sample data and has strong
applicability. 3) The Delphi-random forest combination weighting
method proposed in this study can solve the problem of objectivity
weighting method being greatly affected by data fluctuations and
improve the shortcomings of the subjective weightingmethod being
limited by the discreteness of coal sample data and the difficulty in
updating weights at all stages, thus improving the rationality and
reliability of indicator weights.
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FIGURE 9
Comparison of evaluation results using four weighting methods. (A) Optimal combination weighting method; (B) Entropy weighting method; (C)
CRITIC method; (D) Coefficient of variation method.

6 Conclusion

(1) To address the deficiencies in the current discrimination
methods, this study conducted a comprehensive evaluation
of coal impact tendency using the combined weighting-
fuzzy set theory. The Delphi method and random forest
weighting method were used to determine the weights of each
evaluation index. The optimal combination weighting method
was determined using multiplication synthesis method. Based
on two membership functions, four fuzzy operators, and two
evaluation principle, 16 fuzzy mathematical comprehensive
evaluation models were established.

(2) Based on 127 sets of sample discrimination results, the
impact of membership functions, fuzzy operators, and
evaluation principle on the model evaluation results was
systematically analyzed. The Trapezoidal fuzzy number-

Weighted average operator- Maximal membership principle
(TFN-WAO-MMP) combined model was selected as the
optimal fuzzy comprehensive evaluation model, with
an accuracy of 97.64%.

(3) The Delphi method and random forest-optimal combined
model were applied to 10 engineering examples, and the
discrimination results were completely consistent with
the actual situation. Compared with other evaluation
methods, this method improved the efficiency of evaluation
and avoided the effect of data fluctuations on weight
determination. It also improved the rationality and reliability
of indicator weights and effectively solved the problem of
the eight samples that are difficult to distinguish in the
national standard. This study is a beneficial supplement
and improvement to the national standard and existing
evaluation methods.
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