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Pre-stack seismic inversion usually uses various traditional algorithms to
estimate elastic parameters such as P-wave velocity, S-wave velocity, and
density. It is hard to derive accurate elastic parameters due to their non-
uniqueness and high dimensionality between elastic parameters and seismic
data, the calculation of elastic parameters is inaccurate. Convolutional Neural
Networks (CNNs) have high-dimensional feature space mapping capabilities,
which are utilized to establish mapping relationships between seismic data
and elasticity parameters. However, their effectiveness is greatly affected by
label data, and at the same time, due to the lack of enough label data,
resulting in a low degree of fitting between prediction results and real data.
In addition, conventional seismic inversion methods based on CNNs lack
physical model constraints, resulting in low accuracy and poor interpretability
of prediction results. We propose a Cycle-consistent Generative Adversarial
Network based on a geophysical mechanism (SeisInv-CycleGAN). Deterministic
inversion results and labeled data are combined into hybrid geophysical data
as a training set of SeisInv-CycleGAN with geophysical constraints. At the same
time, the residual (seismic loss) between the seismic data synthesized by forward
modeling and the actual data is used as part of the loss function. The SeisInv-
CycleGAN does not require building an initial model, and it can achieve higher
accuracy in prediction results with a small amount of labeled data.

KEYWORDS

deep learning, geophysical constraints, elastic parameters, pre-stack seismic inversion,
seismic loss

1 Introduction

1.1 CycleGAN and loss function

Pre-stack seismic inversion, based on pre-stack seismic data and well-logging
data, allows for the inversion of various elastic parameters, which can then be
used to predict reservoir properties and hydrocarbon potential (Li et al., 2019).
However, the geological conditions of reservoirs have become more complex, making
it difficult to establish accurate relationships between seismic data and reservoir
parameters. To solve this problem, artificial neural networks (ANN) have been applied
in the inversion field (Zhao and Gui, 2005; Zhang H. et al., 2022; Liu et al., 2022;
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Zhou et al., 2022). ANN has been successfully employed in
geophysics to determine non-linear relationships in data (Röth and
Tarantola, 1994; Yin et al., 1994). Due to their simple structures and
immature technology, ANNs were not widely used in geophysics.
Recently, there has been a surge in academic interest in using deep
learning to solve geophysical problems, with Yu and Ma (2021)
analyzing the current and future situation of deep learning in
geophysics, covering data processing, inversion, and interpretation.

Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) are most widely used in seismic inversion.
Das et al. (2019) proposed a method based on one-dimensional
CNN for seismic impedance inversion, demonstrating the great
potential of CNN in predicting high-frequency impedance from
low-frequency signals. Phan and Sen, (2018) introduced a pre-
stack AVA waveform inversion method using Hopfield-based CNN
(CHNN), inverting pre-stack angle gathers to angle reflection
coefficients and then converting them to P-wave and S-wave
velocities and density parameters. Wang J. et al. (2022) employed
Residual Networks (ResNet) and causal convolution to build a
Time Domain Convolutional Neural Network (TCN), establishing
a mapping relationship between seismic data and wave impedance
(Wang J. et al., 2022). The limitation of CNN in capturing long-
term dependencies due to the size of their convolutional kernels
is well-addressed by RNN. Alfarraj and AlRegib (2019) applied
RNNs to estimate rock physical properties from seismic data;
An et al. (2019) used RNNs for predicting porosity and clay
content; Wang Y. et al. (2022) combined CNN with GRU for well-
logging curves prediction, showing good predictive capability for
local anomalies in the well log curves.

Usually, the amount of labeled data in seismic inversion is
limited (Song, 2021), especially the well-logging data is difficult to
effectively perform label augmentation, and CNN and RNN need
a sufficient amount of labeled data to predict the results with high
accuracy. To solve the small sample problem of seismic inversion,
semi-supervised or self-supervised methods need to be used. Cycle-
consistent Generative Adversarial Networks (Cycle-GAN) have
been proven as a powerful semi-supervised learning solution by
integrating unpaired data into their training. In a seismic inversion,
Wang et al. (2019) applied one-dimensional Cycle-GAN to seismic
wave impedance inversion, achieving significantly better prediction
accuracy than CNN. Cai et al. (2020) improved upon Wang’s work
by proposing a new algorithm that enhances the training robustness
of seismic inversion based on Cycle-GAN. Wang Z. et al. (2022)
extended and improved upon previous research, establishing five
different neural network inversion methods for wave impedance
inversion, and conducting noise resistance tests on the models. The
semi-supervised seismic inversion method based on Cycle-GANs,
as shown through model testing and practical data application,
effectively reduces the neural network’s dependence on labeled
data. Zhang H. et al. (2022) conducted a comprehensive study
on important aspects affecting inversion results in deep neural
networks, revealing the influence of hyperparameters and structures
on inversion performance, and developed a series of neural network
inversionmethods thatwere proven effective in reconstructing high-
frequency information in impedance models. Zhang S. et al. (2022)
combined geophysical information with neural networks to design a
geophysics-guided Cycle-GAN wave impedance inversion method.
Model tests and real data inversion results showed that this method

can add certain constraints to the neural network, making the
predictions more precise.

However, CNN, RNN, and CycleGAN are all completely
data-driven neural networks, that lack geophysical constraints
in the inversion process, leading to uncontrollable and poorly
interpretable predictions. To solve these problems, this study, based
on the Physics-guided Neural Networks framework (Arka et al.,
2020), combines the physical model of seismic inversion, making
improvements in training datasets and loss functions, and designs
a neural network structure with CycleGAN as the main framework
(SeisInv-CycleGAN). It integrates Residual Network (ResNet) and
Gated Recurrent Unit (GRU) networks as part of the generator
network.

ResNet solves the problems of gradient disappearance and
gradient explosion encounteredwhen training deep neural networks
by introducing residual connections. GRU is used to improve
the vanishing gradient problem of RNN. The seismic feature
extraction module consists of a series of bidirectional GRUs. Each
bidirectional GRU calculates a state variable from future and past
predictions to extract global features in seismic data.The correlation
of geologic structure is not unidirectional, and the deep geologic
structure is related to the overlying and underlying strata in the
vertical direction. Therefore, Cycle-GAN adopts a bi-directional
GRU structure, where the bi-directional GRU uses forward and
backward computation for each input data to obtain two different
hidden layer states respectively, and then the two vectors are
summed to obtain the final coded representation.The global feature
extraction module consists of a series of bi-directional GRUs, each
bi-directional GRU calculates a state variable from future and past
predictions, and one bi-directional GRU is equivalent to two uni-
directional GRUs, which are used to extract global features from
seismic data. Meanwhile, the added ResNet is a deep convolutional
neural network that solves the problems of gradient vanishing and
gradient explosion encounteredwhen training deep neural networks
by introducing residual connections to improve the operation
of Cycle-GAN.

To impose geophysical constraints on CycleGAN, a traditional
forward modeling generator network is used in place of the seismic
forward modeling generator network, and the residuals between
the predicted results of the forward model and the actual data
are included as part of the loss function. Additionally, results
from deterministic inversion are added to the neural network
training set to provide geophysical constraints on the training
outcomes. Testing with the Marmousi-2 model for pre-stack three-
parameter synchronous inversion shows that the proposed method
significantly improves prediction accuracy compared to CycleGAN,
with stronger noise resistance.

Taking CNN wave impedance prediction as an example to
compare the performance improvement of this method, it can
be seen from the experiment that the CNN trained with only
a small amount of data predicts poor wave impedance, and due
to the small amount of data in the training set, it is difficult
for CNN to learn enough features from the limited amount of
labeled data to map the relationship between seismic data and
wave impedance. The CNN trained with more labeled data predicts
much better results than the former, indicating that the CNN
has higher requirements on the training set and is unsuitable for
practical applications. SeisInv-CycleGAN uses a semi-supervised
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FIGURE 1
The CycleGAN inversion network architecture. The network comprises two generators and two discriminators, labeled as D1 and D2. The generators
are tasked with forward modeling of seismic data and inversion of reservoir parameters, while the discriminators evaluate the authenticity of the
generated outputs.

FIGURE 2
Generator network architecture incorporating GRU to model the relationship between seismic data and elastic impedance.

FIGURE 3
A schematic illustration of a basic Hybrid-Geophysics-Data (HGD) model. This model uses neural networks to establish the relationship between
seismic data and elastic parameters.
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FIGURE 4
Flowchart of the SeisInv-CycleGAN loss function with geophysical constraints. SeisInv-CycleGAN uses the traditional forward modeling process to
replace the generator used for forward modeling under the original CycleGAN structure. This can not only add geophysical constraints to the network,
but can also significantly reduce network training time.

FIGURE 5
The workflow of SeisInv-CycleGAN. The SeisInv-CycleGAN is built upon the base of CycleGAN, replacing the forward modeling network with a
traditional forward modeling process.
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FIGURE 6
The Marmousi-2 model data. The Marmousi-2 model is a wave impedance model with a total of 2,721 channels. The figure shows the P-wave velocity
(Vp), S-wave velocity (Vs), and density (ρ) of the Marmousi-2 model respectively. (A) P-wave velocity; (B) S-wave velocity; (C) density.

TABLE 1 Parameters used in forward modeling.

Parameters Value

incident angle 0°, 10°, 20°, 30°

Wavelet dominant frequency 30 Hz

seismic trace gathers 1,361

sampling points 191

learning model framework, and the prediction results do not differ
much when the training set size is different, proving that the
SeisInv-CycleGAN can reduce the dependence on labeled data.
The Cycle-GAN wave impedance prediction results are slightly
better than those of CNNs, which are roughly similar to the
real wave impedance profile. However, compared with the real
wave impedance profile, the Cycle-GAN predicted wave impedance
profile loses some useful deep information and has lower prediction
accuracy near anomalies. SeisInv-CycleGAN, due to the addition of
a hybrid geophysical datamodel and a loss functionwith geophysical
constraints on Cycle-GAN, from the prediction results, the hybrid
geophysical data model has a greater impact on the prediction
accuracy.

To train the CycleGAN inversion network, its loss function
consists of three parts, which are prediction loss, cyclic consistency
loss, and discriminator loss. Where the prediction loss is the error
between the labeled data and the predicted data, and the expression
is defined as

Le1 = ‖S− fWF
(M)‖ 22

Le2 = ‖M− fWI
(S)‖ 22

Here, S represents the labeled seismic data, and M denotes the
corresponding elastic parameter S. fWF

is the forward modeling
process mappingM to S, and fWI

is the inversion process mapping S
toM.

Cyclic consistency loss is a class of loss functions specific to
CycleGAN inversion networks, which are utilized to calculate the
loss values in labeled data and the loss values in unlabeled data. The
cyclic consistency loss is the core part of the whole loss function,

which can be expressed as

Lc1 = ‖S− fWF
( fWI
(S))‖ 22 + ‖S

∗ − fWF
( fWI
(S∗ ))‖ 22

Lc2 = ‖M− fWI
( fWF
(M))‖ 22

Here, S∗ represents the unlabeled seismic data. Due to the
presence of the cycle-consistency loss function, CycleGAN network
can effectively alleviate the limitations caused by the limited amount
of labeled data. The network not only learns the feature patterns in
the labeled seismic data during the training process but also mines
the potentially valuable information in the unlabeled data to make
up for the missing information that may exist in the labeled dataset.
This feature greatly reduces the dependence on a large amount of
labeled seismic data and enhances the generalization ability and
prediction accuracy of the network under the condition of limited
labeled data.

In Generative Adversarial Networks (GAN), the discriminator
loss function plays a crucial role. The CycleGAN inversion network
architecture is shown in Figure 1. Discriminators D1 and D2 are a
key component in the CycleGAN, whose main task is to classify
the generated samples and determine whether they are real samples.
The discriminator loss function is used to measure the accuracy and
reliability of the discriminator to classify the generated samples.

The discriminator loss function is defined as follows.

Loss function = log(D(x)) + log (1 − D(G(z)))

which represents the discriminator D(x) on the discrimination
result from the real sample, and D (G(z)) represents the
discriminator on the discrimination result from the sample
generated by the generator. Following the workflow in Figure 1,
we rewrite D(x) and 1-D (G(z)) in the above formulas into the
following specific parameters to demonstrate a binary game process
for finding the maximum and minimum, to ensure that the basic
features of the prediction results for unlabeled seismic data are the
same as those of the actual data. The discriminator loss, resembling
a min-max two-player game, can be expressed as follows.

min
WI

max
WD1

LD1 = log fWD1
(M) + log(1− fWD1

( fWI
(S)))

+ log(1− fWD1
( fWI
(S∗ )))

min
WF

max
WD2

LD2 = log fWD2
(S) + log fWD2

(S∗ ) + log(1− fWD2
( fWF
(M)))
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FIGURE 7
The location of the training set was selected from non-labeled training samples extracted from the seismic data of the Marmousi-2 model.

FIGURE 8
The training process of neural networks using non-labeled data. The goal of semi-supervised learning is to use non-label data to improve the
generalization performance of the model. The training principle of non-label data is to give the approximate label value of the pseudo-label data based
on the label data during the network training process. The training data is expanded by combining real labeled data and pseudo-labeled data to
improve the model’s generalization performance.
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FIGURE 9
The comparison of single seismic trace between deterministic inversion results and SeisInv-CycleGAN prediction results. (A) P-wave velocity; (B)
S-wave velocity; (C) Density.

The goal of the discriminator loss function is to maximize
the discriminative result of the real sample (D(x)) while
minimizing the discriminative result of the generated sample
(D (G(z))). In this way, the discriminator can gradually
improve its ability to discriminate real samples and thus
better distinguish between real and generated samples. The
discriminator loss LD1 ensures that the basic characteristics of
the predicted results for unlabeled seismic data are consistent
with the actual data. This component plays a crucial role
in maintaining the reliability and accuracy of CycleGAN’s
predictions.

As indicated in Figure 1, CycleGAN is a game
process, in which there is a competitive and cooperative
relationship between the discriminator and the generator,
and the discriminator loss function provides feedback
signals to the generator, telling the generator the gap
between the generated samples and the real samples. By
minimizing the discriminator loss function, the generator
can gradually generate samples that are closer to the
real samples and improve the quality of the generated
samples. The discriminator loss function drives this gaming
process by maximizing the discriminative results of the
real samples and minimizing the discriminative results
of the generated samples, helping CycleGAN achieve
dynamic equilibrium.

1.2 Generator network model

The CycleGAN structure is distinguished from other GANs by
having an additional generator and discriminator, which enables
it to be configured for semi-supervised learning. In this study,
a one-dimensional AlexNet (Krizhevsky et al., 2012) is used as a
discriminator capable of producing binary output for the binary
output, and GRU as well as ResNet are added to the generator
network structure. Residual networks, due to their internal residual
blocks that employ skip connections,mitigate the gradient vanishing
problem associated with increasing depth in deep neural networks
(He et al., 2016). To solve the long-time dependency problem, Cho
et al. proposed the GRU, an enhancement of RNNs that improves
the filtering of past information. The correlation between seismic
information across different strata makes GRU a suitable choice for
solving inversion problems.

As shown in Figure 2, the generator network consists of three
parts. Initially, seismic data is input in parallel to a module
comprising three serially connected GRUs and three residual blocks
with different dilation coefficients. The objective here is twofold: to
leverage the GRU’s capability to capture long-term dependencies
for extracting global features from seismic data, and to use the
residual blocks for extracting local features at different scales from
the seismic data, subsequently merging these local features using
fully connected layers and convolutional blocks. The convolutional
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FIGURE 10
The prediction results of different networks under noise-free conditions with a comparative analysis of CycleGAN and SeisInv-CycleGAN. (A)
CycleGAN; (B) SeisInv-CycleGAN.

block in this study is composed of one-dimensional convolutional
layers, batch normalization layers, and ReLU activation functions.
Subsequently, the extracted local and global features are combined
and input into a deconvolution block. The purpose of this block is
to upsample the resized input data back to its original sampling rate.
Finally, the data is input into a series of convolutional blocks to map
the data from the feature domain to the target domain, i.e., from
seismic data to elastic parameters.

1.3 Establish geophysical constraint
method

Pre-stack three-parameter inversion can be expressed as

S = G(M) + n

Here, S represents seismic data, M denotes elastic parameters,
G is the mapping relationship between them, and n is noise. The
essence of the neural network inversion method is to learn the

mapping relationship between seismic data and elastic parameters
from a given labeled dataset. As the Hybrid-Geophysics-Data
(HGD) model shown in Figure 3, initial wave elastic parameter
values are first obtained using deterministic inversion. These values
are then mixed with labeled data to form the neural network’s
training set, aiming to predict more accurate results.

In general regression problems, the loss function of a network is
calculated using the difference between the predicted values and the
sample’s label values.

loss = L(net(x),ylabel) = L(ypred,ylabel)

Here, L represents the calculation formula of the loss function,
x is the network input, net represents the network’s prediction
process, ypred  is the result obtained from processing x through net,
and ylabel is the sample’s label value. However, the training process
of such networks is heavily influenced by the training set and
lacks geophysical constraints. Therefore, this study incorporates the
results of forward modeling of geophysical equations as constraints
into the neural network’s loss function, ensuring that the predictions
align more closely with geophysical principles. The workflow
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FIGURE 11
The absolute errors between different network prediction profiles and model data under noise-free conditions with a comparative analysis of
CycleGAN and SeisInv-CycleGAN. (A) CycleGAN; (B) SeisInv-CycleGAN.

diagram of the loss function with geophysical constraints is shown
in Figure 4.

In a pre-stack inversion, the loss function uses Mean Squared
Error (MSE), which can be expressed as

loss =MSE(Mpred
i ,M

true) = 1
N
∑N

i=1
(Mpred

i −M
true
i )

2

Here, N represents the number of samples, Mpred is the elastic
parameter value predicted by the network, Mtrue is the true elastic
parameter value of the sample, andMSE denotes the Mean Squared
Error function. The synthetic seismic data calculated from the
predicted Mpred using the forward modeling process is compared
with the model seismic data usingMSE. The residual between these
two sets of data is used as a model-constrained loss term in the
seismic inversion problem and is referred to as seismic loss. Thus,
a complete loss function with geophysical constraints is obtained.

loss = lossinv + λlossseis

=MSE(Zpred
i ,Z

true
i ) + λ ∗ MSE(seispredi , seis

true
i )

Here, lossinv represents the MSE loss function between
the network-predicted elastic parameters and the true
elastic parameters, and lossseis represents the MSE loss
function between the seismic records obtained from the
forward modeling of the network-predicted elastic parameters
and the true seismic records. λ is a hyperparameter
determining the weight ratio between the prediction loss
and the seismic loss. The seismic loss addresses not
only the labeled data but also can calculate the loss
value for unlabeled data in other gathers, reducing the
network’s dependency on labeled data and enhancing its
generalization ability.

1.4 Workflow

The SeisInv-CycleGAN inversion framework, as shown
in Figure 5, is built upon the base of CycleGAN, replacing the
forward modeling network with a traditional forward modeling
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FIGURE 12
The comparison of single seismic traces of different network under noise-free conditions. (A) CDP=200; (B) CDP=1,100.

TABLE 2 The quantitative evaluation of the CycleGAN prediction results.

PCC R2 MSE/%

P-wave velocities 0.89 0.84 7.63

S-wave velocities 0.90 0.82 7.15

density 0.81 0.73 9.57

TABLE 3 The quantitative evaluation of the SeisInv-CycleGAN prediction
results.

PCC R2 MSE/%

P-wave velocities 0.96 0.95 1.18

S-wave velocities 0.97 0.94 0.97

density 0.94 0.94 1.05

process. This substitution not only imposes geophysical constraints
on the network but also significantly reduces the network training
time. After replacing the generator, the generator responsible for
forward modeling requires no training. As a result, the predicted

TABLE 4 The quantitative evaluation of the SeisInv-CycleGAN prediction
results.

PCC R2 MSE/%

P-wave velocities 0.91 0.94 1.97

S-wave velocities 0.92 0.91 2.16

density 0.91 0.90 2.20

loss of SeisInv-CycleGAN becomes

Le = ‖M− fWI
(S)‖22

LSeis = λSeisLc1 = λSeis(‖S− fWF
( fWI
(S))‖2

2
+ ‖S∗ − fWF

( fWI
(S∗ ))‖2

2
)

In the formula, λseis is theweight parameter ofLc1.The λseis added
to Lseis represents the loss function with geophysical constraints, and
the size of λseis determines the proportion of Lseis in the entire loss
function for subsequent evaluation.

When the network is trained, the generator network used
for seismic inversion is extracted and used as the final network
for predicting elastic parameters. As indicated in Figure 5, the
input is the entire pre-stack seismic data, and the network
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FIGURE 13
The predicted profiles of seismic data with different signal-to-noise ratios. (A) SNR=2; (B) SNR=5; (C) SNR=10.

outputs three elastic parameters: P-wave velocity, S-wave velocity,
and density.

2 Model testing

This study selects the Marmousi-2 model as the
experimental model to verify the advantages of the model-
constrained optimized generative adversarial network
seismic inversion method over other neural network-based
methods.

2.1 Training dataset

The Marmousi-2 model is shown in Figure 6, with the
parameters for the forward modeling part shown in Table 1. The
Marmousi-2 model is a wave impedance model with a total of 2,721
channels, each channel has 470 sampling points, and the sampling
rate is 1 m. Synthetic seismic data can be obtained through forward
modeling of the convolution model. According to the convolution

principle, seismic data can be calculated from wave impedance and
seismic wavelets. The calculation formula is as follows.

Ri =
Zi+1 −Zi

Zi+1 +Zi
, Seis =W ∗ R

In the formula, Seis is seismic data, Z is wave impedance, W is
seismic wavelet, and R is reflection coefficient. Among them, the
main frequency of the wavelet is 30 Hz and the sampling rate is
1 m. In the neural network, seismic data is taken as input, and wave
impedance is taken as output.

Synthetic seismic data are generated using the forwardmodeling
process derived earlier. After normalizing the data, it is divided into
training and testing sets.

To simulate real inversion problems, thismodel trial selects eight
tracks (0.6% of the total samples) of labeled data as the training set.
First, deterministic inversion is performed on the training set, and
then the corresponding deterministic inversion results and labeled
data are combined to form the network’s training set, enabling the
network to train on diverse data to capture complex features.

Section 1.1 explains the loss function of Cycle-GAN, which can
train on unlabeled seismic data to reduce reliance on labeled data.
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FIGURE 14
The absolute errors between predicted profiles and model data using seismic data with different signal-to-noise ratios (SeisInv-CycleGAN). (A) SNR=2;
(B) SNR=5; (C) SNR=10.

Therefore, 30 tracks of data are uniformly selected from non-labeled
seismic data (as shown in Figure 7) to expand the training set, which
initially contains only 15 labeled tracks.

The goal of semi-supervised learning is to use non-labeled data
to improve the model’s generalization performance. The training of
non-labeled data is a self-training method conducted after training
labeled data. The principle involves assigning approximate label
values (pseudo-labels) to non-labeled data based on labeled data
during the network training process. The training data is expanded
by combining real labeled data and pseudo-labeled data to enhance
the model’s generalization performance. The training process of the
neural network is shown in Figure 8.

2.2 Feasibility test

P-wave velocity, S-wave velocity, and density are three
basic elastic parameters characterizing a reservoir, and pre-
stack inversion is one of the most common methods to obtain
these parameters. However, due to the band-limited nature

of seismic data, noise in seismic records, and inaccuracies in
the forward modeling, pre-stack inversion is generally an ill-
posed problem, leading to unstable inversion results (Yang and
Yin, 2008; Feng, 2019). Despite advances in AVO inversion
and other technologies making the elastic parameters obtained
from pre-stack inversion increasingly accurate, most scholars
still find it challenging to achieve stable and high-precision
density inversion results (Li et al., 2019). Therefore, we focus on
the prediction of elastic parameters such as density using deep
learning methods.

To validate the feasibility of the proposedmethod, a single-track
comparison is made between the SeisInv-CycleGAN prediction
results and the results from deterministic inversion, as shown
in Figure 9. In the figure, the blue line represents the true values,
the red line represents the network prediction results, and the
black line represents the deterministic inversion results. It can be
seen that both the deterministic inversion and SeisInv-CycleGAN
predictions for P-wave and S-wave velocities closely match the
true values, with SeisInv-CycleGANhaving slightly higher accuracy.
However, as mentioned earlier, the density curves calculated using
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FIGURE 15
The predicted results of seismic data with different signal-to-noise ratios. (A) P-wave velocity; (B) S-wave velocity; (C) Density.

deterministic inversion deviate significantly from the model data
and are unstable. The SeisInv-CycleGAN prediction of density,
similar to its prediction of P-wave and S-wave velocities, directly
establishes a mapping relationship with seismic data. Therefore, the
SeisInv-CycleGAN density prediction results, like those for P-wave
and S-wave velocities, show a high degree of fit with the model data
curves. In summary, using the proposed SeisInv-CycleGAN for pre-
stack three-parameter synchronous inversion yields results superior
to traditional deterministic inversion. Next, a comprehensive
comparison will be conducted between the CycleGAN inversion
method and the proposed method in terms of prediction accuracy
and stability.

2.3 Model test under noise-free conditions

To validate the performance of the proposed method, a
comparative analysis of CycleGAN and SeisInv-CycleGAN is
conducted in three aspects: prediction result profiles (Figure 10),
absolute errors between prediction results and model data
(Figure 11), and single-track comparison at CDP 200 and 1,100
(Figure 12). Additionally, average values of Pearson Correlation
Coefficient (PCC), R-squared (R2), and Mean Squared Error
(MSE) were calculated as quantitative indicators to evaluate
network performance. Tables 2, 3 present the average PCC, R2,

and MSE values for the prediction results of CycleGAN and
SeisInv-CycleGAN.

The analysis and comparison of the above-mentioned figures
and tables show that SeisInv-CycleGAN outperforms CycleGAN
in all metrics. Although CycleGAN, as a semi-supervised learning
neural network, can learn features from unlabeled seismic data
and predict results close to model data in the case of insufficient
labeled data, it shows large deviations in predictions at complex
geological structures and faults where velocity changes abruptly,
with significant lateral jitters in overall predictions.This is attributed
to the lack of geophysical constraints in CycleGAN, resulting in
a lower correlation between predictions and model data, leading
to the mentioned issues. SeisInv-CycleGAN, an improvement
upon CycleGAN with an enhanced generator network and two
geophysical constraints, shows notably better prediction accuracy,
with minor deviations in predictions at complex structures and
faults. The PCC and R2 values for all three predicted parameters in
SeisInv-CycleGAN exceed 0.94.

2.4 Model test under noise conditions

To test the noise resistance of SeisInv-CycleGAN, seismic data
with Signal-to-Noise Ratios (SNRs) of 2, 5, and 10 were input into
the trained network.
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Table 4 presents the average PCC, R2, and MSE values for the
prediction results of the SeisInv-CycleGAN under noise conditions.
Taking the PCC value as an example, it can be seen from Table 4
that the PCC value of SeisInv-CycleGAN is greatly improved
compared to Cycle-GAN, and the accuracy of the prediction results
is improved more obviously, which indicates that the inclusion of
geophysical information greatly improves the prediction accuracy.

The network’s prediction results are shown in Figures 13, 14,
with a single-track comparison at CDP=200 shown in Figure 15.
From the prediction profile, it is evident that the profile at SNR=10 is
broadly similar to the noise-free prediction profile, SNR=5 slightly
impacts the accuracy of the predictions with the main structural
forms remaining relatively clear, and SNR=2 results in a more
blurred prediction profile with significant fluctuations at faults and
unconformities. The single-track comparison shows that the green
curve at SNR=10 is more stable and accurate in value prediction
than the yellow curve at SNR=5 and the black curve at SNR=2,
and is closer to the red curve representing noise-free seismic
data predictions. This demonstrates the strong noise resistance of
SeisInv-CycleGAN; at SNRs around 10 or higher, the network’s
predictions are almost unaffected. At SNRs around 5, the accuracy
of the predictions is slightly reduced but within an acceptable range.
At SNRs of two or lower, the strong noise signal leads to slightly
poorer network predictions, and noise suppression processing may
be required before inversion.

3 Conclusion

In this study, SeisInv-CycleGAN, a physically-guided cycle-
consistent generative adversarial network architecture based on
physical guidance, is proposed to realize high-precision pre-stacked
multi-parameter simultaneous inversion of a small amount of
labeled data by improving the structure of the generator network
in CycleGAN, replacing its orthogonal network with a geophysical
orthogonal one, and adding two kinds of geophysical constraints.
From the pre-stack multi-parameter synchronous inversion model
trials using the Marmousi model, it is evident that using a generator
network constructed with ResNet and GRU significantly enhances
the capability to extract features from labeled data. Employing a
hybrid geophysical data model and a loss function constrained
by geophysical principles effectively limits the neural network’s
training process, substantially improving its predictions’ accuracy.
Furthermore, the applicability of this framework is not confined to
the pre-stack three-parameter inversion of theMarmousi model but
can be extended to new research areas such as anisotropic parameter
inversion.
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