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Shear wave velocity prediction
based on 1DCNN-BiLSTM
network with attention
mechanism

Gang Feng*, Wen-Qing Liu, Zhe Yang and Wei Yang

Research Institute of Petroleum Exploration and Development-Northwest (NWGI), PetroChina,
Lanzhou, China

The Shear wave (S-wave) velocity is an essential parameter in reservoir
characterization and evaluation, fluid identification, and prestack inversion.
However, the cost of obtaining S-wave velocities directly from dipole acoustic
logging is relatively high. At the same time, conventional data-driven S-wave
velocity prediction methods exhibit several limitations, such as poor accuracy
and generalization of empirical formulas, inadequate exploration of logging
curve patterns of traditional fully connected neural networks, and gradient
explosion and gradient vanishing problems of recurrent neural networks (RNNs).
In this study, we present a reliable and low-cost deep learning (DL) approach
for S-wave velocity prediction from real logging data to facilitate the solution
of these problems. We designed a new network sensitive to depth sequence
logging data using conventional neural networks. The newnetwork is composed
of one-dimensional (1D) convolutional, bidirectional long short-term memory
(BiLSTM), attention, and fully connected layers. First, the network extracts the
local features of the logging curves using a 1D convolutional layer, and then
extracts the long-term sequence features of the logging curves using the
BiLSTM layer, while adding an attention layer behind the BiLSTM network to
further highlight the features that are more significant for S-wave velocity
prediction andminimize the influence of other features to improve the accuracy
of S-wave velocity prediction. Afterward, the nonlinear mapping relationship
between logging data and S-wave velocity is established using several fully
connected layers. We applied the new network to real field data and compared
its performance with three traditional methods, including a long short-term
memory (LSTM) network, a back-propagation neural network (BPNN), and
an empirical formula. The performance of the four methods was quantified
in terms of their coefficient of determination (R2), root mean square error
(RMSE), and mean absolute error (MAE). The new network exhibited better
performance and generalization ability, with R2 greater than 0.95 (0.9546,
0.9752, and 0.9680, respectively), RMSE less than 57 m/s (56.29, 23.18, and
30.17 m/s, respectively), and MAE less than 35 m/s (34.68, 16.49, and 21.47 m/s,

Abbreviations: 1DCNN, One-dimensional convolutional neural network; AC, Acoustic time difference;
ANN, Artificial neural network; BiLSTM, Bidirectional long short-termmemory; BPNN, Back propagation
neural network; CNL, Compensated neutron; DEN,Density; DL, Deep learning; DT, Compressional wave
slowness (delta T); DTS, Shear wave time difference; GR, Gamma ray; GRU, Gated Recurrent Unit; LSTM,
Long short-term memory; MAE, Mean absolute error; ML, Machine learning; MSE, Mean squared error;
RNNs, Recurrent neural networks; R2, Determination coefficient; RMSE, Root mean square error; S-
wave, Shear wave; VP, Compressional-wave velocity.
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respectively) for the three wells. The test results demonstrate the efficacy of the
proposed approach, which has the potential to be widely applied in real areas
where S-wave velocity logging data are not available. Furthermore, the findings
of this study can help for a better understanding of the superiority of deep
learning schemes and attention mechanisms for logging parameter prediction.

KEYWORDS

shear wave velocity prediction, well logging data, convolution neural network,
bidirectional long short-term memory, attention mechanism, deep learning

1 Introduction

Shear wave velocity is an important parameter in reservoir
prediction tasks and is commonly used for reservoir lithology,
reservoir physical properties, and reservoir fluid identification and
prediction (Russell et al., 2003; Rezaee et al., 2007; Oloruntobi and
Butt, 2020). Accurate logging of S-wave velocities is also helpful to
prestack seismic inversion and prestack seismic attribute analysis,
however, due to the high cost of S-wave logging, S-wave velocities
are often not available in many field areas, especially in old
wells (Bagheripour et al., 2015; Chen T. et al., 2022). To address this
problem, many scholars have proposed three categories of methods
for S-wave velocity prediction, including using an empirical formula,
rock physics modeling, and from machine learning predictions.
All these methods have provided various degrees of achievements
towards S-wave velocity information (Liu et al., 2023).

Using an empirical formula relies on the existing data of the
real field, and statistical analysis of the relationship between these
data and S-wave velocity. Pickett established an empirical formula
for P- and S-wave velocities in limestone by analyzing significant
quantities of log velocity data (Pickett, 1963). Castagna developed
a mudstone line equation for the relationship between P-wave
and S-wave velocities of clastic rocks (Castagna et al., 1985). Han
found the empirical regression equation of ultrasonic velocity with
porosity and clay mineral content from 80 well cemented Gulf of
Mexico sandstone samples (Han et al., 1986), and Li highlighted
the P- and S-wave velocity patterns of sandstone as two parabolas
based on the previous research (Li, 1992). The empirical formula
is simply applied to the real field with high calculation efficiency,
but as the requirements for exploration accuracy are becoming
more precise, new requirements for the accuracy of S-wave velocity
are also put forward. In addition, the relationship between S-wave
velocity and its influencing variables is often non-linear.This renders
traditional empirical formulas inaccurate in real-world applications
and unable to achieve the desired prediction accuracy of S-wave
velocity even for full waveform inversion (Oh et al., 2018; Jiang et al.,
2022; Rajabi et al., 2022).

For the rock physics model-based method of estimating S-
wave velocity, it is to establish the relationship between elastic
and reservoir parameters (Gassmann, 1951; Pride et al., 2004;
Ali et al., 2020), thus the S-wave velocity prediction results are
more reliable compared with the empirical formula. Xu and
White combined the Gassmann equation and the Kuster-Toksöz
model with the differential equivalent medium (DEM) theory
to establish an equivalent medium model for sand mudstone
reservoirs–the Xu-White model (Xu and White, 1995; Xu and
White, 1996). Yin et al. and Azadpour et al. performed S-wave

velocity prediction and inversion using the Xu-White model and
the improved Xu-White model (Yin and Li, 2015; Azadpour et al.,
2020). Xu and Payne extended the Xu-White model for carbonate
S-wave velocity prediction (Xu and Payne, 2009). Biot derived
the frequency-dependent velocity prediction equation for fluid-
saturated rocks (Biot, 1956a; 1956b). Assefa et al. calculated the P-
and S-wave velocities of limestone using the Biot-Gassmann model
and compared the predicted results with the KTmodel (Assefa et al.,
2003). Lee suggested using the P-wave velocity error to invert the
consolidation coefficient in the Biot-Gassmann model and then
calculate the S-wave velocity using the Biot-Gassmann model (Lee,
2006). In addition, Greenberg and Castagna combined the empirical
relationship with the Gassmann model to predict the shear wave
velocity (Greenberg andCastagna, 1992).Theprediction accuracy of
the rock physics model is quite excellent, but its robustness is poor,
and there is a lot of noise in the real data, which can lead to great
uncertainty in the predicted results. Additionally, the application of
rock physics models to predict S-wave velocity requires a number
of parameters, i.e., fluid distribution, pore structure, and mineral
content, resulting in low computational efficiency.

Machine learning (ML) algorithms and neural networks
have an advantage in extracting relationships between various
data (Thanh et al., 2024a; Thanh et al., 2024b; Ewees et al., 2024;
Zhang et al., 2024), which can serve in establishing an accurate
nonlinear relationship between S-wave velocity and reservoir
parameters. Therefore, the prediction of S-wave velocity using
logging data and neural networks has been widely employed in
field data (Alimoradi et al., 2011; Maleki et al., 2014; Mehrgini et al.,
2017; Feng et al., 2023). However, conventional neural networks
only establish a point-to-point relationship between logging data
and S-wave velocity, without considering the variation pattern
of the logging curve at depth, resulting in limited accuracy
of S-wave velocity prediction. In recent decades, deep learning
(DL) techniques have proven to be more powerful than ML
techniques in extracting features from input data (Mousavi et al.,
2016; Saad et al., 2021). The prevalent deep learning algorithms in
geophysics are recurrent neural networks (RNNs) for sequence data
and convolutional neural networks (CNNs) for image recognition,
which are commonly used for micro-seismic monitoring, seismic
first break pick, and oil flow rates prediction (Yuan et al., 2018;
Abad et al., 2021; Chen Y. et al., 2022), etc. Logging curves are
typical of depth sequence data, so many scholars have introduced
RNNs and their variants Long short-term memory (LSTM)
networks and Gated Recurrent Unit (GRU) networks into S-
wave velocity prediction (Sun and Liu, 2020; Zhang et al., 2020;
Wang and Cao, 2021; You et al., 2021; Wang et al., 2022). Further,
convolutional neural networks (CNNs) have unique advantages in
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feature extraction, so S-wave velocity prediction based on CNN
has been widely applied in recent years (Wang and Peng, 2019;
Zhang et al., 2021), but it is necessary to mention that CNNs can
only extract local features and appear to be powerless for features of
long sequences of logging curves. RNNs can only indirectly obtain
the information of the previous sequence using hidden states, and
since the dimension of the hidden states must be much smaller than
the connected dimension of all samples of the previous sequence,
this approach will inevitably lose some information, leading to the
problem of exploding or vanishing gradients (Bengio et al., 1994;
Chen et al., 2020). Although three gate control units are introduced
in the LSTM network for information selection and memory,
the above-mentioned problems still appear when directly using
the LSTM network for S-wave velocity prediction as the logging
depth becomes increasingly larger and the logging curve contains
significantly more information. Many studies have attempted to
incorporate attention mechanisms into various networks to help
capture the global dependencies of data, e.g., the main ingredient
of the Transformer is a self-attention block, and the Transformer
has been successfully applied in the geophysical field (Harsuko and
Alkhalifah, 2022; Yang et al., 2023).

In this study, a new network has been constructed that
combines the strengths of CNN and RNN for feature extraction.
First, we perform input feature selection and data normalization,
then, we utilize the one-dimensional convolutional neural network
(1DCNN) to extract the local features of the logging curve
and employ the bidirectional long short-term memory (BiLSTM)
network to extract the long-term sequence features of the logging
curve to avoid gradient vanishing and exploding problems.
Furthermore, BiLSTM networks are more effective in recognizing
patterns in the depth direction of logging curves than LSTM
networks. Meanwhile, we add an attention layer after the BiLSTM
layer, which can further highlight the features that are more
important for S-wave velocity prediction, minimize the influence
of other features, and improve the S-wave velocity prediction

accuracy. The fully connected layers are used to establish a non-
linear relationship between the extracted features and the S-wave
velocity. To demonstrate the reliable prediction performance of the
new network, we finally compare it with several classic S-wave
velocity prediction methods.

2 Methods

2.1 Bidirectional LSTM network

The basic unit of the bidirectional LSTM network is the LSTM
network. The LSTM network can extract long-term features of
logging curves, while the BiLSTM network is more effective than
the LSTM network in identifying patterns in the depth direction of
logging curves. Figure 1 shows the network structure of a Forward
LSTM network (Staudemeyer and Morris, 2019). The core of the
Forward LSTM network is still a recurrent network structure.
Similar to RNN, the result ht-1 of the previous time step will be
integrated with the input value xt of the current time step to
calculate ht , which will then be combined with the input xt+1 of the
next time step. However, compared to RNN’s simple superposition
of historical information, the LSTM network selects current and
historical information through three gates (forget gate, input gate,
and output gate) to achieve forgetting and memory functions,
thus avoiding the problems of RNN gradient disappearance and
gradient explosion.

The forget gate controls the retention of information from the
previous time step and the current time step by the sigmoid function
and the forget gate can be expressed as Eq. 1:

ft = σ(W f[ht−1,xt] + b f), (1)

whereW f is theweight coefficientmatrix of the forget gate layer, bf is
the bias term of the forget gate layer, ht-1 is the result of the previous

FIGURE 1
The structure of an LSTM network. ft, it, and ot are the information of the forget gate, input gate, and output gate, respectively. The terms σ and
tanh respectively denote a sigmoid and a hyperbolic tangent activation function.
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FIGURE 2
The structure of the bidirectional LSTM network.

time step, xt is the input value of the current time step, and ft is the
forget gate at the current time t.

The input gate is composed of two parts, the first part is to
access the data saved to the memory cell at the current time step
by the sigmoid function, and the second part is to generate new
information to be stored in the memory cell by the tanh function,
which can be expressed as Eqs 2, 3:

it = σ(Wi[ht−1,xt] + bi), (2)

C̃t = tanh(WC[ht−1,xt] + bC), (3)

where it is the input gate, σ is the sigmoid function, and tanh is the
hyperbolic tangent activation function. W i and bi are the weight
coefficient matrix and the bias term of the input gate, respectively,
and C̃t is the current cell unit state of the input layer.

The memory value of the current time step is obtained by
forgetting the information of the previous time step and inputting
the information of the current time step, which can be expressed as
Eq. 4:

Ct = ft ⊙Ct−1 + it ⊙ C̃t, (4)

where ⊙ is the Hadamard product.
The output gate controls the output of information, the output

gate can be expressed as Eq. 5:

ot = σ(Wo[ht−1,xt] + bo), (5)

where Wo represents the weight matrix of the output gate and bo
represents the bias term of the output gate.

The output result of the current time step can be expressed as
Eq. 6:

ht f = ot ⊙ tanh(Ct), (6)

Thebackward LSTMnetwork is the reverse of the forward LSTM
network, and the equation for each gate of the backward LSTM
network is calculated as follows (Eqs 7–12):

ft = σ(W f[ht+1,xt] + b f), (7)

it = σ(Wi[ht+1,xt] + bi), (8)

C̃t = tanh(WC[ht+1,xt] + bC), (9)

Ct = ft ⊙Ct+1 + it ⊙ C̃t, (10)

ot = σ(Wo[ht+1,xt] + bo), (11)

htb = ot ⊙ tanh(Ct), (12)

The forward LSTM network and the backward LSTM network
only consider the impact of the previous time step or the next
time step on the prediction results.The bidirectional LSTM network
consists of a forward LSTM layer and a backward LSTM layer
to learn the rules present in the data in both the forward and
backward directions simultaneously. Figure 2 shows the structure of
the bidirectional LSTM network.

The output of the bidirectional LSTM network at time step t can
be expressed as follows (Eq. 13):

Ft =Whfht f +Whbhtb + bh, (13)

where htf and htb are the outputs of the forward LSTM layer
and the backward LSTM layer at time step t. Whf and Whb are
the corresponding weight parameters, respectively, and bh is the
bias parameter.

2.2 Attention mechanism

The principle of the attention mechanism is that in a large
amount of information, limited attention resources are focused on
a few key pieces of information that demand attention, useless and
irrelevant information is ignored, and features are extracted formore
critical and important information. With the introduction of an
attention mechanism, the neural network can automatically learn
and selectively focus on the important information in the input
features, improving the model’s performance and generalization.
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FIGURE 3
Schematic diagram of attentional mechanism.

Figure 3 shows the attention mechanism.The features extracted
from the LSTM layer are used as the input of the attention layer, and
the expression is as follows (Vaswani et al., 2017, Eqs 14–16):

ei = tanh(WFi + b), (14)

ai =
exp(ei)
n

∑
j=1

exp(ej)
, (15)

Di = aiFi, (16)

where Fi is the output feature of the bidirectional LSTM layer, ei is
the attention distribution parameter for different features, and then
ei is normalized to obtain the weight parameter ai for each feature,
and Di is the output of the attention mechanism layer, which is the
input feature of the fully connected layer.

2.3 1DCNN-BiLSTM-attention network

As shown in Figure 4, the 1DCNN-BiLSTM-Attention network
proposed in this study first extracts the short-term features of the
logging curves using the 1DCNN layer with the ReLU function, and
the output is as follows (Eq. 17):

C = ReLU(Wc ∗ X+ bc), (17)

where ReLU(x) = max (x), Wc and bc represent the weight matrix
and bias, respectively, and∗ represents the convolution operation, X
represents the input logging data.

The convolution layer is followed by the pooling layer, which
uses the maximum pooling method for feature down-sampling to
decrease the dimension of the short-term feature data. Since the
shallow and deep parts of the data of the logging curve are certainly
connected, we feed the short-term features extracted by 1DCNN
into the BiLSTM layer to further extract the long-term features.

Then, the long-term features extracted by the Bi-LSTM layer are
fed into the attention mechanism layer to reassign weights to obtain
new features based on the importance of the features to the S-wave
velocity, and finally, the new features are fed into the fully connected
layer to establish the nonlinear relationship between the extracted
features and the S-wave velocity.

3 Network building and training

3.1 Input feature selection

The selection of input features is a crucial step in building
neural networks. In this study, we calculate the Pearson correlation
coefficients to select the logging curves with high correlation with
S-wave velocity as the input features of the 1DCNN-BiLSTM-
Attention network. Using the logging data from four wells in the
real field area, the Pearson correlation coefficients were calculated
between the acoustic time difference curve (AC), compensated
neutron curve (CNL), density curve (DEN), gamma curve (GR)
and shear wave time difference curve (DTS). Figure 5 shows the
heat analysis map of the four wells, it can be seen that, except for
the density parameter, all the other three parameters are positively
correlated with theDTS, andAC is themost strongly correlated with
the DTS, in other words, the P-wave velocity plays the heaviest role
in S-wave velocity prediction.

3.2 Input feature normalization

Input feature normalization has been widely used in machine
learning and deep learning. Because the values of different
logging curves are highly variable, if the data are not processed
before network training, the training time will be long and
the network may not converge to the minimum value, which
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FIGURE 4
The structure of 1DCNN-BiLSTM-Attention network.

limits the accuracy of the prediction model. Therefore, in this
study, the min-max method is used to scale the logging data
to the range [0-1] to eliminate these effects, and the expression
is as follows (Eq. 18):

Xnorm =
X−Xmin

Xmax −Xmin
, (18)

where Xnorm is the normalized value, X is the original logging data,
Xmax is the maximum value of the logging data, and Xmin is the
minimum value of the logging data.

3.3 Network evaluation approach

The determination coefficient (R2), root mean square error
(RMSE) function, and mean absolute error (MAE) function were
utilized to evaluate the prediction performance of the method
proposed in this study and the conventional S-wave velocity
prediction method with the following expressions (Eqs 19–21):

RMSE = √ 1
N

N

∑
i=1
(yi − pi)

2, (19)

MAE = 1
N

N

∑
i=1
|yi − pi|, (20)

R2 = 1−

n

∑
i=1
(yi − pi)

2

n

∑
i=1
(yi − y)

2
, (21)

where N is the number of test sets, yi is the true value, pi is the
predicted value, and y is the average value of the real S-wave velocity.

4 Applications and results

We conducted two experiments to test the 1DCNN-BiLSTM-
Attention network using data from four wells in a real field area.
The first experiment is for the same well. We trained the prediction
model using part of the data from Well A, and then the remaining
data from Well A was tested. The second experiment is for the
different wells. We trained the neural network using data from wells
A and B, and then applied the trained network to wells C and D.
To evaluate the accuracy of the model, we compared the prediction
results of this model with those of conventional methods such as the
LSTM network, BPNN, and empirical formula.

4.1 Comparison of the same well

Thefirst experiment is a comparison of different S-wave velocity
prediction methods in the same well. The logging data of Well A
ranges from 1,452 to 2835.5 m with a sampling interval of 0.125 m
andThere are 11070 valid data after removing anomalous values.We
utilize data in the depth range 1,452–2559 m for neural training,
and data at depths ranging from 2,559 to 2835.5 m as a test set
to test the prediction performance of the network. The network
hyperparameters are set using the idea of the control variable
method, the time step, the number of neurons in the LSTM layer, the
number of convolution kernels, and the learning rate are regarded
as variables, and only one of them is varied at a time, while the
other parameters are kept unchanged, and the hyperparameter
combination with the best prediction performance is selected. In
this study, the hyperparameters are set as follows: the time step is
4, the number of LSTM neurons and convolution kernels is 32, the
kernel size is set to 4∗ 4, and the learning rate is 0.005. The loss
function is chosen to be the mean squared error function (MSE),
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FIGURE 5
Correlation between the input logging curves and shear wave time difference curve (DTS): (A) Well A, (B) Well B, (C) Well C, and (D) Well D.

FIGURE 6
Training process of the 1DCNN-BiLSTM-Attention network (blue line:
train loss, orange line: validation loss).

and the Adam optimization algorithm is used to make the network
converge quickly. Additionally, to avoid the overfitting problem of
the network during the training process, a dropout layer is added
after both the pooling layer and the bidirectional LSTM layer, and
the discard rate of the dropout layer is set to 0.4, which means that
40% of the neurons are deactivated each time, which is more helpful
for the convergence of the network.

FIGURE 7
Loss error curves of 1DCNN-BiLSTM-Attention network, LSTM
network, and BPNN (blue line: 1DCNN-BiLSTM-Attention network train
loss, orange line: LSTM network train loss, green line: BPNN train loss).

The logging data after preprocessing is fed into the neural
network for training, as shown in Figure 6, the loss value of the
network reaches a smaller value after 40 epochs, and after 45 epochs,
the training loss value and the validation loss value are equal
and no longer change indicating that the network has converged
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FIGURE 8
Prediction results for Well A (black line: Real value, red line: 1DCNN-BiLSTM-Attention network, blue line: LSTM network, green line: BPNN, and light
blue line: Empirical formula).

to a minimum and could be applied to the shear wave velocity
prediction.

Similarly, the LSTM network and BP neural network are trained
using the same dataset. The hyperparameters of the LSTM network
are set as follows: the time step is 4, the number of LSTM layers is
5, and the learning rate is 0.005. The loss function is chosen to be
themean squared error function (MSE), and theAdamoptimization
algorithm is used to make the network converge quickly. The
number of fully connected layers of the BPNN is 4. The learning
rate, loss function, and optimization algorithm are the same as those
of the LSTM network. Figure 7 shows the training loss errors of
the 1DCNN-BiLSTM-Attention network, the LSTM network, and
BPNN. It can be seen that after 45 epochs all the networks have
converged, and the 1DCNN-BiLSTM-Attention network has the
lowest loss error, followed by the LSTM network, and the BPNN has
the highest loss value. The empirical formula (Han et al., 1986, Eq.
22) for comparison with the method proposed in this study can be
expressed as follows:

Vs = 0.794Vp − 0.787, (22)

where Vp and V s are the P-wave velocity and S-wave velocity, km/s.
Figure 8 shows the prediction results of the four prediction

methods on the test set of Well A compared with the real values.
The left side of Figure 8 shows the four logging curves of Well A,
the logging data in the red box is the test set, and the logging data
outside the red box is the training set. The black line on the right
side of Figure 8 shows the real logging S-wave velocity, and the
other colors are the prediction results of the correspondingmethods,

respectively. From the figure, we can find that the prediction results
of the method proposed in this study are closer to the real logging
S-wave velocity than the other three shear wave velocity prediction
methods, both in terms of prediction value and velocity tendency.
At the purple arrows (2,640–2680, 2,738–2742 m), those are the
areas where the S-wave velocity changes are more vigorously, and
for this case, the 1DCNN-BiLSTM-Attention network achieves
the best prediction results, which indicates that the method can
simultaneously explore the connection and pattern of the logging
curves in the depth, highlight the features that have a greater impact
on the S-wave velocity, and then get more accurate prediction
results. Figure 9 shows the cross-plot of S-wave velocity prediction
results using four methods. It is very apparent that the S-wave
velocity predicted by the 1DCNN-BiLSTM-Attention network is
more consistent with the real S-wave velocity, and the S-wave
velocity predicted by the empirical formula is more dispersed
and incorrect.

We analyze the errors of the prediction results to compare the
prediction performance of the different methods. Figure 10 shows
the error histograms of the four methods, and it can be clearly
seen from Figure 8A that the prediction errors of the 1DCNN-
BiLSTM-Attention network are all concentrated around error=0,
with a more uniform distributed, which exhibits an excellent
prediction performance and can be generalized to other logging
data for S-wave prediction. The prediction errors of the other three
benchmark methods have a wider range, and the prediction error
of Han’s empirical formula is concentrated around 250 m/s, which
is unacceptable and shows the empirical formula’s limitations in the
real field.
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FIGURE 9
Prediction results for Well A. (A) 1DCNN-BiLSTM-Attention network, (B) LSTM network, (C) BPNN, and (D) Empirical formula. The R2 show the
prediction accuracy for all methods.

FIGURE 10
The error histograms for the four methods of Well A: (A) 1DCNN-BiLSTM-Attention network, (B) LSTM network, (C) BPNN, and (D) Empirical formula.
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TABLE 1 Comparison of Well A prediction results.

Model R2 MAE (m/s) RMSE (m/s)

1DCNN-BiLSTM-attention 0.9546 34.68 56.29

LSTM 0.8555 55.81 100.45

BPNN 0.7673 76.18 127.46

Empirical formula 0.6169 142.05 163.54

FIGURE 11
Prediction results for Well C (black line: Real value, red line: 1DCNN-BiLSTM-Attention network, blue line: LSTM network, green line: BPNN, and light
blue line: Empirical formula).

We employed determination coefficient (R2), MAE, and RMSE
to evaluate the performance of different models. Table 1 shows
the R2, MAE, and RMSE of Well A. The R2, MAE, and RMSE of
the LSTM network are 0.9546, 34.68, and 56.29 m/s, respectively,
obtaining the highest R2 and the lowest MAE and RMSE among
all models. Compared with the LSTM network, BPNN, and
empirical formula, the prediction accuracy of the 1DCNN-BiLSTM-
Attention network increased by 11.58%, 24.41%, and 54.74%,
respectively; the MAE reduced by 37.86%, 54.48%, and 75.56%,
respectively; and the RMSE reduced by 43.96%, 55.84%, and
84.14%, respectively. It is clear that the 1DCNN-BiLSTM-Attention
network can simultaneously explore the connection and pattern
of the logging curves in-depth, highlight the features that have a
greater impact on the S-wave velocity, and then get more accurate
prediction results.

4.2 Comparison of the different wells

The second experiment is a comparison of different S-wave
velocity prediction methods in different wells. 25755 sets of data
from wells A and B of a real field area are employed as the training
set of the neural network, and 4,103 sets of data from wells C
(1957–2250 m) and D (1948–2220 m) are utilized as the test set to
verify the prediction performance and generalization of the network.
Similarly, the prediction results of the proposed method in the
study were compared with those of other three methods. The input
features and network hyperparameters for this experiment remain
unchanged from the previous section, i.e., AC, CNL, DEN, and
GR. Figures 11, 12 show the results of the four methods and the
comparison between the predicted and measured values of S-wave
velocity in wells C and D, respectively, in which the black curves
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FIGURE 12
Prediction results for Well D (black line: Real value, red line: 1DCNN-BiLSTM-Attention network, blue line: LSTM network, green line: BPNN, and light
blue line: Empirical formula).

FIGURE 13
Cross-plot of predicted results and real measured values: (A) Well C, (B) Well D.

are the real logging S-wave velocity values, and the other colors
are the prediction results of the corresponding methods. From the
two figures, it can be seen that the four methods show a certain
prediction effect on the S-wave velocity of the two wells, and the
trend of the prediction results is also consistent with the trend of
the real S-wave logging velocity. However, it is obvious that the

prediction results of the 1DCNN-BiLSTM-Attention network are
closer to the real measurements, and the prediction performance of
the empirical formula is significantly poor compared to the other
three methods.

Figure 13 shows the cross-plot of the true S-wave velocity values
and the predicted S-wave velocity values using the four methods.
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FIGURE 14
Relative errors of prediction results: (A) Well C, (B) Well D.

TABLE 2 Sampling range of tight sandstone model parameters.

Model R2 MAE (m/s) RMSE (m/s)

1DCNN-BiLSTM-attention 0.9752 16.49 23.18

LSTM 0.8265 45.02 57.63

BPNN 0.7954 49.33 66.53

Empirical formula 0.5361 77.88 100.18

TABLE 3 petrophysical parameters of five tight sandstone samples.

Model R2 MAE (m/s) RMSE (m/s)

1DCNN-BiLSTM-attention 0.9680 21.47 30.17

LSTM 0.8167 58.51 74.56

BPNN 0.7216 84.54 114.80

Empirical formula 0.7426 77.71 100.34

It is obvious that the S-wave velocity prediction using the method
proposed in this study and real S-wave velocity is consistent with
the slope in Figure 13, and the cross-plots of the predicted results of
the other three methods are away from the line y=x. Furthermore,
the R2 was 0.9752 and 0.9680, respectively, much greater than
the other three methods, indicating that our proposed method
has better prediction performance. For Well C, the prediction
accuracy of the 1DCNN-BiLSTM-Attention network increased by
17.99%, 22.60%, and 81.89%, respectively, compared to the other

three methods, and for Well D, the prediction accuracy of the
1DCNN-BiLSTM-Attention network increased by 18.53%, 34.15%,
and 30.35%, respectively.

Figure 14 shows the absolute value curve of the relative error
of the prediction results of the two wells using different methods.
As can be seen from the figure, the prediction error of the
method proposed in this study is basically below 4% for Well
C and below 3% for Well D, which is lower than the other
three methods.
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Tables 2, 3 show the R2, MAE, and RMSE of the prediction
results of the four methods. The 1DCNN-BiLSTM-Attention
network has the highest R2 compared with the benchmarkmethods,
indicating that the 1DCNN-BiLSTM-Attention network has the best
prediction accuracy. The MAE and RMSE of the prediction results
of wells C and D using the approach proposed in this study are
smaller than those of the LSTM network, BPNN, and empirical
formula, demonstrating excellent prediction performances and
prediction accuracy, and the 1DCNN-BiLSTM-Attention network
trained using wells A and B can be well generalized and
applied to wells C and D, exhibiting excellent generalization of
the network.

5 Discussion

In this paper, we propose a new deep learning framework
for S-wave velocity prediction, under which we build a new
network including 1DCNN, BiLSTM network, and fully connected
neural network, which combines the advantages of CNN and
LSTM network in feature extraction and introduces the attention
mechanism. However, it is clear that the network is ultimately still
a supervised learning network, and its powerful prediction ability
depends on sufficient high-quality labeled data. The requirement
for accurate labels often forces us to use synthetic data to train our
network because the labels in synthetic data are readily available
(Wu et al., 2019; Yang and Ma, 2019). However, synthetic data
often fail to describe the real conditions in the field area, which
ultimately leads to poor generalization of the well-trained neural
network. Therefore, reducing the difference between synthetic
and real data, as well as making the distribution of synthetic
data similar to that of real data, is an interesting method
for improving the generalizability of networks (Alkhalifah et al.,
2022; Zhang et al., 2022). Meanwhile, how to establish mapping
relationships for small sample datasets is what we need to explore
in the future, and how to improve the generalization ability
of the network as well as enhance the prediction performance
of networks through small sample datasets is also what we
need to consider.

6 Summary and conclusion

S-wave velocity estimation is an important task in reservoir
prediction. Considering the patterns and connections of logging
data in depth and the limitations of traditional LSTM networks
and CNNs for sequence data prediction, this study proposes
a new neural network, the 1DCNN-BiLSTM-Attention network,
for logging S-wave velocity prediction. This network combines
the strengths of CNN and RNN for feature extraction. We first
extract the local features of logging curves using 1DCNN, then
extract the long-term sequence features of logging curves using
the BiLSTM network, and at the same time add an attention layer
following the BiLSTM network to further highlight the features
that are more important for S-wave velocity prediction. The well-
trained network is applied to the real field data, including the
same well and different well applications, and the four input
logging data (AC, CNL, DEN, and GR) as input features. The

prediction accuracies of the three wells are 0.9546, 0.9752, and
0.9680, respectively, with RMSE less than 57 m/s andMAE less than
35 m/s.Using the same test logging data, the LSTMnetwork achieves
S-wave velocity prediction accuracy of R2<0.86, RMSE>57 m/s,
MAE>45 m/s, the BPNN achieves S-wave velocity prediction
accuracy of R2<0.80, RMSE>66 m/s, MAE>49 m/s, and Han’s
empirical formula achieves S-wave velocity prediction accuracy
of R2<0.75, RMSE>100 m/s, MAE>77 m/s. Obviously, compared
with the three traditional S-wave velocity prediction methods, the
proposed new network exhibits better prediction performance and
generalization ability and can provide accurate S-wave velocity
parameters for reservoir prediction. However, it cannot be ignored
that the 1DCNN-BiLSTM-Attention network proposed in this study
is a supervised learning algorithm, and its prediction accuracy
depends on the quality and quantity of labels. Therefore, we need
to consider how to improve the generalization and robustness of the
neural network.
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