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The Xianshuihe fault zone in the eastern Qinghai–Tibetan Plateau is an
important active tectonic boundary. Understanding its stress state is important
for characterizing the dynamic evolution of the Qinghai–Tibet Plateau and the
mechanism of the frequent occurrence of large earthquakes. Using 30 years of
in-situ stress data from the Xianshuihe active fault zone, we statistically analyzed
the spatial distribution characteristics of the stress in the region. The study area
is generally characterized by a strike-slip stress field. Nevertheless, the stress
state is vulnerable to topography and shows high spatial variation near the
Earth’s surface at a depth of 0–400 m. The local stress near the fault zone varies
from the far-field stress. The orientations of the maximum horizontal principal
stress possess an elliptical shape around the fault zone, while its magnitudes
become hump-like as the distance increases from the fault. The large difference
in properties between the fault zone and its adjacent rocks contributes to the
differentiation of the direction of the local stress field near the fault. The results
allow us to formulate a preliminary hypothesis that a rigid lateral extrusion
model may control the nonuniformity of the local stress field in the Xianshuihe
fault zone and preferentially interpret the tectonic uplift of the southeastern
margin of the Qinghai–Tibet Plateau. Further, the stress accumulation in the
shallow crustal regions of the Xianshuihe fault zone is relatively high, indicating
that some segments of the fault zone are critically unstable. Kangding area
(the Zheduotang segment and the Yalahe segment) and Luhuo segment hold
relatively high potential for large earthquakes. The results of this study are of
great significance for revealing the mechanism of fault–stress field interactions
and for understanding the dynamic evolution mechanism of the uplift of the
Qinghai–Tibet Plateau.
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1 Introduction

Due to the collision of the Indian plate with the Eurasian
plate, the Qinghai–Tibet Plateau (QTP) has been undergoing
continuous uplift, resulting in horizontal tectonic movements and
the deformation of the southeastern QTP Since the Miocene
(Xu and Kamp, 2000; Shen et al., 2005; Royden et al., 2008). The
Xianshuihe fault zone (XSHF), located in the junction zone of the
Sichuan-Yunnan block and Baryan Har block in the southeastern
QTP, is characterized by intense tectonic activity (Wang et a.,
2014; Bai et al., 2018; Chevalier et al., 2018; Guo et al., 2018).
This active intracontinental strike-slip fault plays a significant
role in accommodating the post-collisional convergence between
the Indian and Eurasian plates (Tapponnier and Molnar, 1977;
Zhang G. et al., 2004). A number of strong earthquakes have
been reported in the region since 1900 (Zhang et al., 2003;
Zhang P. Z. et al., 2004), such as the Ms7.3 Daofu earthquake in
1923, theMs7.5 Kangding earthquake in 1955, and theMs7.6 Luhuo
earthquake in 1973. Recently, the fault appears to bemore active: two
earthquakes occurred in 2022 and 2023 in Luding with magnitudes
of Ms6.8 and Ms5.6, respectively. The mechanisms of earthquake
clustering have attracted the attention of researchers for a long time,
but have still not been fully understood.

Earthquake is a type of rock fracture driven by rock stress
in the Earth’s crust (Alexander, 1997; Oglesby and Day, 2002;
Liao et al., 2003; Liu et al., 2008; Guo et al., 2009; Duan, 2010).
Knowledge of the stress state of the Earth’s crust is very important
for understanding regional tectonics and predicting the stability
of faults (Fleitout and Froidevaux, 1983; Zoback, 1992). The in-
situ stress field of the crust is very complex and inhomogeneous,
especially in areas adjacent to faults, which causes surrounding
stresses to concentrate, attenuate, and even reverse (Zoback et al.,
2002; Cornet and Röckel, 2012; Lin et al., 2013). Research on
this topic began in the late 1970s; in-situ stress measurements
were conducted around the sinistral strike-slip San Andreas fault
zone located along the North American plate boundary with a
total length of approximately 1287 km (Sbar et al., 1979; Zoback,
1980; Shamir and Zoback, 1992; Hickman and Zoback, 2004). The
measurement results show that the orientation of the maximum
horizontal principal stress is approximately perpendicular to the
fault strike at distances of approximately 20 km away from the
fault, which is consistent with the far-field stress. In contrast, it is
nearly parallel to the fault strike within a distance of approximately
3 km from the fault. Additionally, the stress magnitude decreases
as the distance from the fault decreases. The in-situ stress field of
the approximately 2400-km long Tanlu fault zone, which passes
through the eastern China plate, exhibits similar characteristics
(Li et al., 1982; Feng et al., 2017). Some scholars have evaluated
fault stability based on the in-situ stress measured around the
fault zone. For example, in the southern section of the Tanlu
fault zone, the stress accumulation is relatively high, indicating
that this section is in a critically stable state, whereas the
degree of stress accumulation around the Bohai, Liaoning, and
Hebei sections are relatively low, indicating a relatively stable
state (Liu et al., 2017; Feng et al., 2017; Qiu et al., 2019; Zhang
et al., 2020).

Several in-situ stress measurements have been conducted along
with intensive engineering construction in the eastern QTP since

the 1980s, which provide an understanding of the stress state
around the Xianshuihe fault. However, existing studies have mostly
focused on the stress field near engineering construction sites
(Wang et al., 2015; Ren et al., 2021; Xu et al., 2021; Suo et al., 2022),
and there remains a lack of overall scientific analysis of the stress
field and fault stability status of the XSHF. In this study, we
first briefly describe the spatial distribution characteristics of the
in-situ stress data and the Holocene activity of the XSHF and
then analyze the stress field around the XSHF in detail based
on in-situ stress data. Next, we discuss fault stability, seismic
hazards along the XSHF, and the impact of XSHF activities on the
uplift mechanism of the eastern QTP. The results will provide a
better understanding of the relation between the stress field, the
seismic activities of the strike-slip XSHF, and the mechanism of
tectonic movement.

2 Geological background

2.1 Regional tectonic background and
spatial distribution of Xianshuihe fault

The XSHF is an active block boundary fault developed
on the southeastern margin of the QTP. It is a part of the
Xianshuihe-Xiaojiang fault system, which consists of several other
great faults, such as the Ganzi Yushu, Anninghe, Daliangshan,
and Xiaojiang fault zones (Figure 1A) (King et al., 1997; Zhang,
2013). It acts as the southern boundary of the Bayan Har
Block and the eastern boundary of the Sichuan-Yunnan Block
(Allen et al., 1991; Chevalier et al., 2018). The tectonic stress
field of this region is highly influenced by the northeastward
intracontinental subduction of the Indian Plate and the clockwise
rotation of the Sichuan-Yunnan Block, which resulted in the
left-lateral strike-slip movement of the XSHF (Xie et al., 1995;
Sheng et al., 2022).

The XSHF is slightly arc-shaped towards the northeast, with
a total length of approximately 400 km, a strike of 40°–50°
NW, and a dip of 55°–80° (Figure 1B) (Zhang G. et al., 2004;
Bai et al., 2018). The fault zone is not continuous but incorporates
several segments and can generally be divided into northwest
and southeast sections by the Huiyuan Temple Basin. The
northwestern section of the fault is developed in a slightly
overlapping left-stepped echelon, and it can be divided into three
segments from northwest to southeast: Luhuo segment (LHS),
Daofu segment (DFS), Qianning segment (QNS). The southeastern
section diverges through the Huiyuan Temple Basin to form
multiple secondary faults, i.e., Zheduotang segment (ZDS)/Kanding
segment (KDS)/Yalahe segment (YLS), the fault trace overlaps
with Moxi segment (MXS) in Kangding area, and connects
with the Anninghehe and Daliangshan fault zones near Shimian
County (Figure 1B).

2.2 Slip rate and seismic activity along the
fault since Holocene

The slip rate is one of the most significant indicators for
evaluating the activity, accumulated strain energy, and seismic
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FIGURE 1
The geological background of XSHF. (A)The location of study area modified from (Tapponnier et al., 2001); (B) Spatial distribution and seismic
development of XSHF(Stress measurements are from https://doi.org/10.12197/2023GA019); Historical earthquake data are from Wen et al. (2008) and
the National Earthquake Data Center (https://data.arthquake.cn/). GZ-YSF-Ganzi-Yushu Fault; LMSF-Longmenshan Fault; XSHF-Xianshuihe Fault;
DLSF-Daliangshan Fault; ANHF-Anninghe Fault; XJF-Xiaojiang Fault; LTF-Litang Fault; MEKF-Maerkang Fault; LRBF-Longriba Fault; YLXF-Yulongxi fault;
LHS-Luhuo Segment; DFS-Daofu Segment; QNS-Qianning Segment; YLS-Yalahe segment; KDS-Salaha-Kangding segment; ZDS-Zhedotang segment;
MGS-Mugecuo segment; MXS-MXS.

potential of a fault (Molnar and Tapponnier, 1978; Zhang et al.,
2008; Liu et al., 2021). High slip rate indicates that the fault
has strong activity and high accumulated strain energy (Li et al.,
2018; Li et al., 2019), which can be used to determine fault
stability and seismic hazard (Li et al., 2020). Several researchers
have studied the Holocene slip rate of the XSHF (Table 1).
The results show that the fault exhibits a shallow creep slip
behavior, and the slip rate gradually increases from northwest to
southeast along the fault (Zhang et al., 2018; Li et al., 2020; Qiao
and Zhou, 2021; Li et al., 2022a; Zhang et al., 2022). Qiao and Zhou
(2021) found a decrease in the strike-slip rate for the northwest
segment. They inferred that the branch faults may have been
locked, with a locking depth of approximately 7.6–18.5 km. The
high creep-slip rate of the southeastern segment of the XSHF
suggests high seismic hazard (Li et al., 2020), while the yearly
decrease in slip rate and deeper locking in the northwestern
segment of the XSHF also suggests possible seismic hazard
(Qiao and Zhou, 2021).

As a boundary fault in the eastern QTP, the XSHF has
observed strong seismic activities in the past centuries (Zhang et al.,
2003). Since 1700, a total of nine earthquakes with Ms ≥
7.0 and more than twenty earthquakes with Ms ≥ 6.0 have
occurred along the fault (Wen et al., 2008; Bai et al., 2018). The
seismic activity of the XSHF has been characterized by obvious
periodic occurrences, that is, two active periods and one quiet
period since 1700 (Papadimitriou et al., 2004; Wen et al., 2008;
Zhang et al., 2016). The first active period lasted 116 years,
from the Kangding Ms>6.5 earthquake in 1700 to the Luhuo
Ms7.5 earthquake in 1816. The second active period lasted 129
years since the Huiyuan Temple Basin Ms7.0earthquake in 1893

(Wen et al., 2008). During these periods, several characteristic
earthquakes occurred in the region, such as the 1816 (Ms7.5),
1923 (Ms7.3), and 1973 (Ms7.6) earthquakes in Luhuo and the
1725 (Ms7.0), 1786 (Ms7.75), and 1955 (Ms7.5) earthquakes in
Kangding (Figure 2).

3 In-situ stress data

Several in-situ stress measurements have been conducted
during engineering constructions or scientific investigations in the
past decades, which facilitate the analysis of stress distribution
characteristics around the XSHF. We collected 306 in-situ stress
measurements from published literature and engineering reports
since 1987. The in-situ stress data were measured using hydraulic
fracturing (289), stress relief (9), and acoustic emission methods
(8) at 46 sites near the fault, with the buried depth ranging
from 5 m to 1305 m (Table 2, specific data sources can be
accessed in Guo et al., 2023a). These in-situ stress data points were
uniformly located, and mainly concentrated in two areas: 236
data points in study area I and 47 data points in study area
II (Figure 1B). Study area I is located in the southeast section
of the XSHF, near the intersection of the ZDS, KDS, YLS, and
MXS, while study area II is located in the northwest section
near the LHS. In addition, there are three other areas with
relatively small numbers of stress data: the Jinping Village (JP)
and Dagangshan hydropower station (DGS) areas with 18 data
points in the southeast section of the MXS and the Erwacao
hydropower station (EWC) area with five data points near the
DFS (Figure 1).
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TABLE 1 Strike-slip rate of different segments along XSHF (mm/yr).

Xianshuihe fault zone References

Northwest section Southeast section

LHS DFS QNS YLS KDS ZDS MXS

10–20 5 Qian (1988)

5.5 Allen et al. (1991)

1.8–2.2 4.9–6.1 3.3–3.9 9.3–10.5 Zhou et al. (2001)

10–11 Shen et al. (2005)

15.1 4–6 Wang et al. (2008)

9–12 Wang et al. (2009)

8.7–10.3 7.7–8.8 7.3–8.3 7.1–7.6 7.0–7.4 7.2–14.7 Jiang et al. (2015)

4.6–12 Yan and Lin,
(2015), Yan and
Lin, (2017)

7.67–9.13 4.41–6.14 Li et al. (2019)

8.12–9.3 Sun et al. (2021)

9.4 8.8–9.4 9.9–14.3 17.9 Qiao and Zhou
(2021)

FIGURE 2
Spatial-temporal distribution of M ≥ 6.0 earthquakes in XSHF.

4 Results

4.1 The stress magnitude with depth

We analyzed the distribution characteristics of in-situ stress
surrounding the fault zone. The horizontal and vertical principal
stress components with respect to the buried depth are shown
in Figure 3. The results indicate that, in general, the maximum

horizontal principal stress σH dominates the stress field close
to the XSHF at depths shallower than 1400 m, having a stress
magnitude of 1.7–53.5 MPa. We further investigated the stress
fields of study areas I and II to understand the effects of different
locations around the fault. In study area I, the in-situ stress
magnitudes are very discrete at shallow depths, especially at depths
shallower than 400 m (Figure 3B). According to the Andersons’
fault stress model (Anderson, 1951), the stress state in each area
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TABLE 2 The collected in-situ stress data around XSHF (detailed data can be accessed in Guo et al., 2023a).

Location Measurement
approaches

Number of
sites

Number of
tests

Depth (m) σH

Magnitude
(MPa)

Direction (°)

Study area Ⅰ Hydraulic fracturing,
stress relief, acoustic
emission method

35 236 5–1305 1.7–53.5 1–171

Study area Ⅱ Hydraulic fracturing 7 47 15–236 3.7–19.8 20–80

EWC Hydraulic fracturing 1 5 408–424 8.4–13.1 155–160

JP-DGS Hydraulic fracturing,
stress relief

3 18 97–400 7.6–22.04 15–176

determines the fault types, namely, strike-slip, reverse, and normal
types. At depths greater than 400 m, the vertical stress component
gradually becomes the intermediate principal stress, indicating
that the fault type at greater depths is mainly strike-slip. The
southeastern segment of the XSHF in study area I is located at
the intersection of the Y-shaped tectonic zone, which is one of
the most active areas in the world, resulting in an extremely
complex shallow crustal stress state. In study area II, the in-situ
data were obtained mainly within a depth of 250 m (Figure 3C).
The stress field characterized (σH > σh > σV) by the in-situ stress data
indicates an inverse faulting stress regime. However, the seismic
source mechanism solution reflects a normal fault stress state
around the step over between the Yushu fault and XSHF with left-
lateral strike-slip motion (Zhou et al., 1983; Wen et al., 2008). This
indicates a complex stress state near the fault tip, coupled with
topography and geomorphology at shallow depths (e.g., Liu et al.,
2005; 2011). Previous studies have reported a similar phenomenon
in other pull-apart basins, for example, a reverse fault stress state
exists in the basin formed by step over Haiyuan strike-slip fault
(Lin et al., 2017; Lei et al., 2021).

The slope of the regression line shows that the change gradients
of σH, σh, and σV in study areas I and II are 3.23 MPa, 2.57 MPa,
and 2.68 MPa and 6.47 MPa, 4.68 MPa, and 2.61 MPa per 100 m,
respectively. The magnitude of the maximum horizontal principal
stress component in study area I is 3.3564 MPa, which is greater
than that in study area II (2.8931 MPa), indicating that the
horizontal tectonic stress near the Earth’s surface is stronger in the
southeastern section.

To further analyze the relationship between the horizontal and
vertical stresses at different depths around the fault zone, the lateral
pressure coefficient Kav proposed by Brown and Hoek (1978) was
adopted (Eq. 1), as shown in Figure 4. The results indicate that the
lateral pressure coefficient is relatively discrete at shallow depths.
As the buried depth gradually increases, Kav gradually converges
to approximately 1.03, which is slightly greater than 1.0, indicating
that the horizontal stress dominates the stress field within the depth
considered in this study. Previous studies have shown that the lateral
pressure coefficientKav of the Sichuan-Yunnanblock tends to be 0.95
within a buried depth of 1200 m (Zhang et al., 2022) and that of the
middle China North-South Seismic Belt tends to be 0.628 within
a buried depth of 749 m (Yang et al., 2012). A comparison of Kav

between the XSHF and the other two zones indicates that the XSHF
and the adjacent areas withstand stronger horizontal compression.
The stress state of the southeastern segment of the fault zone (Study
area I, Figure 4B) is more complex than that of the northwestern
segment (study area II, Figure 4C), which may be mainly due to the
intense tectonic activities and the steeper and higher terrain in study
area I. The Earth’s surface processes have substantial effects on the
stress field within a certain buried depth close to the Earth’s surface.

Kav =
(σH + σh)

2σV
(1)

where Kav is the lateral pressure coefficient; σH is the maximum
horizontal principal stress (MPa); σV is the vertical stress (MPa); σh
is the minimum horizontal principal stress (MPa).

4.2 Stress magnitude with fault distance

To analyze the change characteristics of the in-situ stress at
different locations around the fault zone, it is necessary to ensure that
the buried depths of the in-situ stress measurement points are at the
same level. Therefore, we converted the in-situ stresses at different
depths to those at the Earth’s surface using Eq. 2 (Brady and Brown,
2006). We obtained the values of maximum shear stress τm at each
measuring position using Eq. 3, which are equal at either buried
depth according to Eq. 2 (Jaeger et al., 2009).

σHo = σH − kγh (2)

τm =
σ1 − σ3

2
(3)

where k and γ denote the coefficient of lateral pressure and gravity
(kN/m3) respectively; h is depth (m); σH, τm, σ1, and σ3 are
the maximum horizontal principal stress, maximum shear stress,
and maximum and minimum principal stress (MPa), respectively;
σHo is the maximum horizontal principal stress (MPa) at the
Earth’s surface.

In study area I, the fault segment is composed of four
branched faults, the ZDS, KDS, YLS, and MXS, from southwest
to northeast (Figure 1). We found that the maximum horizontal
principal stress presents a hump shape on both sides of the
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FIGURE 3
The in-situ stress magnitude with depth: (A) total; (B) study area I; (C) study area II.

FIGURE 4
Distribution of lateral pressure coefficient with depth: (A) total; (B) study area I; (C) study area II.

fault zone, which can be depicted as a double-hump-type stress
field (Figure 5A). There is a low stress zone (hump valley)
between YLS and ZDS; as the distance increases from the
YLS and ZDS, the stress magnitude gradually increases on

both sides and reaches a peak (hump), then decreases and
eventually stabilizes. We calculated the maximum shear stress
and obtained its average magnitude at different buried depths
for each site. As the fault distance increases, the magnitude of
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FIGURE 5
Distribution of maximum horizontal stress (σHo) and shear stress (τm) with fault distance: (A) σHo and τm in study area I; (B) σHo and τm in study area II.

the maximum shear stress also shows a similar “double hump”
trend (Figure 5B). However, the stress field around the LHS in
study area II is not as complex as that in study area I. This
indicates that the maximum horizontal principal stress exhibits a
“single hump” distribution feature. The stress magnitude reaches
a hump near the fault zone, decreases gradually, and then tends
to be consistent with the far-field stress field with an increase
in the fault distance (Figures 5A, B). The results indicate that
the stress always increases near the fault zone, generally within
the relatively intact host rocks neighboring the fracturing rocks.
The double and single humps near the fault zone primarily stem
from the width of the fault zone. A wider fault zone leads to
a reduction in stress in the fractured rock mass (Sibson, 1980;
Weng et al., 2020).

We interpolated the in-situ stress using the inverse distance
weighting method of ArcGIS and obtained the stress contours
for study areas I and II (Figures 6A, B). In study area I, a stress
concentration (14.3–33.6 MPa) occurs at the southwestern side of
the fault tip (the red area of the ZDS in Figure 6A), while a stress
relaxation (4.5–9.1 MPa) occurs at the northeastern side of the fault
tip (the green area of the YLS in Figure 6A). Such stress distributions
mainly result from the movement of the left lateral strike-slip fault
zone. The stress concentration and relaxation areas around the
southeastern fault zone correspond to the Minya Konka and Yalahe

valleys, respectively (Wen and Bai, 1985), which may indicate the
possible effect of the sinistral strike-slip on the formation of the
geomorphology around the fault tip (Figure 6C) (Guo et al., 2016).
In study area II, a significant stress variation is observed around
the fault tips, reflecting the influence of the fault zone on the
surrounding stress field.

4.3 Stress orientation surrounding the fault
zone

At locations near active faults, the stress orientation is often
deflected and inconsistent with the regional stress field, and it
is important to understand the stress disturbance around faults,
which is still less understood (Zoback, 1992; Chang et al., 2010). We
plotted the in-situmaximum horizontal principal stress orientations
around the fault zone and the three stress zones using a rose
diagram (Figure 7). The results showed that the dominant stress
orientation in Baryan Har stress zone (B217)、Longmengshan-
Songpan stress zone (B218) and Sichuan-Yunnan stress zone (B219)
are 20–40°NE, 280–320°NWW and 290–310°NWW, respectively
(Figure 7A). The dominant stress orientation near the northwest
tip of the fault is approximately 50°–70° NEE, holding a large
intersection angle with the fault. The stress orientation on the
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FIGURE 6
Maximum horizontal stress contours around fault segments: (A) study area I; (B) study area II; (C) stress disturbance around the sample with cracks. F
denotes preexisting fault, and σ1 denotes far-field principal compressive stress (Modified from Guo et al. (2016)).

two sides of the fault zone is generally in the NW direction,
which is in accordance with the fault strike. The dominant stress
orientation near the southeastern tip of the fault is NE, which is
nearly perpendicular to the fault. Overall, the orientation of the
maximum horizontal principal stress exhibits an elliptical shape
around the XSHF, which is significantly different from the dominant
stress orientation of the three neighboring stress zones. (Figure 7).
This type of stress distribution has been reported in several studies
(Yale et al., 1994; Scholz, 2000; Su, 2002; Yale, 2003; Zhao et al.,
2013). In the elliptical-shaped stress field, the stress orientations
exhibit a deflection of approximately 30° between the two sides of
the fault in study area I, and the largest deflection occurs around the
southeastern tip, reaching nearly 90°. Such a deflection of the nearby
stress orientation may result from the extreme heterogeneity in the
mechanical properties of the fault zone, fractured rocks, and nearby
undisturbed host rockmass (Hudson and Cooling, 1988; Hardebeck
and Hauksson, 1999; Provost and Houston, 2001; Su et al., 2003).

The in-situ stress analysis indicates that the local stress field around
the XSHF is highly disturbed, which may be influenced by a series
of factors, such as fault properties, fault spatial distribution, and
tectonic activity intensity.

5 Discussion

5.1 Seismogenic potential assessment
based on the stress state

High ground stress tends to drive fault slip and trigger
earthquakes (Elsworth et al., 2016). Near the LHS, ZDS, YLS, and
MXS, the σH and τm are relatively high compared with the far-field
stress. The stress concentration around the tips or intersections of
fault segments provides the requisite conditions for earthquakes, i.e.,
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FIGURE 7
Rose diagram of the maximum horizontal principal stress orientation around the XSHF (A) Three stress zones (detailed data can be accessed in
Guo et al., 2023b); (B). Schematic diagram of the elliptical-shaped stress field. (The red fan-shaped in the rose diagram indicates the regional dominant
orientation; the red and blue solid lines indicate the stress orientation at the measured points on the west and east sides of the XSHF, respectively, the
gray dashed line indicates elliptical-shaped stress orientation around the XSHF).

study areas I and II. In fact, over half of the historical earthquakes in
the XSHF with Ms ≥ 6.0 occurred in these areas (Figures 6A, B).

The sliding potential of a fault is defined by the ratio of the
shear stress τ to the normal stress σ acting on the fault (Eq. 4;
Morris et al., 1996). When the shear stress τ reaches its sliding
resistance, the fault slips, converting the accumulated strain energy
into kinetic energy and thereby causing crustal deformation and
even earthquakes (Tanaka et al., 1981;Wang et al., 2012). According
to Jaeger et al. (2009), the ratio μm of the maximum shear stress τm
to the maximum normal stress σm can be expressed as a function
of the friction coefficient μ (Eq. 5). The pore water pressure P0 is
also considered because it can weaken the effective normal stress
(Chang et al., 2010).

τ = μσ = tan φσ (4)

μm = τm/(σm − P0) = (σ1 − σ3)/(σ1 + σ3 − 2P0) = μ/[(1+ μ
2)1/2]

(5)

where σ1 and σ3 are the maximum and minimum principal stresses
acting on the fault plane, respectively; P0 denotes the pore pressure,
which can be approximately represented by water column static
pressure, i.e., P0 = ρh in this study, where ρ and h denote the density
of water and buried depth, respectively.

The larger μm signifies a higher degree of stress accumulation,
and when the stress level along a fault reaches a threshold
value, the stress is released through fault activity, and then μm
decreases to maintain the stability of the crust (Zhang et al., 2022).
Townened (2000) analyzed boreholes drilled data and found that

the stress magnitudes are consistent with Coulomb frictional-failure
theory for coefficients of friction of 0.6–1.0 such as are measured
experimentally in laboratory settings (Byerlee, 1978), and noted
that the stress accumulation degree is high when μm between 0.5
and 0.7, and that faults are susceptible to sliding instability when
μm exceeds 0.7 (Townened and Zoback, 2000). However, some
studies have indicated that the friction coefficient of fault rocks can
weaken to approximately 0.2 due to special composition of the fault
gauge (Qin et al., 2014). and Li et al. (2018) showed that when μm
is between 0.2 and 0.5, the stress intensity is low and the chance of
fault reactivation is small, and when μm is less than 0.2, the fault is in
a stable state. Accordingly, we calculated using Equation 5 that the
range of μm to cause fault activity and evaluate the degree of stress
accumulation and stability of the fault zone (Table 3).

It is important to note that the present evaluation approach does
not consider the spatial relationship between the fault strike and
the axis of the maximum principal stress; therefore, the slip trend
obtained represents the maximummagnitude, whichmay lead to an
overestimation of the seismic hazard. In addition, the depths of in-
situ stressmeasurements are limited to 2000 m,whereas earthquakes
mostly occur at depths of approximately 10 km. The high stress at
shallow depths always reflects the high stress at greater depths.Thus,
we hypothesize that the stresses at shallow depths (<2000 m) and
great depths (∼10 km) are coupled with each other (Li et al., 2023).

We calculated the effective normal stress and shear stress
based on the measured stress data and then evaluated the degree
of stress accumulation at each measuring position (Figure 8).
On this basis, we discuss the degree of stress accumulation at
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TABLE 3 Classification for stress accumulation degree and fault stability (Townened and Zoback, 2000; Li et al., 2018).

μm Stress accumulation classification Fault stability depiction

>0.7 Very high Unstable, prone to sliding

0.5–0.7 High In critical state

0.2–0.5 Moderate Relatively stable

<0.2 Low stable

FIGURE 8
Stress accumulation characteristics of different locations around the fault. (A) Ratios of effective normal stress with shear stress; (B) the degree of stress
accumulation with buried depth.

different fault segments of the XSHF, i.e., Luhuo segment, Daofu-
Qianning segment, Zheduotang- Kangding- Yalahe segment, and
Moxi segment from northwest to southeast.

5.1.1 Luhuo segment
Thestress accumulation atmost of themeasuring points in study

area II, near the northwestern tip of the fault zone, was classified
as high or very high (μm>0.5). Although the buried depths of the
measuring points are generally shallow (mostly <300 m) (Figure 8,
Figure 9B), the high degree of stress accumulation indicates that
the LHS possesses a high sliding potential. In addition, it has been
50 years since the 1973 M7.6 earthquake, which is close to the 50-
year elapsed time of the last two characteristic earthquakes that
occurred in 1923 and 1973. This indicates the possibility for a
characteristic earthquake to occur in the near future.

5.1.2 Daofu-Qianning segment
The Daofu-Qianning Segment is located in the middle of the

fault zone. The limited stress data in the EWC measuring point
shows that the degree of stress accumulation around this segment
is mostly classified as medium or low (μm < 0.5), not as high as that
of LHS. However, based on the analysis of the elapsed time and the
amount of dislocation loss, Bai et al. (2022) observed the earthquake

potential of this segment for strong earthquakes aboveMs6.8, which
can be used for reference.

5.1.3 Zheduotang-Kangding-Yalahe segment
The Zheduotang-Kangding-Yalahe segment is located in the

southeastern fault zone and consists of three sub-parallel branch
faults, as shown in study area I. The degree of stress accumulation
in this area tends to decrease with an increase in buried depth.
Themeasuring points with very high- and high-stress accumulation
(μm>0.5) extend from the surface to a depth of approximately 800 m,
indicating that this segment has accumulated a high amount of
energy. Furthermore, the stress accumulation presents a double-
hump feature in the section perpendicular to the fault (Figure 9A).
The degree of stress accumulation is moderate or low (μm < 0.5,
valley) near the KDS and MXS which are located in the middle of
the three branch faults. However, the degree of stress accumulation
is very high (μm > 0.7, camel hump) near the northeast YLS,
high (0.5<μm<0.7, camel hump) near the southwest ZDS, and
decreases to a moderate degree when far away from the fault zone
(0.2<μm<0.5).

The Zheduotang-Kangding-Yalahe segment has witnessed
several large historical earthquakes. There were five earthquakes
greater than Ms6.0 during the 116-year period from 1700 to 1816
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FIGURE 9
Distribution of stress accumulation degrees with fault distance: (A) study area I; (B) study area II (Red, orange, yellow and green dots indicate extremely
high, high, medium and low stress accumulation, respectively, which is calculated according to Eq. 5).

and two earthquakes since 1950, i.e., Ms7.5 and Ms6.3 in 1955 and
2014, respectively. Considering the recurrence period of 260 years
in the Kangding area and the last earthquake of Ms 7.75 in 1786,
the ZDS has a high potential for strong earthquakes of M6.9 ±
0.3 (Wen et al., 1989; Ma et al., 2022). All these indicate that this
segment has a high potential for strong earthquakes.

5.1.4 Moxi segment
The MXS is the southeastern segment of the XSHF. Based on

the in-situ stress measured from the JP-DGS area, all the measuring
points are characterized by a high or very high degree of stress
accumulation (μm > 0.5), indicating that the MXS is in a critical
or unstable state. Currently, earthquakes are frequently occurring in

this area, e.g., 2022M6.8 and 2023M5.6, confirming the high seismic
potential of the area.

Our analysis shows that the LHS, YLS, ZDS, and MXS
have high degree of stress accumulation. The local stress around
the fault is always higher than the far-field stress, which is in
accordance with the stress distribution characteristics noticed
around many other faults before earthquakes, such as the 1995
HyogoMs7.2 earthquake and the 2008WenchuanMs8.0 earthquake
(Tanaka et al., 1998; Guo et al., 2009). The “Static Stress-Tiggering
Hypothesis” states that the interaction between faults will cause
a change in seismic potential (King et al., 1994; Hodgkinson et al.,
1996; Hardebeck et al., 1998; Zhang et al., 2003; Wen et al., 2008).
Therefore, the occurrence of the Luding earthquake in 2022 in the
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MXS is likely to cause an increase in coseismic Coulomb stress of
nearby branch faults in the XSHF.Therefore, full attention should be
paid to the potential seismic hazards in high-stress areas, including
the ZDS, YLS, MXS, and LHS.

5.2 Implications for the regional tectonic
movement

Dynamic models depicting the uplift of the southeastern
QTP mainly include the lateral extrusion of rigid blocks
(Tapponnier et al., 2001), lower crustal flows (Royden et al., 1997),
and continuous deformation of the entire lithosphere (Molnar
and Tapponnier, 1975; Houseman and England, 1993). The lateral
extrusion of rigid blocks refers to the boundary force driven by
the uplift deformation of the QTP resulting from the India–Eurasia
collision. The rigid block is compressed and uplifted due to the
movement of the strike-slip boundary faults in the southeastern
QTP (Tapponnier et al., 1982; Peltzer and Saucier, 1996; Peltzer
and Tapponnier, 1998; Calais et al., 2006). The lower crust flow
model is driven by gravity generated by the crustal thickening
of the central QTP. The weak viscous layer moves outward from
the central plateau through the lower crust as a channel with
uniform thickness and causes crustal uplift around the strong
Sichuan and Tarim Basins (Block and Royden, 1990; Clark and
Royden, 2000). Because different dynamic models correspond to
stresses caused by different sources, the stress distributions can
provide the information for clarifying the dynamic models for the
plateau crust.

The in-situ stress field shows that the horizontal stress is always
the dominant stress around the XSHF (Figure 3). The stress state
in the region is characterized by strike-slip with thrust, which is
consistent with previous studies that the sinistral strike-slip and
thrust movements are the main crustal deformation processes in
the eastern margin of the QTP (Molnar and Tapponnier, 1975;
Tapponnier et al., 2001; Li et al., 2022b). Further, when the rigid
crust constrains the strike-slip fault movements, the adjacent
crustal rockmass is laterally shortened by translational compression
(Harland, 1971; Sanderson and Marchini, 1984), followed by
compensatory tectonic uplift (Lowell, 1972; Wilcox et al., 1973;
Bartlett et al., 1981). Meanwhile, the study indicated that strain rate
field shows highly localized shear strain along the Xianshuihe fault
zone (Li et al., 2019). The results of terminating crustal extrusion
near the margin of southeastern Tibetan Plateau are consistent
with the decreasing slip rates along the Xianshuihe fault zone
(Zheng et al., 2017), where strain localization along the major
strike-slip faults ends and transfers to crustal compression and
thickening. The geomorphological characteristics of the rapidly
uplifting Minya–Konka fault block in this area are consistent
with this process (Wen and Bai, 1985). Similar conclusion
has been reached by studies in northeastern Tibetan Plateau
(Li et al., 2018). Moreover, the geometric spatial distribution of
the XSHF is similar to the geometric shape of the slip line
in the plane indentation plasticity problem (Figure 10), and the
SE–NW oriented regional horizontal principal stress direction
distribution may also be related to the indentation effect caused
by the India–Eurasia collision (Tapponnier and Molnar, 1976;
Sylvester, 1988). The above analysis shows that the study area is

FIGURE 10
Slip line field and plastic zone of the indentation yield point of a plane
rigid block in a semi-infinite medium. This figure is modified from
Tapponnier and Molnar (1976); Σ denotes the possible plastic
boundary at the yield point, and α and β slip lines denote the two
orthogonal families of curves.

controlled by strong horizontal tectonic movement caused by the
India–Eurasia collision. Based on the characteristics of the stress
field, the tectonic uplift of the southeastern margin of the QTP
appears to be more consistent with the rigid lateral compression
dynamic model.

6 Conclusion

In this study, we analyzed the distribution characteristics of the
stress magnitude, orientation, and accumulation degree based on a
series of in-situ stress data collected for the XSHF. Based on the stress
data, the fault stability and seismic hazards of each fault segment
were evaluated. The main conclusions are summarized as follows:

1) The stress field around the XSHF is extremely complex,
especially at shallow depths near the Earth’s surface, caused
by geomorphic stress and tectonic activities. The coexistence
of the strike-slip, thrust, and normal stress states indicates
multiple types of fault movements at different fault locations.
Horizontal stress dominates the stress field, and in the
southeastern parts of the fault zone, the fault movement
becomes purely strike slip at great depths, i.e., at depths more
than 400 m.

2) The stress field around the fault was significantly different
from the regional stress field. “Elliptical” stress fields were
formed on both sides of the fault zone, and the magnitude of
the stress is characterized by single or double hump-like as
distance increases from the fault. The material heterogeneity
of the fault zone and its adjacent host rocks controls the local
stress field, resulting in the decoupling or rotation of the local
stress near the fault. This study shows that the stress measured
within a specific range of the fault zone does not represent the
regional stress; however, regional stress has some implications
for in-situ stress measurements.

3) The degree of stress accumulation are classified as high or very
high in some fault segments: LHS, ZDS, YLS, and MXS.
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Such a high degree of stress accumulation indicates a critically
unstable or prone to sliding state of fault segments. A
comprehensive analysis indicates that ZDS, YLS, and LHS have
a relatively high potential for strong earthquakes.

4) The stress-based analysis shows that the study area is
dominated by the strong horizontal tectonic movement
generated by the India–Eurasia collision and that the regional
tectonic uplift is more in line with the rigid lateral compression
dynamic model.
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