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Coal is China’s main resource, with open-pit mining accounting for a significant
portion of global production. However, this activity, including mining and
ecological restoration, can have a definite impact on ecosystem carbon
storage and its distribution; its associated factors are also unclear. In this
paper, we quantify the carbon storage changes in Haerwusu coal mine, a
typical large-scale coal mine in China, based on land use/land cover (LULC)
characteristics, and analyze the impact factors of carbon density from 2007 to
2022 by integrating the InVEST model with the landscape ecological function
contribution ratio and multiple regression model. The results are as follows.
(1) Carbon storage decreased from 159.95 × 104 to 147.51 × 104 from 2007
to 2017 and then increased to 151.91 × 104 to 2022. (2) The degree of
coordination between carbon storage forest and grassland area landscape
pattern coupling ranged from 0.887 to 0.867 from 2007 to 2022, with the lowest
point at 0.720 in 2012. (3) Carbon storage was significantly related to vegetation
indices, temperature, and elevation, and these factors can explain 37.5% of the
carbon storage spatial variability; stepwise regression analysis showed that the
integration of landscape patterns, such as Shannon’s diversity index (SHEI) and
the aggregation index (AI), could improve the explanation by 1.4%. (4) Based on
the analysis of the landscape ecological function contribution ratio, the carbon
storage-sensitive areas can be classified into three levels: extremely sensitive
areas ranging 0 to 4 km from the mine, sensitive areas ranging 4 to 8 km,
and insensitive areas ranging beyond 8 km. This study proposes a strategy for
analyzing changes of carbon storage in coal mines, highlights the important
role of landscape patterns in influencing carbon storage, and provides a reliable
reference support for the ecological management of coal mines.
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1 Introduction

Coal remains an important energy resource, and coal mining is far from a sunset
industry. According to the 2018 global reserve–production ratio, open-pit mining accounts
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for approximately 40% of global coal production (Bian et al.,
2010; Gadonneix et al., 2013; Corporation, 2019; Wu et al., 2020).
However, open-pit coal mining and utilization have been highly
influential on land use/land cover (LULC), which can directly affect
the distribution and functions of vegetation and cause changes
in ecosystem carbon storage (Zhu et al., 2022). Furthermore, coal
mining is also considered a notable source of regional anthropogenic
damage to the environment and leads to many eco-environmental
problems (Misthos et al., 2017; Yang et al., 2018; Wei et al., 2020;
Wu et al., 2020; Xing et al., 2020).

The existing approaches for assessing ecosystem carbon storage
mainly involve field surveys, remote sensing, and empirical
statistical modeling. Tang et al. (2018) set 1.4×104 fixed quadrates
to assess the carbon pools in China. Odebiri et al. (2022) evaluated
the carbon stock distribution by combining vegetation indices with
a deep learning approach. However, such approaches carry the
risk of higher costs or inaccurate evaluations. Generally, carbon
sequestration capacity varies considerably across LULC (Ni, 2013;
Li et al., 2020). Hence, a well-established empirical statistical model
based on the impact of LULC changes in carbon storage is more
suitable for evaluating the carbon storage. InVEST (Integrated
Valuation of Ecosystem Services and Trade-offs) as an ecosystem
model has been applied to assess carbon emissions and storage
on a wide range of scales, although it has been applied less
frequently to coal mines (Costanza et al., 2017; Gomes et al., 2021).
Landscape patterns are a series of arrangements and combinations
of different sized patches and shapes in the spatial domain
(Quesada-Román and Mata-Cambronero, 2021; Quesada-Román
and Mata-Cambronero, 2023). The landscape index can reflect the
landscape structure and spatial pattern changes and is regarded
as the quantitative indicator of highly concentrated information
on landscape patterns, reflecting changes in landscape structure
and spatial patterns (Chen et al., 2016; Mcgarigal et al., 2018). For
a specific study area, the selection of an appropriate study scale
is particularly important for the results of landscape patterns
(Li et al., 2014). Previous studies have indicated that the statistical
semi-variance function and moving window method can be used
to better analyze the variance relationship between landscape
patterns and spatial variables and achieve the quantification
of landscape patterns at the regional or district scale, clearly
demonstrating the characteristics of landscape heterogeneity at the
spatial scale (Yin and kong, 2005; Pickett et al., 2018). Generally,
the variations in landscape indices are commonly due to human
activities (Liu X. et al., 2022). In open-pit coal mining, where
human activities are more concentrated, the resulting changes in
landscape patterns are more significant. Presently, research on
carbon storage and landscape pattern changes have been topical
in the mining field, although analyses of their correlation are
often neglected (Cao et al., 2016; Liu Y. et al., 2022). Furthermore,
previous studies have demonstrated that the impacts of human
activities on landscape patterns and carbon storage in mining areas
have certain regularities, although there is a lack of systematic
research (Wu et al., 2020; Liu X. et al., 2022). Hence, the relationship
between landscape patterns and carbon storage and the effects
of human activities on the distribution of landscape patterns and
carbon storage in coal mines need to be explored, which can help
us understand the impact of human activities on carbon storage.

In this study, we selected the Haerwusu open-pit coal mine,
located in the Inner Mongolia Autonomous Region, as the research
area.This research is specifically aimed at 1) analyzing the changes in
carbon storage and landscape patterns based on LULC change from
2007 to 2022; 2) exploring the relationships among carbon storage
and vegetation indices, climate, topographical, and landscape
pattern index factors; 3) evaluating the impact of human activities
such as mining and ecological restoration on the distribution of
landscape patterns and carbon storage in mining areas. We thus
provide a basis for carbon storage analysis and contribute to the
development of countermeasures for ecological governance and
sustainable development in mining areas.

2 Materials and methods

2.1 Study area

The Haerwusu open-pit coal mine belongs to the Jungar
coalfield in the Inner Mongolia Autonomous Region, China
(111°10′00″–111°22′30″E, 39°39′45″–39°44′15″N) and covers an
area of 67.14 km2 (Figure 1). The Haerwusu mine went into
operation in 2006 with a service life of 96 years and an estimated
1730 Mt (Chang et al., 2023). As a large-scale coal mine, its
development and utilization of open-pit coal mine production and
construction activitieswill create huge environmental pressurewhile
promoting regional economic development (Chang et al., 2023).The
region is in a temperature semiarid continental monsoon climate
zone with an annual average temperature, rainfall, and evaporation
of 5.3°C–8.2°C, 399.0 mm, and 1933.5 mm, respectively in the past
10 years.

2.2 Data sources and processing

2.2.1 Remote sensing data
Four periods of remote image sensing—2007, 2012, 2017, and

2022—covered the early stage of coal mining and the period of
coal mine ecological management to the present in the study
area, including QuickBird data in July 2007 (https://earth.esa.
int/) and August 2012 (https://earth.esa.int/), WorldView data
in August 2017 (https://earth.esa.int/), and Jilin-1 satellite data
in September 2022 (https://www.jl1mall.com), with resolutions
of 0.6 m, 0.5 m, and 0.8 m, respectively. We used ENVI 5.3
software to pre-process remote sensing data, including radiometric
calibration, atmospheric radiation correction, and geometric and
other operations (Jia et al., 2014). To guarantee that the images from
various periods were of the same resolution, a nearest-neighbor
resampling method was applied to resample the remote sensing
images in 2007, 2012, 2017, and 2022 to 10 m using ArcGIS 10.2
software (Seidel et al., 2018). The type of land use was classified
into nine categories—cropland, forest, grassland,water,mining land,
industrial land, transportation land, and reclaimed and unreclaimed
dump—with four sub-categories—forest-grassland, residential land,
cropland, and industrial land. The accuracy was more than 85%
and the kappa coefficients greater than 0.75 by manual visual
interpretation, meeting the requirements for practical applications
(Wan et al., 2015).Vegetation index is a straightforward and effective
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FIGURE 1
Geographical location map of Haerwusu coal mine in Inner Mongolia Autonomous Region, China. (A) Geographical location map of Jungar coalfield.
(B) Geographical location of the Haerwusu mine area. (C) Remote sensing image map of the mine area in 2022.

TABLE 1 Jilin-derived spectral vegetation indices.

Metric Abbreviation Formula Variable interpretation

Difference vegetation index DVI DVI = NIR - RED NIR: Reflectance of the near-infrared
band

Enhanced vegetation index EVI EVI = 2.5∗ ((NIR - RED)/((NIR) +
(6∗RED) - (7.5∗BLUE) + 1))

Red: Reflectance of the red band

Ratio vegetation index RVI RVI = NIR/RED Blue: Reflectance of the blue band

Soil-adjusted vegetation index SAVI SAVI = ((NIR - RED)/(NIR + RED +
L))∗ (1 + L)

Green: Reflectance of the green band

Green normalized difference vegetation
index

GNDVI GNDVI = (NIR - GREEN)/(NIR +
GREEN) L: Soil adjustment factor (constant,

usually taken as 0.5)
Normalized difference vegetation index NDVI NDVI = (NIR - RED)/(NIR + RED)

parameter for characterizing the cover and growth of vegetation
on the ground surface and is closely related to carbon storage
(Zeng et al., 2014). The vegetation indices which employed in the
present study are listed in Table 1.

2.2.2 Climate data
Temperature and precipitation have significant effects on the

distribution pattern of carbon storage (Liu Y. et al., 2022). Mean
annual temperature (MAT) and mean annual precipitation (MAP)
data in different geographical locations in the study area for
2007, 2012, 2017, and 2022 were obtained from the Resource and

Environment Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/ (approved for access on 15 January 2023))
with a resolution of 1,000 m and resampled to 10 m to maintain
consistent resolution.

2.2.3 Topographic data
Topographic variables, including elevation (DEM), slope,

and aspect, are among the most commonly used predictor
variables to predict carbon storage (Wang et al., 2018). The
DEM data were derived from the National Aeronautics and
Space Administration (NASA) in 2015, which were extracted by
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TABLE 2 Selected landscape pattern indices.

Metric Abbreviation Formula Variable interpretation

Number of patches NP NP = ni

i: type of the patch; j: amount of
the patch; A: amount of landscape
area; max: the area of largest
patch in study area
Lij: amount of grid cell between
type i and type j; A: total
landscape area; Pi: percentage of
landscape patch types; E: total
length of all patch boundaries in
landscape; A: total landscape area;
n: total amount of nearest patches;
pij: perimeter of patch ij in terms
of number of cell surfaces aij: area
of patch ij in terms of number of
cells; Z: total number of cells in
landscape; g ik: number of adjacent
i-type plaques and K-type plaques

Patch density PD PD = ni
A

Edge density ED ED =
∑ni=1∑

n
j=1Lij

A

Largest patch index LPI LPI = amax

A
× 100

Landscape shape index LSI LSI = 0.25E
√A

Shannon’s diversity index SHDI SHDI = −∑ni=1(Pi × lnPi)

Shannon’s evenness index SHEI SHEI = −∑
n
i=1(Pi× lnPi)

lnn

Patch cohesion Index COHESION COHESION = [1−
∑nj=1pij
∑nj=1pij∗√aij

∗ ] × [1−
1
√Z
]
−1
× 100

Contagion index CONTAG CONTAG = [

[
1+
∑ni=1∑

n
j=1[Pi×

gij
∑nj=1gij
]×[1n(Pi×

gij
∑nj=1gij
)]

21n n
]

]
× 100

Aggregation index AI AI = (
gij

max→gij
)× 100

SRTM data at 30 m spatial resolution (https://search.earthdata.
nasa.gov). On the basis of the DEM, the Space Analyst
tool of ArcGIS 10.2 software was used to obtain slope and
slope direction data with a resolution of 30. To maintain a
consistent resolution for all data, we resampled the topographic
data to 10 m.

2.2.4 Landscape pattern index data
The landscape pattern indices for the selected landscape level

are shown in Table 2, where their ecological meanings are also
presented (Mcgarigal, 2002). Due to the realities of the study area,
the resolution has an influence on the accuracy of the results and
the simplicity of the calculations. Therefore, we resampled the data
to 10 mwith the nearest-neighbor resamplingmethod; on this basis,
the landscape pattern index was analyzed.

To comprehensively explore the evolution of landscape pattern
characteristics in the study area during different periods of
time, 10 landscape indices were selected: number of patches
(NP), patch density (PD), edge density (ED), patch cohesion
index (COHESION), landscape shape index (LSI), Shannon’s
diversity index (SHDI), Shannon’s evenness index (SHEI), largest
patch index (LPI), landscape contagion index (CONTAG),
and aggregation index (AI). To better characterize the spatial
distribution information on landscape patter, we used moving
window tools to calculate the landscape index in 2022. We analyzed
the optimal amplitude and granularity level of the landscape pattern
using the moving window tools in Fragstats 4.2 software before
calculating the landscape pattern index.The grid distribution of each
landscape index was obtained by setting the radius of movement to
30 m, 50 m, 100 m, 150 m, 200 m, and 250 m, respectively, taking
multiples of 10 m. Considering the types of indicators and relevance
of different landscape pattern indices, we chose the four indicators
SHEI, PD, AI, and LSI to judge the moving window radius size. We
used GS+ 9.0 software to calculate the semi-variance function of
these four indicators which is an important part of geostatistical

analyses (Matheron, 1963; Smith et al., 2009), and the appropriate
moving window size was selected by observing the Nugget/sill ratio
changewith differentmovingwindow radiuses.TheNugget/sill ratio
tended to be stable in the range of 50 m, indicating that the scale
is capable of reflecting the spatial variability at the scale inherent
in the changing landscape patterns of the region, accompanied by
low spatial variation, significant spatial auto-correlation, and little
randomness. Therefore, we used images which have been resampled
to 10-m resolution for landscape pattern analysis.

2.3 Methods

2.3.1 InVEST model
The InVEST model is a reliable technique commonly used

to quantify the regional carbon storage for each LULC type; it
assumes that any change in carbon storage is based on LULC
changes (Maanan et al., 2019; Liang et al., 2021; Zhu et al., 2022).We
calculated the carbon concentration of each grid cell in the study
area based on the carbon stored in the four basic carbon pools for
each LULC type, which considers above-ground (Cabove) and below-
ground carbon concentration (Cbelow), soil organic carbon (Csoil),
and dead organic matter (Cdead) (Sharp et al., 2015). Cabove, Cbelow,
Csoil, Cdead, and LULC data are the basic input data for estimating
the amount of carbon storage in each grid cell (Zhu et al., 2022),
and previous studies have found that the impact of LULC changes
on carbon storage changes can still be well-assessed whether or not
changes in carbon density are taken into account (Zhu et al., 2019;
Li et al., 2021). The data for carbon density in this study area are
listed in Table 3, and the final calculation can be expressed as Eqs
1, 2.

Ci = Ci,above +Ci,below +Ci,soil +Ci.dead , (1)

C =∑n
i=1

Ci × Si, (2)
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TABLE 3 Carbon density of LULC types in mining area (t/hm2).

LULC type
Carbon density

References
Cabove Cbelow Csoil Cdead

Transportation land 8.6 0 24.13 0.86 Zhao et al. (2014),
Ma et al. (2019), Liu and

Li Gq (2021)

Water body 3 5.87 49.08 0.3 Liu and Li Gq (2021)

Industrial land 2.84 0.00 24.13 0.33 Liu and Li Gq (2021)

Mining land 0.00 0.00 24.13 0.00 Liu and Li Gq (2021)

Cropland 42.49 8.07 100.38 4.25 Xie et al. (2004), Liu and
Li Gq (2021)

Residential land 8.6 0 24.13 0.86 Zhao et al. (2014),
Ma et al. (2019), Liu and

Li Gq (2021)

Grassland 1.67 8.66 144.64 0.17 Liu and Li Gq (2021),
Wang et al. (2023)

Forest 36.69 14.68 144.64 3.67 Liu and Li Gq (2021)

Reclaimed dump 8.94 21.9 135.96 0 Li et al. (2003),
Huang et al. (2006),

Yu et al., 2010; Jia (2018),
Liu and Li Gq (2021),
Wang et al. (2023)

Unreclaimed dump 1.57 7.43 24.13 0 Li et al. (2003),
Huang et al. (2006),

Yu et al., 2010; Jia (2018),
Liu and Li Gq (2021),
Wang et al. (2023)

where i denotes a certain LULC type, Ci denotes the carbon density
of LULC type i, C denotes the carbon storage of LULC type i in a
given cell, and Si denotes the area of LULC type i.

2.3.2 Semi-variance function model
The semi-variance function is key to studying spatial variability,

which can reflect the spatial correlation between a sampling point
and its neighboring samples. The kriging spatial interpolation can
be used in optimal models (Li et al., 2014; Zhao et al., 2017). The
semi-variance model is based on the principle that the extent of
variability of a pattern and process over small sample point intervals
is not significant due to spatial autocorrelation. It considers the
magnitude of the statistical correlation coefficients as a function
of the distance from the sample; as the distance from the sample
increases, the value of the function increases and gradually stabilizes
(Li et al., 2014). In the context of moving-window calculations,
the semi-variance function can assist in determining the optimal
window size to capture sufficient spatial variability in the analysis
while avoiding noise introduced by over-refinement.The calculation
formula is obtained by Eq. 3.

γ(h) = 1
2N(h)
∑N(h)

i=1
[Z(xi) −Z(xi + h)]

2, (3)

where N(h) denotes the number of data pairs separated by h; Z
(xi) denotes the regionalized variable of the xi position, and N(h)
denotes the semi-variance function of the lag distance h between the
observations Z (xi) and Z (xi + h).

2.3.3 Correlation analysis and multiple regression
model

A 2022 study of the relationship between carbon storage
and influencing factors utilized SPSS software (https://
www.ibm.com/analytics/spss) to analyze the factors affecting
carbon storage. The analysis process was divided into two
main stages: correlation analysis and multiple regression
modeling.

During the correlation analysis phase, we employed correlation
analysis methods to investigate the linear relationships between
various factors and carbon storage (SOC). Pearson’s correlation
coefficient (r) was calculated to quantify the correlation between
SOC and factors such as topographic factors, climate factors,
vegetation indices, and landscape pattern indices. The resulting
correlation matrix helped identify factors significantly related to
carbon storage, providing a foundation for subsequent predictive
modeling. The formula for calculating the Pearson correlation
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FIGURE 2
Flowchart of this study’s methodology.

coefficient is obtained by using Eq. 4.

r =
∑(xi − x)(yi − y)

√∑(xi − x)
2∑(yi − y)

2
, (4)

where r is the Pearson correlation coefficient; xi and yi are the
observed values of the two variables, respectively; x and y are the
sample means of variables x and y, respectively; and ∑represents the
summation symbol—the sum of all observed values.

At the stage ofmultiple regressionmodeling, based on the results
of the correlation analysis, we constructed a multiple regression
model to predict SOC. This model underwent significance testing,
multicollinearity testing, residual analysis, and heteroscedasticity
testing and was required to have a high degree of model fit.
Initially, to mitigate the impact of multicollinearity among the
independent variables, we conducted a multicollinearity test by
calculating the variance inflation factors (VIFs) for all predictors.
The predictor with the highest VIF score was removed, and the
VIF scores for the remaining predictors were recalculated. This

process was repeated until all VIF scores for the independent
variables were less than 10, with a stricter standard set to control
VIFs below 5. Subsequently, the remaining independent variables
were fitted against SOC to obtain the regression model. R squared
and adjusted R squared in the results reflect the extent to which
the independent variables explain the variance of the dependent
variable. Generally, an R squared value above 0.2 is considered
good, with a higher R squared value indicating greater model
accuracy. A close proximity between adjusted R squared and
R squared suggests a stable model. In the significance test, the
significance of each predictor was assessed using a t-test with a
p-value threshold of less than 0.05, ensuring that the variables
included in the model have statistical significance. In the residual
analysis, the normality of themodel residuals was checked; residuals
should be approximately normally distributed without any obvious
patterns or trends. In the heteroscedasticity test, theDurbin–Watson
test was used to detect heteroscedasticity in the residuals. A
Durbin–Watson test value close to 2 indicates constant variance of
the residuals.
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FIGURE 3
LULC distribution of the study area from 2007 to 2022: (A) 2007, (B) 2012, (C) 2017, and (D) 2022.

2.3.4 The coupling coordination degree model
The degree of coupling reflects the degree of interdependence

and interconnection of multiple systems (Li et al., 2022). The
optimization of the landscape pattern can enhance the regional
ecosystem service function, and the forest-land carbon density
landscape index can promote each other, reducing the distance
between forest-land patches and increasing connectivity, which can
mitigate the loss of carbon storage (Shiliang et al., 2019; Tang et al.,
2020; Liu X. et al., 2022). The coupling coefficient model was used
to calculate the coupling degree of the landscape pattern index,
forest and grassland area, and carbon storage, which can be
expressed as Eq. 5.

CLMC = [LFCa(
L+ F+Ca

3
)]

1
3
, (5)

where L denotes the integrated landscape pattern index, F
denotes the standardized forest and grassland area, Ca denotes
the standardized ecosystem carbon storage, and CLMC denotes

the coupling degree among landscape pattern index, forest
and grassland area, and ecosystem carbon storage, where a
higher value indicates greater correlation between the three
factors.

Although there are special cases where the degree of coupling
does not necessarily indicate the degree of coordination of a complex
system, it may be that there is a very low level of development
between systems but a high degree of coupling, which will go
against the actual situation (Tang et al., 2020). To avoid this case, we
constructed the coupling coordination degree model, which can be
expressed as Eqs 6, 7.

DLMC = √CLMC×TLMC, (6)

TLMC = αLMC × L+ βLMC ×Mp + γLMC ×Ca, (7)

where DLMC denotes the degree of coupling coordination, a higher
value of which indicates greater coordination among the complex
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systems; TLMC denotes the composite evaluation index of the three
factors; αLMC, βLMC, and γLMC are undefined coefficients, the sum of
which is 1. Based on previous studies (Ma et al., 2012; Liu Y. et al.,
2022), we believed that the construction among the three factors
have the same important status, and we assign αLMC, βLMC, and γLMC
to 1/3.

2.3.5 Integrated landscape pattern index, forest
and grassland area, and ecosystem carbon
storage normalization model

We selected 10 landscape-level indices—NP, PD, ED, LPI, LSI,
SHDI, SHEI, COHRSION, CONTAG, and AI—which can well-
reflect the degree of aggregation, fragmentation, and connectivity
that characterize the mining landscape to calculate the integrated
landscape pattern index. Based on previous studies (Shiliang et al.,
2019; Liu X. et al., 2022), we applied a normalization technique to
make each landscape index dimensionless. The entropy weighting
method was used to calculate the weights of the indicators, and then
the weights were summed to obtain the integrated landscape index.
This can be expressed as Eqs 8, 9

L =∑m
k=1

ωk × L
′
ki, (8)

L′ki =
Lki − Lmin

Lmax − Lmin
, (9)

where ωi denotes the entropy weight of the degree of landscape level
index k, Lʹ ki denotes the value of standardized landscape level index
i in year k, Lki denotes the unnormalized actual value of landscape
level index i in year k, and Lmin and Lmax denote the minimum and
maximum values of landscape level index i, respectively.

The values of forest and grassland area and ecosystem carbon
storage are based on the extreme difference method. The calculation
formulas are obatained by using Eqs 10, 11.

F =
Fi − Fmin

Fmax − Fmin
, (10)

Ca =
Ci −Cmin

Cmax −Cmin
, (11)

where Fi and Ci denote the unnormalized actual values of forest
and grassland area and ecosystem carbon storage of year i, and
Fmin, Fmax, Cmin, and Cmax denote the minimum and maximum
values of forest and grassland area and ecosystem carbon storage,
respectively.

2.3.6 Contribution rate of the landscape
ecological function

The impact of open-pit mining on mining areas is bound to
spread to the surrounding areas of the mining landscape, and
the key to exploring the impact is to define the scope of spatial
disturbance (Wu et al., 2020). We used the landscape ecological
function contribution ratio to quantify the degree of influence of
mining activities on the regional carbon storage content using the
following calculation formula (Eq. 12):

K l =
Cmine/Smine

(Cmine +∑
n
l=1

Cl)/Sl
× 100%, (12)

whereK l denotes the contribution of landscape ecological functions
within a distance of l (l = 1, 2, ., n km) from the extent of the

FIGURE 4
Changes of the LULC structure in the study area from 2007 to 2022.

mining landscape, including mining districts, dump sites, and other
mining land,Cmine denotes the sumof the carbon storage fromall the
mining landscape, Cl denotes the sum of the carbon storage within
l km of the mining landscape, Smine denotes the area of the mining
landscape, and Sl denotes the area of the region within l km of the
mining landscape.

In summary, the researchmethodology of the paper is threefold,
as shown in Figure 2.The first part is the temporal analysis of carbon
storage in the study area based on the InVEST model. The next
step is the landscape pattern analysis based on the semi-variance
function model and moving-window tools. The final step is based
on the coupling coordination degree model, normalization model,
and contribution rate of landscape ecological function to explore the
correlation between carbon storage, landscape patterns, LULC types,
and other environmental factors.

3 Results

3.1 LULC characteristics

3.1.1 LULC distribution
Spatially, the distributions of LULC types in the study area

of the different years are obviously different and are determined
by human activities, as shown in Figure 3. Grassland and forest
had the most wide coverage; cropland and residential lands were
primarily in the center of the study area; mining, industrial, and
transportational lands, and reclaimed and unreclaimed dumps were
primarily observed in the northwest part of the study area; water was
not obvious and just existed in 2007.

Grassland was the largest LULC type, accounting for
60.75%–67.73% of the total area with the maximum value in 2007
and theminimum value in 2012.This is followed by cropland, forest,
reclaimed dump, unreclaimed dump, mining land, and industrial
land, accounting for 3.30%–21.23%, 4.29%–13.62%, 0.72%–6.12%,
0.83%–5.29%, 0.05%–3.77%, and 1.70%–2.71% of the total area,
respectively (Figure 4). Transportation land and water were the
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FIGURE 5
LULC transfers chord diagram. (A) 2007–2012, (B) 2012–2017, (C) 2017–2022, and (D) LULC change characteristics map 2007–2022.

relatively lowest LULC types, accounting for 0.23%–0.98% and
0.09%–0.14% of the total area, respectively (Figure 4).

3.1.2 LULC change
To more clearly describe the fluidity and variety of LULC

changes, we used the chord diagram to quantify the transformational
relationships between LULC types from different periods in
Figure 5. The transfer of LULC types from 2007 to 2022 are listed
in Table 4. The results show a clear shift in LULC types, with
grassland the dominant contributor to the change in all LULC types,
with 18.65 km2 transferred to other land types and accounting for
27.44% of those diversions being the most pronounced from 2007
to 2012 (Figure 5A), and 17.42 km2 transferred in. Cropland was the
largest LULC type to be transferred out, with the area amounting
to 20.27 km2, accounting for 91.78%, most obvious from 2012 to
2017 (Figure 5B), while only 1.61 km2 was transferred in. The area
of water transferred out (0.11 km2) was larger than that transferred
in (0.09 km2). The area of forest and reclaimed dump were the
major LULC types being transferred in (Figures 5B, C), with areas
of 11.02 km2 and 5.84 km2, respectively, which were mainly from
grassland and cropland, and 5.62 km2 and 0.22 km2 were transferred
out, respectively. Similarly, the area of industrial land, residential

land, unreclaimed dump, and mining land transferred in (1.82, 1.30,
4.97, and 2.99 km2, respectively) was larger than that transferred out
(1.67, 0.92, 0.34, and 0.51 km2).

In order to better visually reflect the impacts of human activities
on LULC type from 2007 to 2022, nine LULC types were classified
according to their characteristics as forest-grassland, cropland,
residential land, and industrial land as anthropogenic activities on
land type (Figure 5D). Forest-grassland converted to industrial land
was primarily concentrated in the northwest parts of the study
area (10.37 km2), cropland was scattered in the south (1.59 km2),
and residential land was more dispersed (1.64 km2). Cropland was
mostly converted to forest-grassland, which was widely distributed
in the center and east of the study area (16.25 km2), while the north-
west of the cropland was converted to industrial land (3.48 km2),
and scattered cropland in the central areas was converted to
residential land (0.54 km2). Similarly, residential land converted
to forest-grassland was also scattered in the central and east of
the study area (0.85 km2), to industrial land was concentrated
in the northwest areas (0.36 km2), and to cropland was scattered
in the whole study area (0.02 km2). The area of industrial land
transferred out was insignificant, with only localized conversion
of small areas into residential land and forest-grassland (0.15 and
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TABLE 5 Carbon storage of different LULC types in the mining area from 2007 to 2022 (t).

Year 2007 2012 2017 2022

Grassland 1,054,702.225 985,016.439 1,093,350.701 1,035,534.678

Residential land 4,731.420 6,801.538 8,518.693 6,010.494

Cropland 342,775.913 317,720.487 72,461.625 53,221.324

Transportation land 795.421 3,408.579 3,138.015 3,439.179

Water 123.123 7,289.818 9,476.406 7,208.958

Mining land 12,412.455 84,327.074 70,478.838 106,189.384

Reclaimed dump 2,863.929 7,016.139 15,520.776 18,219.479

Unreclaimed dump 5,123.746 6,427.931 8,166.728 5,572.654

Industrial land 722.865 859.595 538.323 604.722

Forest 175,270.118 89,611.791 193,469.153 283,060.378

Total 1,599,521.216 1,508,479.392 1,475,119.258 1,519,061.249

0.71 km2). The results showed that an inter-transformation existed
between all the LULC types, although the main manifestation
was the transformation from cropland to forest-grassland and
industrial land.

3.2 Carbon storage characteristics

3.2.1 Carbon storage change
The carbon storage values for the study area are presented

in Table 5, with total carbon storage of 159.95 × 104, 150.85 ×
104, 147.51 × 104, and 151.91 × 104 t in 2007, 2012, 2017, and
2022, respectively, using the InVEST model. The results showed a
fluctuation in the value of carbon storage from 2007 to 2022, with
a gradual decrease from 2007 to 2017 and an increase after 2017.
The largest value of carbon storage was in 2007, with a smaller
area of industrial land and a larger area of grassland, forest, and
cropland with high carbon density than other years. From 2007
to 2017, carbon storage decreased at a rate 1.24 × 104 t/yr, with
a cumulative loss of 12.44 × 104 t; a sharp decline occurred from
2007 to 2012, manifested as a shift conversion from grassland and
forest into mining land, dump, and industrial land. From 2017 to
2022, there was an increase in the total carbon storage in the study
area by 4.39 × 104 t, with the area of forest and reclaimed dump
increasing. Thus, from 2007 to 2017, the conversion of LULC was
mainly from high to low carbon density land, and, from 2017 to
2022, land type with low carbon density was converted to land types
with high carbon density.

3.2.2 Carbon storage spatial distribution dynamic
Carbon density spatial variability is shown in Figure 6. From

2007 to 2012, the variation in carbon storage was primarily
concentrated in the northwest of the study area, ranging from
−175.55 to 170.68 t/hm2 and increases and decreases in areas

of 19.69 km2 and 12.83 km2, accounting for 18.92% and 12.33%,
respectively (Figure 7A). Meanwhile, 68.75% of the region’s carbon
storage remained unchanged. From 2012 to 2017, carbon storage
in the northern parts of the region changed obviously, with
changes ranging from −175.55 to 170.68 t/hm2. An upward
trend was shown in 11.57% of the areas, 19.87% of the areas
had a downward trend, and 68.56% of the areas remained
unchanged (Figure 7B). During 2017–2022, carbon storage changed
considerably across the study area, with increases concentrated
in the north and middle of the study area, ranging from 0 to
170.68 t/hm2, and declines were also concentrated in the middle
of the study area, ranging from −175.55 to 0 t/hm2—17.63%
and 9.80% of the areas (Figure 7C). Additionally, 72.57% of the
areas remained unchanged. Hence, the carbon storage showed
little spatial variation in the study area over 2007–2022, with
53.85% of the areas remaining unchanged, 27.58% of the areas
trending downward, and 18.56% of the area trending upward
(Figure 7D).

3.3 Landscape pattern characteristics

3.3.1 Landscape level change characteristics
The landscape pattern index of landscape level reflects the

landscape pattern across the study area (Wu et al., 2012). As
shown in Table 6, all landscape pattern indices have changed with
a certain amount of fluctuation from 2007 to 2022. To better
analyze the relationship between landscape patterns, LULC type,
and carbon storage, we created an integrated landscape index. To
avoid errors caused by excessive landscape pattern factors involved
in calculating the composite landscape pattern index combined
with the results of the previous study, we chose six landscape
pattern indices with representative types for the calculation: NP,
PD, LSI, COHESION, SHDI, and SHEI (Liu Y. et al., 2022). Their
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FIGURE 6
Carbon storage distribution of the study area from 2007 to 2022: (A) 2007, (B) 2012, (C) 2017, (D) 2022.

values changed with a certain amount of fluctuation from 2007
to 2022 (Table 6). Based on the polarization and entropy weight
method, the weighting values of each landscape pattern index are
0.173, 0.172, 0.227, 0.193, 0.117, and 0.118. Thus, the integrated
landscape index values in 2007, 2012, 2017, and 2022 are 0.614,
0.519, 0.449, and 0.506, respectively (Table 6). The changes of the
integrated landscape index values for 2007–2022 indicate that the
patches of the mining landscape are progressively more discrete and
increasingly fragmented from 2007 to 2017 and that the situation
began to improve after 2017, with patches becoming more cohesive
and less fragmented. The above calculations were performed on
Python V 3.9.0.

3.3.2 Spatial variability of landscape level in 2022
Comparing each landscape pattern index value in 2007, 2012,

2017, and 2022, the landscape pattern characteristics in 2022 are
more typical, which can visually reflect the information about
landscape pattern. Figure 8 shows the spatial distribution of 10
landscape pattern indices within the study area. The spatial
distribution characteristics of COHESION,AI, and LPIwere similar,
where the high-value areas occupied a large part of the region with
a maximum value of 100. The high-value areas were located around
the edges of the study area, especially in areas such as mining land
and dump sites, while the low-value areas were in the in the central
part of the study area, where the LULC types were dominated by

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2024.1372795
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Chang et al. 10.3389/feart.2024.1372795

FIGURE 7
Spatial distribution of carbon storage in the study area from 2007 to 2022: (A) 2007–2012, (B) 2012–2017, (C) 2017–2022, and (D) 2007–2022.

forest and grassland. In general, the values of COHESION, AI, and
LPI got lower from the border to the central area.

CONTAG, SHDI, and SHEI showed similar characteristics,
and the distribution varied greatly: the low value of 0 areas
were primarily distributed in areas with concentrations of human
activities such as mining land and dump sites, while, in the central
part of the region, values varied greatly and were not concentrated.
The overall distribution of ED, LSI, NP, and PD was similar, where
the distribution of low-value areas were in the border region, and the
high-value areas were located in central and southern regions with
a wide range of values.

3.4 Relationships between carbon storage
and influencing factors in 2022

In a comprehensive analysis, the carbon density values were
found to be correlated with topographic factors, climate factors,
vegetation indices, and landscape pattern indices. Among the
topographic factors, carbon density was significantly and positively
correlated with DEM (r = 0.258) (p < 0.01), while the correlation

with slope and slope directionwas not significant. In terms of climate
factors, carbon density exhibited a significant positive correlation
withMAP (r = 0.264) (p< 0.01) and a significant negative correlation
with MAT (r = −0.217) (p < 0.01). For the vegetation index data,
carbon density was significantly positively correlated with EVI (r =
0.130), RVI (r = 0.513), SAVI (r = 0.585), GNDVI (r = 0.402), and
NDVI (r = 0.584) (p < 0.01) and significantly negatively correlated
with DVI (r = −0.343) (p < 0.01). For landscape pattern indices,
carbon density showed significant negative correlations with LPI (r
= −0.108), COHES (r = −0.009), CONTAG (r = −0.024), and AI (r =
−0.111) (p < 0.01). A significant positive relationship was observed
between carbon density and SHEI (r = 0.149) (p < 0.01). Carbon
density was also positively correlated with LSI (r = 0.091) and ED (r
= 0.091) (p < 0.05). The correlation between carbon density and NP,
SHDI, and PD was not significant (Table 7).

Taking into consideration the correlations with carbon density
values, this study established a regression equation of carbon density,
constructed a multi-regression model linking each influential factor
to carbon density content, and analyzed the contribution of each
factor to the change of carbon density. Supplementary Table S1
shows details of the data used in the regression analysis.
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TABLE 6 Four-year landscape pattern indices.

Landscape pattern 2007 2012 2017 2022

NP 1,201 914 799 973

PD 11.5427 8.7838 7.6787 9.3513

LPI 61.5239 58.4038 67.547 63.566

ED 110.3715 89.4442 68.3803 69.0999

LSI 29.4067 24.0708 18.7016 18.8844

CONTAG 71.8 67.11 69.1255 68.2566

COHESION 99.815 99.8181 99.8482 99.827

SHDI 1.0438 1.2991 1.2545 1.1915

SHEI 0.4533 0.5642 0.5448 0.5409

AI 94.5461 95.6247 96.6805 96.6447

Integrated landscape index 0.614 0.519 0.449 0.506

For topographic factors, climate, and vegetation index factors,
SAVI, GNDV, DEM, and MAT data were included in the model.
Other data (such as MAP data) were excluded due to failing
the multicollinearity test or having better alternative options
within the same category of factors. The residual and standard
residual means of the regression equation were both 0, and the
Durbin–Watson test value was 1.572, meeting the independence
condition (Table 8). Variance inflation factor (VIF) values were all
less than 5 (Supplementary Table S2), meeting the collinearity test.
Supplementary Table S3 shows the test for residual normality. The
optimal model is as follows:

C = 396.351+ 213.311× SAVI− 25.573×GNDVI+ 0.03

×DEM− 43.701×MAT(R2 = 0.375,P =< 0.05)(Model1).

From Model 1, it can be observed that SAVI and GNDVI among
the vegetation index data and MAT among the climate factors
contributed significantly to carbon density.

When considering topographic factors, climate factors,
vegetation index data, and landscape index data, SHEI and AI data
were included in the model. The residual and standard residual
means of the regression equation were both 0, the Durbin–Watson
test value was 1.596, meeting the independence condition (Table 9),
and VIF values were all less than 5 (Supplementary Table S4),
meeting the collinearity test. Supplementary Table S3 shows
the test for residual normality. The optimal model is
as follows:

C = −418.105+ 213.824× SAVI− 24.74×GNDVI+ 0.061

×DEM+ 7.217×AI+ 34.734× SHEI− 37.572

×MAT(R2 = 0.389,P =< 0.05)(Model2).

From Model 2, it can be observed that, in addition to
vegetation indices and climate factors, significant contributors to

carbon density are SHEI and AI, which are directly related to
landscape patterns.

Combining models 1 and 2, it can be concluded that, together,
DVI, EVI, SAVI, GNDVI, DEM, MAT, SHEI, and AI data more
reasonably explain the variation in carbon density. The explanation
rate was 37.5% (Model 1) when considering only topographic,
climate, and vegetation index factors. After adding SHEI and AI
data, the explanation rate increased by 1.4% (Model 2).

3.5 Spatial and temporal analyses of
landscape ecological functions

The mean value of carbon storage per unit area in the study area
from 2007 to 2022 is relatively stable, although it is closely related to
spatial variation, which can be divided into two stages (Figure 9).
From 0 to 4 km of the mining landscape, Cmean values increased
significantly, reflecting the anthropogenic impacts on carbon storage
and landscape. Cmean values fluctuated more than 4 km from the
mining landscape, indicating that the carbon sequestration capacity
of the landscape was less affected by human activities such asmining
but directly by landscape type. The results demonstrate that human
activities affect the ecological system functions in a certain distance
which will disturb regional ecosystem conditions; outside of that
distance, the impact on regional ecological function was not related
to the distance, consistent with previous studies (Wu et al., 2020).

As Figure 10 shows, increasing of the area of the mining
landscape increases K l, in which K l in the range of 0–1 km at
the beginning of mining in 2007 was only 46.67%, indicating that
the influence of human activities on the regional carbon storage
was insignificant when human activities were weak, and gradually
increased with increased human activities. Furthermore, the K l
in different buffers had a similar change in 2007, 2012, 2017,
and 2022. The K l values for 0–4 km decreased rapidly with the
value of 0.0104, 0.359, 0.0583, and 0.0514, respectively, indicating
a significant influence of human activities for landscape ecological
function. The values of K l for 4–8 km decreased slowly, with rates of
0.0040, 0.0069, 0.0075, and 0.0111, respectively, indicating that the
negative impacts of mining activities are still rapidly diminishing.
Beyond 8 km, K l tends to be stable, indicating a weak influence
on landscape ecology. Thus, the above analysis shows that the K l
value of the buffer zone is larger the closer it is to the mining
landscape, and the area within 4 km is the main disturbed area;
however, the impacts continue to diminish in the area between 4 and
8 km, and the area beyond 8 km suffers very little or even negligible
disturbance.

4 Discussion

4.1 Effects of LULC dynamic changes on
carbon storage and landscape pattern

The application of the InVEST model to land-use change
to calculate carbon stock changes over time for each map cell
indicates that the calculation of the carbon storage in this study
directly depends on LULC dynamic changes. Landscape patterns,
as the end result of the interaction of natural and human activity
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FIGURE 8
Spatial distribution of landscape pattern indices in 2022.

elements at complex spatio-temporal scales, have always been the
most direct manifestation of LULC change (Wang et al., 2022;
Wang et al., 2022;Liu et al., 2023), and the landscape pattern index
can provide deep information on the LULC change and influence the

evolution of the ecological effects (Moser et al., 2002; Zhang et al.,
2021). Therefore, the spatio-temporal distribution and change
characteristics of carbon storage and landscape patterns were
obtained from the LULC dynamic changes.
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As a nationally important energy and heavy chemical industry
base, Jungar county’s coal industry accounts formore than 70% of its
total economy. Haerwusu coal mine, which is considered the largest
coal production unit in China, provides considerable economic
support to Jungar county. Its raw coal output has been climbing from
the early stage of mining, and the raw coal production of each year
has reached 21.68× 106 t.The coal reserves of themining area exceed
17 × 108 t. with a recent annual raw output of 31 × 106 t (Li et al.,
2020). As the scale of mining activity in coal mines has increased
each year, areas of industrial land have continued to increase. In
particular, similar trends were observed for mining land areas and
industrial land areas, with a gradually increasing trend from 2007
to 2017 and a decreasing trend since 2017. The main reason for the
changes inmining land and industrial landwas that, during the early
stage, there was a rapid increase in the area of industrial and mining
land due to the needs of enterprise development. The Haerwusu
coal mine was evaluated as a national green mine pilot unit in
2014. Zhuneng Group adopted a new synergistic development
model combining mining with land reclamation, including green
mining, reclamation and greening, development of modern
agriculture and animal husbandry, and construction of mine parks,
leading to a subsequent decline in the area of mining area and
industrial land.

The variations in forest and grassland areas fluctuated
significantly, with a 17.48% decrease over the study area from
2007 to 2012 during the early stage of mining and then have
sharply increasing since 2012, with an increasing proportion of
forest. This is principally due to the following reasons. 1) During
the beginning of coal mining, the coal mining damage and land
reclamation implementation caused the main damage to the
forest and grassland as raw coal production increased and coal
mining expanded. 2) From 2012 to 2022, with a great investment
in ecological management by the Zhuneng Group, vegetation
coverage in the mining area continuously improved; in 2022,
the vegetation coverage accounted for approximately 70% of the
Haerwusu mining area. 3) With the “Conversion of Cropland to
Forest and Grassland” policy continuing to be implemented, the
cropland was turned into forest and grassland (Zhang et al., 2020).
The area of cropland remained stable from 2007 to 2012 and has
decreased significantly since then. The reasons for the variation of
cropland area are as follows. 1) For opencast mining coal mines,
various and sustained forms of land destruction, including mining,
excavation damage, and occupancy, were the main reasons for loss
of cropland (Cao et al., 2011), and the direction of land damage
also reinforced the decrease of cropland and residential land. 2)
To obtain more compensation from opencast mines, a number
of farmers planted trees or built houses on cropland, prompting
the conversion of cropland into forest and construction land in a
short period of time (Zhang et al., 2020). 3) The implementation
of the “Conversion of Cropland to Forest and Grassland” policy
has further exacerbated the loss of cropland (Cao et al., 2014).
Similarly, for residential land in the study area, a significant
decrease has occurred since 2017, mainly caused by the continuing
urbanization from more residents relocating and congregating in
towns and cities from original landforms. Furthermore, coal mining
and land reclamation also occupied the residential land, causing
its variation.

4.2 Relationships between carbon storage
and environmental factors

Previous studies have shown that vegetation indices are useful
in explaining the variability and distribution of ecosystem carbon
storage (Guo et al., 2020; Odebiri et al., 2020; Shi et al., 2021;
Wang et al., 2021). Shi et al. (2021) proposed a remote sensing
inversion model for above-ground forest carbon storage based on
GNDVI as the independent variable, with average relative accuracy
of 82.19% . They reported that SAVI played a very important role
in the prediction of carbon storage (Wang, 2022). The significant
correlations between carbon storage and GNDVI and SAVI can
be seen in Table 7 and Figures 11A–C. Terrain factors control the
distribution of thermal and water resources and influence the
regional distribution of vegetation cover and land use, potentially
altering soil organic carbon inputs (Li et al., 2016; Zhao et al., 2017).
Liu Y et al. (2022) suggested that ecosystem carbon storage tends to
increase with elevation, indicating a positive correlation relationship
between ecosystem carbon storage and DEM, which is in line
with the results of this study (Liu X. et al., 2022) (Figure 11D).
In addition, slope aspect, while altering hydrothermal conditions
and vegetation growth, has a smaller effect on carbon density,
and the correlation is not significant as it lacks the characteristics
of a long-term effect (Chang et al., 2021). Previous studies have
demonstrated that human activities such as mining and reclamation
have diminished the effects of slope aspect and slope (Li et al., 2016;
Liu Y. et al., 2022). Climate has been recognized as an important
factor in ecosystem carbon storage. Generally, a strong positive
correlation exists between MAP and ecosystem carbon storage,
and this can be explained by the fact that precipitation stimulates
plant biomass, leading to an increase in ecosystem carbon storage.
Furthermore, MAT shows a negative relationship with ecosystem
carbon storage, suggesting that higher temperatures can promote
the mineralization rate of soil organic matter, leading to a reduction
in ecosystem carbon storage (Song et al., 2018; Wang et al., 2019).
The relationship of carbon storage with MAP and MAT can be seen
in Table 7, and the results of the multicollinearity test indicate that
temperature data are more appropriate as a factor to analyze its
contributions to carbon ecosystem storage variation (Figure 11E).

Landscape patterns have a direct relationship with ecosystem
carbon storage, which is reported by Liu X. et al. (2022).
Table 7 shows that SHEI, AI, and LPI were significantly correlated
with carbon storage. SHEI, representing the diversity of the
landscape types, shows a positive correlation with carbon storage
(Figure 11F). A high value for SHEI means a high proportion of
some natural landscape areas causing landscape complication,
which can better promote material circulation (Fu et al., 2001).
AI and LPI, which can describe the degree of clustering and
the dominant patch types in the landscape, were both negatively
correlated with carbon storage, indicating that a concentrated
distribution and the existing dominant landscape are not conducive
to carbon storage content. The contiguous concentration of
landscape patches will take a certain amount of time, resulting in the
destruction of a large quantity of soil agglomerates and accelerating
the depletion of soil nutrients—unfavorable to increased ecosystem
carbon storage (Carter et al., 2002; Liu Y. et al., 2022). These two
indices have a similar impact on carbon storage, and AI is more
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TABLE 8 Statistical characteristics of coefficients and cross-validation results of Model 1.

Standard error t-value p-value R2 Adjust R2 Durbin–Watson test

Constant 165.169 2.4 0.000∗ ∗ 0.375 0.371 1.572

SAVI 16.318 13.072 0.000∗ ∗

GNDVI 5.922 −4.318 0.001∗ ∗

DEM 0.055 0.546 0.000∗ ∗

MAT 15.291 −2.858 0.000∗ ∗

Note: Significance level quantified by∗ p < 0.05 and∗ ∗ p < 0.01.

TABLE 9 Statistical characteristics of coefficients and cross-validation results of Model 2.

Standard error t-value p-value R2 Adjust R2 Durbin–Watson test

Constant 292.837 −1.428 0.000∗ ∗ 0.389 0.383 1.596

SAVI 16.458 12.992 0.000∗ ∗

GNDVI 5.871 −4.214 0.000∗ ∗

DEM 0.055 1.103 0.000∗ ∗

AI 2.27 3.18 0.000∗ ∗

SHEI 9.701 3.581 0.000∗ ∗

MAT 15.228 −2.467 0.000∗ ∗

FIGURE 9
Mean value of carbon storage per unit area in the study area from
2007 to 2022.

suitable as a factor for analyzing the contribution to carbon storage
within the same category (Figure 11G).

The value of the coupling coordination degree reflects the main
influences of its factors (Li et al., 2022). Statistically, the values of
forest and grassland area in 2007, 2012, 2017, and 2022 in Haerwusu
mining area were 76.76, 67.98, 80.16, and 80.92 km2, respectively.
To avoid the extreme values of 0, we used the extreme difference
method for forest and grassland area by setting the value of forest
and grassland area in 2006 as the minimum value and the value
of forest and grassland area in 2023 as the maximum. For the
minimum value of ecosystem carbon storage, we used the carbon
storage value calculated from the forested land with the largest
area of land type. Thus, the degree of coupling coordination value

in the study area from 2007 to 2022 was 0.887, 0.720, 0.849, and
0.867, respectively. In 2007, the coupling coordination degree of the
mining area was excellent during the mining area in the initial stage
of mining, with little interference from anthropogenic activities
and a larger proportion of grassland. Since 2007, the mining area
has increased dramatically and the grassland area has decreased
significantly, while the carbon sequestration system and landscape
pattern index were significantly affected by human activities. Until
2012, the degree of coupling coordination was primary, reflecting
the serious impact of human activities on the coupling of carbon
storage forest and grassland area-landscape pattern index. From
2012 to 2017, with the increase of forest land area and carbon
storage and the decrease of integrated landscape index value, the
degree of coupling coordination increased well. From 2017 to 2022,
as ecological restoration efforts intensified, human activities had a
great impact on the coupling coordination degree of carbon storage-
forest and grassland area-landscape pattern, resulting in a significant
increase in forest land converted from cropland, continuous
decrease of integrated landscape index value, and continuous
increase of carbon storage. In summary, the carbon storage forest
and grassland area-landscape pattern coupling coordination degree
weakened and then increased, reaching its lowest point in 2012
and starting to increase thereafter, indicating that the changes in
the degree of coupling coordination are greatly affected by human
activities.

4.3 Trends in changes of the contribution
rate of landscape ecological function

From 2007 to 2022, with the gradual expansion of the mining
area, K l for the same area range changed significantly, with the
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FIGURE 10
Landscape ecological function contribution ratio in different buffer zones from 2007 to 2022: (A) 2007, (B) 2012, (C) 2017, and (D) 2022.

lowest value in 2007 and variable fluctuation since thereafter. This
is mainly due to two factors. 1) At the beginning of mining in
2007, industrial land was dominated by mining land, with a higher
proportion of forest and grassland areas containing relatively high
carbon density. 2) With continued mining activities after 2007,
the investment in ecological management increased significantly,
leading to an increased proportion of reclaimed dump among
the industrial landscape; its carbon density is significantly high
compared to other types of industrial land types, and prominently
increases K l. K l in the same area range in different years indicates
varied economy investment and the effect of ecological management
from 2012 to 2022.

In mining areas, the impacts of human activities such as
mining on carbon storage are mainly concentrated between 0 and
4 km, while beyond 4 km that tends to be stable. The reasons
for the changing characteristics of the impacts are as follows.
1) As shown in Table 3, carbon density is significantly higher
in forests and grasslands than in mining landscapes, with the
proportion of the former increasing significantly 0–4 km from
the mining landscapes; outside of 4 km, little change is seen
in the area proportions of each landscape type. 2) Ecological
restoration efforts are mainly concentrated in industrial land, such
as mining land, dump sites, and surrounding areas. The range
0–4 km from industrial land is the main ecological restoration area;
as the distance increases, the proportion of the area occupied by
reclaimed dump also increases. Within a 4–8 km range, ecological
restoration is also carried out, while human activities still have
an impact on regional carbon storage. Beyond 8 km, there is little

ecological restoration, and the implications for the carbon storage
in the study area are mainly influenced by the natural ecology.
As discussed above, we propose that the carbon storage-sensitive
areas in the study area are classified into three levels: extremely
sensitive areas 0–4 km, sensitive areas 4–8 km, and insensitive
areas beyond 8 km—consistent with the results of previous
studies.

Previous studies have demonstrated that mining activities have
a regular character in terms of the contribution of landscape
ecological functions in mining areas. Kang et al. (2014) considered
the theoretical reference range for the impacts of the Shengli surface
mine on the ecological health of grassland landscapes to be 5 km.
Wu et al. (2020) proposed that the mean values of a carbon density
buffer zone from a mining landscape of 0–7 km belong to sensitive
areas, which is in linewith this study (Liu X. et al., 2022). In addition,
the value change of the contribution of the landscape ecological
functions over years is more closely related to mining and the
restoration of coal mines.

4.4 Contributions and limitations

Research on the impact of human activities, such as surface
mining, on carbon storage and landscape patterns in mining areas
is a large project which requires much validation and in-depth
research. Although the relationship between carbon storage and
landscape patterns and other factors has been investigated, the
contribution rate of landscape ecological function was proposed to
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FIGURE 11
Carbon storage and spatial distribution of factors closely related to carbon storage in 2022. 2. (A) Carbon storage, (B) GNDVI, (C) SAVI, (D) DEM, (E)
MAT, (F) SHEI, and (G) AI.

analyze the impact of surface mining on coal mines in this study.
The paper has some limitations, which can be addressed in future
research. 1) Carbon storage was calculated using the Invest model,
which is mainly based on LULC and may not accurately reflect the
carbon cycle and storage. 2) LULC carbon density data were taken
from previous studies and lack field sampling data. They especially
do not consider the functional differences in carbon sequestration
capacity of different plant types. 3) Surface mining may cause
a significant change for surface topography, and different coal
seam mining techniques and resource recovery rates will inevitably
cause different impacts on the surface (Wu et al., 2020). There i
thus a need for comprehensive, real-time, long-term monitoring
of open-pit mining conditions and other data. In addition, in real
landscapes, the complexity of ecosystems makes it difficult to assess
their value (Guo et al., 2021), further affecting the accuracy of the
analysis of the correlation between carbon storage and landscape
patterns.

5 Conclusion

In this research, we addressed the effects of LULC
changes on ecosystem carbon storage and analyzed factors
including landscape patterns, vegetation indices, elevation, and
temperature that influenced carbon storage in Haerwusu open-
pit coal mine from 2007 to 2022. The main conclusions are
as follows:

(1) Carbon storage fluctuated from 2007 to 2022, with a
gradual decrease from 159.95 × 104 to 147.51 × 104 t over
the period 2007–2017 and an increase to 151.91 × 104 t
after 2017.

(2) The carbon storage forest and grassland area-landscape pattern
coupling coordination degree weakens and then increases,
ranging 0.887–0.867, reaching its lowest point of 0.720
in 2012.
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(3) Vegetation indices, temperature, and elevation governed
the geographical pattern of ecosystem carbon storage,
explaining 37.5% of carbon storage spatial variability;
the combination of SHEI and AI improved the
explanation by 1.4%.

(4) The landscape ecological function contribution ratio from
2007 to 2022 has a similar characteristic, which can classify
the carbon storage-sensitive areas of the study area into three
levels: extremely sensitive areas ranging 0–4 km, sensitive areas
ranging 4–8 km, and insensitive areas beyond 8 km.
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